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Strain and pseudo-magnetic fields in optical lattices
from density-assisted tunneling
Maxime Jamotte 1✉, Nathan Goldman 1✉ & Marco Di Liberto 1,2✉

Applying time-periodic modulations is routinely used to control and design synthetic matter

in quantum-engineered settings. In lattice systems, this approach is explored to engineer

band structures with non-trivial topological properties, but also to generate exotic interaction

processes. A prime example is density-assisted tunneling, by which the hopping amplitude of

a particle between neighboring sites explicitly depends on their respective occupations. Here,

we show how density-assisted tunneling can be tailored in view of simulating the effects of

strain in synthetic graphene-type systems. Specifically, we consider a mixture of two atomic

species on a honeycomb optical lattice: one species forms a Bose-Einstein condensate in an

anisotropic harmonic trap, whose inhomogeneous density profile induces an effective uniaxial

strain for the second species through density-assisted tunneling processes. In direct analogy

with strained graphene, the second species experiences a pseudo-magnetic field, hence

exhibiting relativistic Landau levels and the valley Hall effect. Our proposed scheme intro-

duces a unique platform for the investigation of strain-induced gauge fields, opening the door

to future studies of their possible interplay with quantum fluctuations and collective

excitations.
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The rise of cold atoms in optical lattices as a versatile plat-
form to study quantum phases1–4 has led to the realization
and investigation of rich physical models. Building on the

milestone implementation of the Bose–Hubbard model5, a model
of bosonic particles on a lattice with onsite (contact)
interactions6, a variety of opportunities have become available.
For instance, the realization of the Fermi–Hubbard model with
cold atoms7–11 represents a promising route to unveil the
microscopic origin of high-temperature superconductivity12.
More recently, tunable long-range interactions have been intro-
duced in atomic lattice systems13–15, as well as more exotic
features16, such as SU(N)-symmetric interactions17,18, and
density-assisted tunneling19–26.

Gauge fields are at the core of remarkable phenomena in
condensed matter, as was exemplified by the discovery of the
quantum Hall effects and topological materials27–29. These
exciting topics have become accessible in ultracold gases through
the design of synthetic gauge fields30–34. One of the key methods
to realize synthetic gauge potentials in quantum-engineered sys-
tems consists in driving the system periodically in time35–37, a
general scheme also known as Floquet engineering38; in this
driven-lattice context, tunneling matrix elements acquire well-
designed complex phase factors, known as Peierls phase factors,
hence mimicking the Aharonov–Bohm effect caused by an
external magnetic field. These Floquet schemes have been applied
to generate, for example, Peierls phase factors in one- and two-
dimensional lattice geometries39,40, and to realize the
Harper–Hofstadter41–47 and Haldane-type48–51 models in optical
lattices.

An exciting scenario, which has become more concrete and
realistic over the last few years, concerns the realization of
dynamical gauge fields in cold gases, namely, engineered gauge
fields that experience a back-action from the matter degrees of
freedom52–59. A principal motivation behind such developments
concerns the elucidation of non-perturbative effects in lattice
gauge theories (LGTs)60–63. First realizations of density-
dependent gauge fields in cold gases (which did not satisfy the
constraints of a gauge theory), were reported in refs. 64,65. Besides,
major advances in the quantum simulation of LGTs have been
achieved in trapped ions66, and more recently, in ultracold
atoms67,68.

It is well established that artificial gauge fields can also be
engineered in the solid state, for instance, by applying strain to
materials33. In the context of graphene69–71, strain generates an
effective “magnetic" field, which strongly modifies its low-energy

relativistic excitations: strain induces relativistic Landau levels in
the vicinity of the Dirac points72. The main and crucial difference
with the action of a real magnetic field is that time-reversal
symmetry is preserved in strained graphene. As a result, the
vector potential that emerges from the strain field has opposite
signs at the two valleys, thus providing the conditions for the
valley Hall effect73. The characteristic relativistic Landau spec-
trum has been successfully observed in graphene74 and in
molecular graphene75. In synthetic systems, lattice patterning is
often an intrinsic requirement, such that an external stretching is
not needed to produce the effects of strain. Instead, strain can be
mimicked by displacing the lattice sites according to the most
convenient profile76–82. Similar strategies have been exploited to
investigate the physics of strained honeycomb lattices with arrays
of optical waveguides83, microwave resonators84, exciton-
polaritons85, acoustic metamaterials86, dipole emitters embed-
ded inside a cavity waveguide87, and ring resonators arrays88. In
contrast, optical-lattice potentials for ultracold atoms are typically
rigid: their perfect periodicity is generally fixed by the lasers
wavelength. This makes the realization of strain more challenging
in cold atoms than for other synthetic-matter platforms. We note
that a promising proposal, which consists in displacing one of the
three laser beams generating the honeycomb-lattice potential, was
described in refs. 89,90. Very recently, effects of elasticity as
described by phonon modes have been experimentally explored
in optical lattices by coupling a BEC to multimode cavity
photons91.

In this paper, we introduce a different strategy to realize and
investigate the effects of strain in optical lattices, which is sum-
marized in Fig. 1a. Our scheme builds on a mixture of two atomic
species, one of which is bosonic (denoted by ↑) and forms a
Bose–Einstein condensate (BEC), while the second species
(denoted by ↓) can be either bosonic or fermionic. As a central
ingredient, the two species are assumed to be coupled through a
density-assisted tunneling term, which affects the hopping of ↓
atoms through the density of ↑ atoms. When the BEC is har-
monically trapped, the density of ↑ atoms is inhomogeneous, and
the correlated tunneling of ↓ atoms displays the effects of a fic-
titious uniaxial strain: the ↓ atoms behave as electrons moving in
a strained lattice. Throughout our analysis, we make the
assumption that the BEC forms a static classical background and
that the back-action from the second species can be neglected.
Within this framework, we discuss the scheme for two different
regimes of the condensate, namely the non-interacting and the
Thomas–Fermi regimes. In both cases, we show that the spectrum

Fig. 1 Description of the strain scheme. a Representation of the density-assisted hopping model on the honeycomb lattice of length Lx= 2xc. The
parameter a denotes the lattice spacing. The shaded area depicts the inhomogeneous Bose–Einstein condensate. In the zoomed panel, we depict the
hopping process of the ↓ atoms between two neighboring sites occupied by a different amount of ↑ atoms. The unit cell of the lattice where we assume
translational invariance in the y direction is shown by the green dotted line with zig-zag terminations. b First Brillouin zone of the honeycomb lattice where
Dirac points at K ¼ ð2π=3a; 2π=3

ffiffiffi
3

p
aÞ and K0 ¼ �K are indicated.
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associated with ↓ atoms can display pseudo-Landau levels under
proper conditions. We propose a Floquet driving protocol
to engineer the required coupling between the two species
and we outline probing methods to extract the spectral and
topological features. We note that models with similar features
have been suggested in different contexts, for instance, to design
an atomic dissipative bath92,93, in order to simulate the Su-
Schrieffer–Heeger instability94, to study the back-action of
dipolar crystal95 and vortex lattice fluctuations96,97. In the present
context, fluctuations of the strain field originate both from
the BEC quantum fluctuations and from the back-action of the
second species. We leave to future work the task to identify
the impact of these fluctuations onto the static background pic-
ture that we have employed in our analysis. These effects open
the door to interesting scenarios as they would allow us to explore
the interplay of correlations and dynamics involving the two
atomic species and the effective gauge structure.

Results and discussion
Strain on the honeycomb lattice. The Hamiltonian of a single-
particle on the honeycomb lattice in the tight-binding approx-
imation reads

Ĥ0 ¼ �
X
r2A;j

tjðâyr b̂rþδj
þ h.c. Þ; j 2 f1; 2; 3g; ð1Þ

where âr; â
y
r (b̂r; b̂

y
r ) are respectively the annihilation and creation

operators at position r≡ (x, y) in the A (B) sublattice, the
quantities tj are the nearest-neighbor hopping amplitudes and
δ1= (−a, 0), δ2 ¼ ða=2; ffiffiffi

3
p

a=2Þ, δ3 ¼ ða=2;� ffiffiffi
3

p
a=2Þ, as in

Fig. 1a. In momentum space, Ĥ0 can be rewritten as

Ĥ0 ¼
X
k

âyk; b̂
y
k

� �
hðkÞ âk

b̂k

 !
; ð2Þ

with

hðkÞ ¼
0 �Pjtje

ik�δj

�Pjtje
�ik�δj 0

 !
: ð3Þ

Assuming C3 discrete rotational invariance, namely tj= t, the
Hamiltonian around the time-reversal invariant points K and −K
in the Brillouin zone shown in Fig. 1b reads

hðq; ζKÞ ¼ ℏvFðζqyσx � qxσyÞ; ð4Þ
where ζ= ±1, q≡ k− ζK, vF � 3ta=2ℏ is the Fermi velocity and
σx, σy are Pauli matrices. Equation (4) describes a relativistic Dirac
particle whose linear dispersion relation is given by

ϵðqÞ ¼ ±ℏvFjqj: ð5Þ
The application of a spatial deformation that changes the

distance between lattice sites, also known as strain, brings new
interesting effects69,70,77. Within the tight-binding description
and for small deformations, strain affects the tunneling
amplitudes, which become spatially dependent as tj→ tj(r).
Different types of strain can be applied to the honeycomb
lattice98, but here we will consider the case of uniaxial linear
strain along the x direction. For an intensity of strain τ≪ 1, we
assume that the hopping coefficients read

tjðxÞ ¼ t 1þ τ
ðx � xcÞ
3a2

jx̂ � δjj
� �

; x̂ ¼ ð1; 0Þ; ð6Þ

with the condition τLx/3a < 1 ensuring that the strain is
sufficiently small to avoid a local Lifshitz transition to a gapped
state77. By introducing this slow space dependence of the hopping
coefficients into the Hamiltonian (3), translational invariance

along y is preserved and ky remains a good quantum number. In
the rest of this work, we will exploit translational invariance by
solving Ĥ0 for a stripe of size Nx × 2, as shown in Fig. 1a where
the unit cell of the y-periodic lattice is highlighted.

Uniaxial linear strain on the honeycomb lattice mathematically
appears in the Dirac Hamiltonian (4) as a homogeneous magnetic
field70

hðq; ζK;AÞ ¼ ℏvFððζqy � e�AyÞσx � ðqx � e�AxÞσyÞ ; ð7Þ
where A has the form of a vector potential in the Landau gauge

e�A ¼ ð0; ζð2t1 � t2 � t3Þ=2vFÞ

¼ 0; ζ
ℏτ
9a2

ðx � xcÞ
� �

:
ð8Þ

In the rest of this work, we will use units where e*= 1. Since
time-reversal symmetry is preserved by strain, the corresponding
magnetic field B= ∇ ×A has the opposite sign for the two
valleys70,71. As in the non-relativistic case, the spectrum of a
relativistic particle in a magnetic field also displays Landau levels
(LLs). A major difference with respect to their non-relativistic
counterparts is that they are not equispaced in energy. The full
expression, which includes a momentum dependence originating
from a spatially varying Fermi velocity77, reads

ϵ LLν ðqyÞ ¼ ± t

ffiffiffiffiffiffi
ν
τ

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ζqya

q
; ν 2 N; ð9Þ

corresponding to the relativistic LL eigenvectors ψν;qy
¼

ðψA
ν;qy

;ψB
ν�1;qy

Þ, where

ψl
ν;qy

ðrÞ / eiqyye
�ðx�x0 Þ2

2‘2
B Hν

x � x0
‘B

� �
; ð10Þ

with x0ðqyÞ � xc � ζqy‘
2
B indicating the LL center, xc the origin of

the coordinate axis and l=A, B the component of the wavefunc-
tion associated to the A or B sublattice, respectively. The function
Hν is the νth Hermite polynomial and ℓB is the magnetic length,
related to the strain parameter by

‘B ¼ 3affiffiffi
τ

p : ð11Þ

Fig. 2 Landau levels in the honeycomb lattice for uniaxial strain. Energy
spectrum of Ĥ0 for Nx= 601 sites, and strain strengths τ= 0 (in light gray)
and τ= 0.003 (gradient of colors). In the strained case, the color
represents the mean position 〈x〉 of each eigenstate. The four dots with
different markers indicate to representative eigenvectors of the
corresponding energy branch that will be shown in a separate figure. The
red dashed lines represent analytical predictions of the first five Landau
levels (ν= 1, . . . , 5). The parameter a denotes the lattice spacing.
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In Fig. 2, we compare the numerically calculated spectrum of
Ĥ0 in the presence of uniaxial linear strain with the one in the
absence of strain, near the K point. We observe that straining the
lattice has generated relativistic LLs as predicted by Eq. (9). In
Fig. 3a, b, we compare the eigenstates of Ĥ0 corresponding to the
first and second LLs at kya ¼ 2π=3

ffiffiffi
3

p
(or qy= 0), denoted

ϕν;qy ¼ ðϕAν;qy ; ϕ
B
ν�1;qy

Þ, with the analytical relativistic Landau

states ψν;qy
, for ν= 1 and ν= 2 respectively. Sufficiently far from

K, the (almost) flat LLs become strongly dispersive. This effect
originates from the dependence of the LL wavefunction center on
momentum, x0(qy), which we show in Fig. 3c, d. For the values of
qy corresponding to wavefunctions centered near the edge of the
system, the hard wall potential lifts these states in energy thus
causing a strong dispersion. The energy levels therefore cross the
energy gap between two subsequent Landau levels. This is indeed
what we expect from the bulk-boundary correspondence for the
quantum Hall effect (QHE) that predicts the existence of robust
edge modes when the Fermi level sits in the gap between two LLs.
Since the dispersion shows opposite slope at the two opposite
edges, these modes are obviously chiral. However, we have to
recall that on the other valley, the opposite effect will take place as
a result of time-reversal symmetry98. In the end, no net current
can be observed on each edge, unless valley transport can be
resolved, an effect known as the valley Hall effect.

Model. In order to generate uniaxial linear strain with cold atoms
in optical lattices, we propose to employ a mixture of two atomic
species, which we indicate as ↑ and ↓. The ↑ atoms are weakly
interacting bosons, harmonically trapped in the x direction. The
corresponding Hamiltonian reads

Ĥ" ¼ �J
X
r2A;j

ây";rb̂";rþδj
þ h.c.

� �

þ Vx

2

X
r2A;B

ðx � xcÞ2n̂";r þ
U
2

X
r2A;B

n̂";rðn̂";r � 1Þ;
ð12Þ

where n̂";r � ây";râ";r (b̂
y
";rb̂";r) if r 2 A (2 B) and xc is the

position of the system’s center. The parameters J, U and Vx are
respectively the nearest-neighbor hopping amplitude, the onsite
interaction energy and the strength of the harmonic confinement.

The ↓ atoms, whose statistics does not need to be specified, hop
on the same honeycomb lattice as the ↑ atoms according to the
Hamiltonian

Ĥ# ¼ �t
X
r2A;j

ây#;rb̂#;rþδj
þ h.c. ; ð13Þ

where t is the hopping amplitude for the ↓ atoms. The two species
are coupled through the interaction term

Ĥ"# ¼ �αt
X
r2A;j

ây#;rFjðn̂";r; n̂";rþδj
Þb̂#;rþδj

þ h.c. ; ð14Þ

where α is a dimensionless parameter quantifying the interaction
strength between the ↑ and ↓ species. Since the functions Fj
depend on the density of the bosons, this term describes
correlated-hopping (or density-assisted) processes where the
tunneling of ↓ atoms between two neighboring sites depends on
the number of ↑ atoms at these two sites. For the functions Fj, we
consider the following expression

Fjðn̂";r; n̂";rþδj
Þ ¼ 1

3
γjðn̂";rþδj

� n̂";rÞ; ð15Þ

where γ1= 1 and γ2= γ3=− 1. As we show below, these
functions will generate the artificial strain for the ↓ atoms when
the density of ↑ atoms is inhomogeneous. The full model reads

Ĥ ¼ Ĥ" þ Ĥ# þ Ĥ"#; ð16Þ
which we solve in the mean-field (MF) approximation for the ↑
atoms, described by the discrete Gross–Pitaevskii equation.
Specifically, we consider a regime where a large number of ↑
atoms form a weakly interacting BEC and where quantum
fluctuations can be neglected; we note that such fluctuations
could potentially affect the correlated hopping in Eq. (14), but
leave the study of this interesting effect for future work.
Furthermore, we assume that the impurities (↓ atoms) are weakly
coupled to the BEC so as to neglect back-action effects. Within
these approximations, the BEC of ↑ atoms acts as a static and
classical background for the ↓ atoms. We therefore write the

model as Ĥ ’ Ĥ
eff
# þ Ĥ

MF
" , where Ĥ

eff
# � Ĥ# þ Ĥ

MF
"# . The

density operator n̂";r is then replaced by its mean value �n"ðxÞ,
where we remove the dependence on y due to the assumption of
homogeneity in this direction. After calculating the BEC density

profile obtained by solving Ĥ
MF
" , we input the solution into Ĥ

eff
# .

As a result, the ↓ atoms experience spatially dependent hopping
parameters t effj that read

t eff1 ðxÞ ¼ t 1� α

3
ð�n"ðxÞ � �n"ðx � aÞÞ

h i
;

t eff2;3 ðxÞ ¼ t 1� α

3
�n" x þ a=2
� �� �n"ðxÞ

� �h i
:

ð17Þ

In order to recover the linear space dependence needed for
uniaxial strain, we consider a parabolic profile

�n"ðxÞ ¼ �η1
ðx � xcÞ2

a2
þ η0 ; ð18Þ

where the constants η0, η1 will be specified below and depend on
the microscopic parameters of the BEC regime considered. As a
result, we obtain

t eff1 ¼ t 1þ 2
3
η1α
a ðx � xcÞ � αη1

3

	 

;

t eff2;3 ¼ t 1þ 1
3
η1α
a ðx � xcÞ þ αη1

12

	 

;

ð19Þ

Fig. 3 Landau levels density distributions. Density corresponding to the
eigenfunctions ϕν;qy of Ĥ0 for Nx= 601 sites and strain strength τ= 0.003
for various values of (qya, E): (a) (0, 0.039), (b) (0, 0.055), (c)
(0.206, 0.06), (d) (0.179, 0.06), which are compared to the analytical
Landau level eigenfunctions, ψν;qy

, from Eq. (10), where ν is the number of
the Landau level. Their respective markers correspond to the ones in Fig. 2.
While panels (a) and (b) show bulk eigenfunctions of the first and second
Landau levels, panel (c) and (d) show corresponding edge states localized
at the left edge near x= 0.
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which reproduces uniaxial linear strain with τ= 2αη1, as
described by Eq. (6). We obtain new constant terms appearing
in Eq. (19) in comparison to Eq. (6), which result in the vector
potential

A ¼ 0;
2ζℏαη1
9a2

ðx � xcÞ �
5ζℏαη1
36a

� �
: ð20Þ

The last term in Eq. (20) shifts the position of the Dirac points.
However, such a shift is negligible as long as αη1≪ 1, which is the
case here. The effect of this term is indeed not observable in the
numerical results presented below. Furthermore, note that the
LLs energy gaps are not affected because the magnetic field is
determined by the derivatives ∂xt

eff
j , which yields

B ¼ 2ζℏαη1
9a2

¼ ζℏτ
9a2

: ð21Þ

In the rest of this work, we discuss two regimes where the
density profile can be approximated by a parabolic expression Eq.
(18): the non-interacting and the Thomas–Fermi (TF) regimes.
The former corresponds to the condition U= 0, whereas the
latter is obtained for large U such that the BEC kinetic energy
becomes negligible. In order to correctly identify the TF regime,
we compare the energy functionals

Etrap½χ"� ¼
Vx

2

X
r2A;B

x � xc
� �2 jχ";rj2;

Ekin½χ"� ¼ �J
X

r2A;B;j
χ�";rχ";rþδj

þ h.c.
� �

;

Eint½χ"� ¼
U
2

X
r2A;B

jχ";rj2ðjχ";rj2 � 1Þ:

ð22Þ

with each other, where χ";r ¼ hâ";ri for r 2 A and χ";r ¼ hb̂";ri
for r 2 B. The system enters the TF regime when
Ekin≪ Etrap, Eint99, which is reached for sufficiently large values
of U, as shown in Fig. 4.

These two regimes are going to be the focus of our analysis, as
they will lead to inhomogeneous hopping coefficients for the ↓
atoms described by Eq. (17). The BEC density profiles are shown

in Fig. 5a, b, where we also show the corresponding magnetic
fields obtained from Eq. (17),

BðxÞ ¼ ζ
2vF

∂x 2teff1 � teff2 � teff3
� �

ð23Þ
calculated by neglecting the space dependence of the Fermi
velocity. The origin of the inhomogeneity of the magnetic fields
for both regimes is discussed in the two next paragraphs.

Thomas–Fermi regime for the ↑ atoms. We start our analysis by
investigating the Thomas–Fermi (TF) regime, in which the gas of
↑ atoms enters when the repulsive interactions dominate the
kinetic energy. By inspecting Fig. 4, which is obtained for
Vx= 10−6J/a2 and a number of atoms per stripe N↑= 1.2 × 105,
we see that we can safely use the TF approximation for U≳ 10−5J.
The corresponding density profile reads

�n"ðxÞ ¼
1
U

μ� Vx

2
ðx � xcÞ2

� �
; ð24Þ

where μ is the BEC chemical potential, which we numerically
compute from the relation μ= Etot[N+ 1]− Etot[N], where
Etot= Ekin+ Etrap+ Eint is the total energy of the BEC. By sub-
stituting Eq. (24) into Eq. (17), we find that the effective strain
intensity can be expressed in terms of the harmonic trap para-
meter Vx and the interaction strength U as follows,

τeff ¼
αVxa

2

U
: ð25Þ

In Fig. 6, we show the spectrum of the ↓ atoms for U= 10−4J.
The agreement between the numerical results and the analytical
predictions in Eq. (9) obtained for τ= τeff is visible for the first
five levels.

By looking at the BEC density in Fig. 5a, we see that the TF
radius RTF �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ=Vx

p
marks a separation between a region with

strain (∣x− xc∣ < RTF) and a region without strain (∣x− xc∣ > RTF).
As a consequence, the spectrum displayed in Fig. 6 will also show
features of a homogeneous (i.e. unstrained) honeycomb lattice, as
we can conclude by comparison with Fig. 2 (gray lines). The
interface between strained and unstrained regions is not a hard
wall potential, thus allowing for a penetration length of the
wavefunctions from both sides. This fact will therefore induce
hybridization events between LLs and planewave states that will
result in avoided crossings, some of which are visible in Fig. 6. To
distinguish the contribution of the two regions in Fig. 6, we
superimpose the spectrum (empty circles) of a strained

Fig. 4 Mean-field energy contributions. Comparison of the energy
contributions (in units of the harmonic trap energy) as a function of the
onsite interaction U, for Nx= 601 sites, a strength of harmonic confinement
Vx= 10−6J/a2 and N↑= 1.2 × 105 bosons. The Thomas–Fermi regime is
reached when the kinetic energy Ekin is negligible with respect to both the
energy from the harmonic potential Etrap and from the interactions Eint, i.e.
for sufficiently high values of U. The kinetic energy is shifted by 3J in order
to measure the energy from the bottom of the band.

Fig. 5 Condensate density profiles and effective magnetic field. a Density
profile of the ↑ atoms in the Thomas–Fermi regime for a strength of
harmonic trap Vx= 10−6J/a2, a number of bosons N↑= 1.2 × 105,
Nx= 601 sites and an onsite interaction U= 10−4J. b Density profile of the
↑ atoms in the non-interacting regime for Vx= 5.8 × 10−11J/a2,
N↑= 4.8 × 105, Nx= 1401. The dashed line is the approximate parabolic
profile valid for ∣x− xc∣ ≪ ξ, where ξ is the Gaussian width (see Eq. (27)).
The resulting magnetic field (dotted line) is shown in both panels in units of
B0, the value of the magnetic field at the center of the trap, xc.
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honeycomb system that only extends over the size of the BEC,
namely Lx= 2RTF with the corresponding value of the strain
intensity τ= 0.003. As expected, the LL plateaus are clearly
identified together with the edge states branches on the left side of
the spectrum (kya < Ky). Notice that the TF radius sharp
boundary has been suggested to host edge modes in other
topological interacting models as for the case of spinful bosons,
see Ref. 100.

Deviations from the ideal strain physics appear on the right
side of the spectrum for kya > 1.25 and, as indicated by the arrow
in the spectrum, a distinct branch is present. As pointed out
before, the TF radius introduces a separation, or an interface
between the two regions. Let us focus, for simplicity, on the left
interface at x≃ 230a. If a hard wall were present and we could
therefore cut the system into two separate parts, we would have a
zig-zag termination for the unstrained region, which admits E= 0
edge states for ky > Ky, and LL edge states at energies above the
gap for sufficiently large values of ky. However, since the interface
is soft, a hybridization between these two types of states takes
place, which results in (i) a gap-crossing energy branch, as
indicated by the arrow in Fig. 6 and (ii) a deviation from the ideal
case of strained honeycomb lattice, as manifested by the empty
markers in Fig. 6 not overlapping with the lines of the spectrum.
We show in Fig. 7a–d that the new branch corresponds to LL
edge states in the asymptotic limit of large ky, which is also
spectrally observed in Fig. 6. A more quantitative analysis of the
interface problem, which is beyond the scope of this work, can be
addressed by employing the formalism presented in ref. 101,
which would describe the localized solutions for a relativistic
particle near the interface between a region with magnetic field
and a region without. However, additional care must be taken
near the TF radius, as the profile smoothens out, thus causing
sharp changes in the magnetic field at the interface, which are
visible in Fig. 5a.

Non-interacting regime for the ↑ atoms. For the non-interacting
regime, we take U= 0 and we solve the single-particle Hamilto-
nian for the ↑ atoms. As we will show below, this regime is less

ideal for the LL physics, and this is the reason why we present it
after the TF regime analysis. The density profile corresponds to
the harmonic oscillator ground state, namely a Gaussian profile,
as shown in Fig. 5b, which reads

�n"ðxÞ ¼
3N"

4
ffiffiffiffiffi
2π

p
ξ
exp �ðx � xcÞ2

2ξ2

� �
; ξ � 3Ja2

8Vx

� �1=4

; ð26Þ

where ξ is the width of the cloud, xc is the trap minimum position,
N↑ is the total number of ↑ atoms and the factor 3/4 is a con-
sequence of the honeycomb geometry. Near the center of the
system, i.e. for ∣x− xc∣ ≪ ξ, the density can be approximated by
the parabola

�n par
" ðxÞ ¼ 3N"a

4
ffiffiffiffiffi
2π

p
ξ

1� ðx � xcÞ2
2ξ2

� �
: ð27Þ

By substituting Eq. (27) into Eq. (17) for t effj , we obtain the
strain parameter

τeff ¼
3N"αa3

4
ffiffiffiffiffi
2π

p
ξ3

: ð28Þ

Differently from the TF regime, the analytical prediction in Eq.
(9) is in good agreement with the numerical spectrum only very
close to the K point, as shown in Fig. 8. Important differences
with the TF regime appear in the spectrum, whose origin can be
identified directly from the inspection of the two types of density
profiles (see Fig. 5) and traced back to (i) the severe deviations of
the non-interacting density profile from an ideal parabola and (ii)
the absence of a sharp transition from a region with strain to a
region without it. As a result, we obtain a nonlinear space
dependence of strain, which translates into an inhomogeneous
magnetic field that decreases in strength away from the center, see
Fig. 5b.

In order to elucidate the consequences of the inhomogenous
magnetic field, let us assume that the magnetic field changes very
slowly in space. Within this picture, which we will address as a
local-density approximation regime and requires ∣x− xc∣, ℓB≪ ξ,
we can approximate the modified magnetic field with a constant
B(x) ≈ B(x0), where x0 is the wavefunction center and it depends
on the momentum as x0 ¼ xc � ζ‘2Bqy . As one moves away from

Fig. 7 Landau levels density distributions for the ↓ atoms. Density of the
↓ atoms corresponding to the four markers indicated in Fig. 6. The A and B
components of the eigenvectors of Ĥ

eff
# are denoted by ψl

#;qy for l= A, B
respectively. Their respective points in the spectrum have the following
coordinates (qya, E): (a) (0.038, 0.0009), (b) (0.050, 0.0039), (c)
(0.091, 0.0390), (d) (0.111, 0.0617).

Fig. 6 Energy spectrum for the Thomas–Fermi regime. Spectrum of Ĥ
eff
#

when the Bose–Einstein condensate of ↑ atoms is in the Thomas–Fermi
regime, including a comparison with the spectrum of the strained graphene
Hamiltonian Ĥ0 (empty circles) and the Landau levels predicted by Eq. (9)
(dashed lines). The number of sites along x is Nx= 601, the onsite
interaction is U= 10−4J, the strength of the harmonic trap is Vx= 10−6J/a2,
the number of condensed bosons is N↑= 1.2 × 105, and the interspecies
interaction strength is α= 0.3. The strain intensity is τeff= 0.003. The four
dots with different markers correspond to representative eigenstates of the
energy branch indicated by the arrow that will be shown in a separate
figure.
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the K point, the LL wavefunctions is centered further away from
xc. From Eq. (9), we know that the LL energy is proportional toffiffiffiffiffiffiffiffiffiffiffi

Bðx0Þ
p

, which therefore translates into a decrease of the LL
energies away from the K point. As a result, the impact of
inhomogeneous magnetic field corresponds to a deformation of
the LLs which bend down away from the K point. To be more
quantitative, let us expand the Gaussian profile to the next order
in (x− xc)/ξ, yielding

�n (4)" ðxÞ ¼ 3Na

4
ffiffiffiffiffi
2π

p
ξ

1� ðx � xcÞ2
2ξ2

þ ðx � xcÞ4
4ξ4

� �
: ð29Þ

The resulting strain parameter is indeed inhomogeneous and reads

τð4Þeff ðxÞ ¼ τeff 1� 7a2 � 30aðx � xcÞ þ 12ðx � xcÞ2
4ξ2

� �
: ð30Þ

where τeff is given by Eq. (28). Using the local-density approximation,
we therefore replace x ! x0 ¼ xc � ζ‘2Bqy and obtain the modified
LLs energy levels

ϵ (4)ν ¼ ±t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν

2
τeff ð1� ζqyaÞ

r

´

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 7a2

4ξ2
� 15ζ‘2B

2ξ2
qya�

3‘4B
a2ξ2

ðqyaÞ2
s

;

ð31Þ

which are shown in Fig. 8. The modified dispersion captures
reasonably well the behavior of the lowest LLs, despite the fact that
for this choice of parameters the LL wavefunctions are too broad as
compared to ξ, thus weakening the validity condition of the local-
density approximation.

Numerical validation. In this section, we further provide a
numerical analysis of the results presented so far by showing a

direct comparison of the eigenstates of Ĥ
eff
# with the ones

expected from the ideal linear strain regime described by the
Hamiltonian Ĥ0 and from the LLs description. In order to
establish this comparison, we compute the fidelity F ðν; qyÞ ¼
jhϕν;qy jψ#;qy ij

2 where ψ#;qy denotes the eigenstates of Ĥ
eff
# and

ϕν;qy those of Ĥ0 corresponding to the νth LL. As mentioned in

the previous section, the spectrum of Ĥ
eff
# differs from the one of

Ĥ0 due to regions without strain or with magnetic field inho-
mogeneities. To minimize these effects, we focus on a certain
window in momentum space qy 2 ½qmin

y ; qmax
y � centered around

the K point where we find high values of fidelity (F ðν; qyÞ≥ 0:8)
for bulk states in each νth LL. The results are shown in Fig. 9a, b
for ν= 1, 2, 3 in the TF and the non-interacting regimes. The
parameters are chosen as in the previous section.

In both cases, we observe that the eigenstates of Ĥ
eff
# reach a

high fidelity with the ones of Ĥ0 near the center of the LL, namely
near the K point. However, in the non-interacting regime
(Fig. 9b), the fidelity decreases as we go away from the K point.
This effect originates from the inhomogeneous magnetic field that
modifies the wavefunction as compared to the expected ideal LL
results. In particular, the magnetic length becomes space
dependent and it increases when the magnetic field decreases,

Fig. 9 Landau levels wavefunction fidelity. Spectra of Ĥ
eff
# around the K

point obtained (a) in the Thomas–Fermi regime and (b) in the non-
interacting regime, where we superimpose the fidelity F ðν; qyÞ with the
Landau level eigenstates computed in a range of momenta delimited by the
vertical dashed lines. Each panel addresses the fidelity of the νth Landau
level. The parameters for the two regimes are chosen as in the previous
plots. For a, the number of sites along x is Nx= 601, the onsite interaction is
U= 10−4J, the strength of the harmonic trap is Vx= 10−6J/a2, the number
of condensed bosons is N↑= 1.2 × 105, and the interspecies interaction
strength is α= 0.3. For b, Nx= 1401, Vx= 5.8 × 10−11J/a2, N↑= 4.8 × 105

and α= 0.49. As the fidelity is calculated for bulk state, the range of
momenta has been chosen to avoid interface or edge states effects.

Fig. 8 Energy spectrum for the non-interacting regime. Spectrum of Ĥ
eff
#

when the Bose–Einstein condensate of the ↑ atoms is in the non-
interacting regime. The number of sites along x is Nx= 1401, the strength of
the harmonic confinement is Vx= 5.8 × 10−11J/a2, the number of bosons is
N↑= 4.8 × 105 and the interspecies interaction strength is α= 0.49. The
strain intensity is τeff= 3.1 × 10−3. Dashed lines represent the predicted
Landau energies for a homogeneous synthetic magnetic field, whereas the
dashed-dotted lines are obtained by including the leading effects of
inhomogeneity.
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thus enlarging the tail of the wavefunctions and therefore
lowering the fidelity.

We now discuss how the LL picture correctly describes the
results when we change the effective magnetic field, namely the
parameter α. In particular, we focus on the highest fidelity,
denoted by FMðνÞ ¼ maxqy F ðν; qyÞ, as a function of α. The

results are shown in Fig. 10a for the TF regime and in Fig. 10b for
the non-interacting regime. The content of these plots can be
understood through a lengthscale analysis. The smallest lengths-
cale is the lattice spacing a, whereas the largest one (besides the
size of the system Lx) is related to the BEC size, namely ξ and RTF
for the non-interacting and the TF regimes, respectively. The
relevant lengthscale for LLs physics is the magnetic length ℓB. We
therefore conclude that the ideal situation to observe LLs requires
a≪ ℓB≪ ξ, RTF.

In both regimes, we find that the fidelity FM is close to 1 for
large values of α whereas it drops as α decreases, see Fig. 10a, b.
The best scenario is therefore reached for sufficiently large values
of α. However, when α becomes too large the LL picture breaks
down since the magnetic length ℓB becomes smaller and lattice
spacing effects take place. We can already see this trend for the
values of α chosen in this analysis, as shown in Fig. 10c, d. We
indeed observe that the fidelity F 0

M ¼ max
qy

jhϕν;qy jψν;qy
ij2

between the analytical relativistic Landau levels ψν;qy
given by

Eq. (10) and ϕν;qy , decreases as α increases. The impact of the

lattice discreteness is more effective for higher LLs, which have
more nodes and thus a less smooth wavefunction, which results in
a lower fidelity. A second reason for the drop in fidelity F 0

M as α
increases comes from the asymmetry (or parity breaking) with
respect to the center xc that the wavefunctions manifest and that
can be identified by inspecting Fig. 3. There one can recognize

that the left peaks of the wavefunctions have different heights
with respect to the right peaks, whereas the analytical LL states do
not. This feature, which was already noticed in ref. 102 and caused
by terms that have been neglected in the effective Dirac
description, is negligible for small strain values but becomes
more and more relevant for larger ones, thus causing a distinct
mechanism for a mismatch with the ideal LL wavefunctions and
the drop in fidelity.

We can therefore conclude that the ideal regime requires a not
so large value of α because novel effects that invalidate the LL
picture take place, as the condition ℓB≫ a is not satisfied
anymore. On the other side, when α decreases, the wavefunction
broadens and the condition ℓB≪ ξ, RTF breaks down. We may
encounter situations where the lowest LL has a very good fidelity
(see Fig. 11a, b) when centered near xc whereas the highest LLs
are more strongly affected given their larger size (Fig. 11c, d). In
the TF regime, the wavefunctions can indeed cross the interface
and hybridize with the planewave solutions of the unstrained
region. This effect is shown in Fig. 11c. In the non-interacting
regime, one must instead consider the intermediate region where
the BEC density is non-parabolic. In this region, the magnetic
field is nonuniform as we discussed before, thus implying that the
magnetic length acquires a space dependence and becomes larger
as we go away from the center, which in turn broadens the
wavefunction, as shown in Fig. 11d.

Experimental realization and probing. In this section, we out-
line a method to experimentally implement the model discussed
in the previous section by using a time-dependent scheme and we
then discuss possible detection protocols.

Floquet scheme. In order to generate the correlated-hopping
parameters given in Eq. (17), we combine a Floquet engineering
method inspired from ref. 21 where interactions are modulated in
time, and we combine it with the resonant driving scheme ana-
lyzed in ref. 103 for a double-well system. Before discussing the
coupling between the ↑ and ↓ species, let us briefly review how a

Fig. 10 Dependence of the fidelity on the strain strength. a, b Fidelity FM

as a function of α (ℓB) for a the Thomas–Fermi regime with an onsite
interaction U= 10−4J, a strength of harmonic confinement Vx= 10−6J/a2,
and a number of bosons N↑= 1.2 × 105 and for b the non-interacting
regime with U= 0, Vx= 5.8 × 10−11J/a2, N↑= 4.8 × 105. In c, d we
compute the fidelity F 0

M to check the validity of the continuum
description as a function of α(ℓB) for the same parameters as in a and b,
respectively. The wavefunctions of the dots indicated by roman numbers
in a and b are taken as representative examples that are shown in a
separate figure.

Fig. 11 Landau levels density distributions for small strain strengths.
Density from the eigenvectors of (long dashed-dotted) Ĥ

eff
# and (dashed)

Ĥ0 corresponding to the circles indicated in Fig. 10a, b for (a, b) qya= 0 and
(c, d) qya=− 0.00067. In all panels, we plot only the A component. The
single-dashed and double-dashed lines represent the numerical solution of
the Gross–Pitaevskii equation �n" and the parabolic profile �npar" that
approximates the Gaussian at its maximum, respectively.
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resonant Floquet driving scheme can be implemented to engineer
tunneling amplitudes in a double-well system. Let us consider a
single species (↓) described by the time (τ)-dependent Hamilto-
nian ĤðτÞ ¼ Ĥhop þ V̂ðτÞ, where

Ĥhop ¼ �tĉy#;0ĉ#;1 � tĉy#;1ĉ#;0 þ Δn̂#;1

V̂ðτÞ ¼ K0 cosðΩτÞn̂#;0 þK1 cosðΩτÞn̂#;1;
ð32Þ

with Ω the modulation frequency, ĉy#;i (̂c#;i) the creation (anni-
hilation) operator of the ↓ atoms at site i∈ {0, 1} and
n̂#;i � ĉy#;i ĉ#;i. The parameter Δ describes an energy offset
between the two sites. Differently from the model in ref. 103, we
have imposed a time modulation for both sites. If the resonant
condition Δ= ℏΩ≫ t is met, we can follow the standard proce-
dure of changing basis to the rotating frame through the unitary
transformation R̂ ¼ R̂1R̂2, where

R̂1ðτÞ ¼ eiΩτn̂#;1 ;

R̂2ðτÞ ¼ ei
K0
ℏΩ sinðΩτÞn̂#;0þK1

ℏΩ sinðΩτÞn̂#;1
	 


:
ð33Þ

The resulting Hamiltonian transforms into

ĤðτÞ ¼ R̂ĤðτÞR̂y � iℏR̂∂τR̂
y

¼ �teiðK0�K1Þ sinðΩτÞ=ℏΩ�iΩτ ĉy#;0ĉ#;1 þ h.c.
ð34Þ

We obtain an effective time-independent Hamiltonian by
taking the time-average of ĤðτÞ which reads

Ĥeff ¼ �teff ĉy#;0ĉ#;1 þ h:c:; ð35Þ

where teff ¼ tJ 1ððK0 �K1Þ=ℏΩÞ, with J 1ðxÞ being the first
Bessel function of the first kind. When its argument is much
smaller than 1, namely K0 �K1 � ℏΩ, it can be linearized as
J 1 xð Þ � x=2 thus yielding an effective hopping amplitude

teff � t
K0 �K1

2ℏΩ
: ð36Þ

In order to understand how to generate the correlated-hopping
term, let us replace VðτÞ by an interaction term between the ↓
species and the ↑ species that reads

Ĥ"# ¼ U"#ðτÞðn̂";0n̂#;0 þ n̂";1n̂#;1Þ; ð37Þ
where U"#ðτÞ � U cosðΩτÞ, as in ref. 21. We can then identify
Ki ¼ Un̂";i and apply the resonant driving scheme described
before, which yields

teff ¼ t
α

3
ðn̂";0 � n̂";1Þ; ð38Þ

with α � 3U=2ℏΩ. We immediately conclude that the following
condition αjhfn0";igjðn̂";0 � n̂";1Þjfn";igij � 1, where {n↑,i}
labels the Fock states, must be satisfied in order to linearize the
Bessel function.

The scheme that we have discussed so far provides the
correlated-hopping term that is central to our model of strain in
the subsection “Model”. However, the ↓ atoms must also possess a
dominant tunneling amplitude that is unaffected by the
interaction with the ↑ atoms. The missing term can be obtained
by considering an additional onsite energy driving term ŴðτÞ ¼
Δ0 cosðΩτÞn̂#;0 that yields

teff � t
Δ0 þK0 �K1

2ℏΩ
: ð39Þ

While the terms Ki are proportional to the density operators
n̂";i, Δ0 is simply a c-number. We thus obtain

teff ¼ t
Δ0

2ℏΩ
þ t

α

3
ðn̂";0 � n̂";1Þ: ð40Þ

Under the condition K0 �K1 � Δ0 � ℏΩ, we have therefore
obtained that the hopping process is described by a dominant
tunneling amplitude and by a smaller density-dependent
contribution, as required for the realization of strain. Here below,
we will focus our discussion on the different possibilities for the
second term.

The double-well scheme that we have discussed must be
applied to an extended honeycomb lattice in order to reproduce
uniaxial strain. We have identified two possible implementations,
which we sketch in Fig. 12. The first scheme consists in applying
an energy offset on each lattice site that grows along the x axis, as
shown in Fig. 12a. The Floquet results presented for the double-
well case apply here to the hopping between two neighboring sites
of the honeycomb lattice after identifying site 1 as the one with
the highest energy offset and site 0 as the one with the lowest
energy offset. The generalization of Eq. (38) to the honeycomb
lattice is therefore

t effj ¼ t
α

3
γjðn̂";rþδj

� n̂";rÞ; r 2 A ð41Þ

with γ1= 1 and γ2,3=− 1, which is exactly what we studied in
the previous sections.

The second scheme presents an offset (Δ) only for the A
sublattice and none for B sublattice, as shown in Fig. 12b. In the
double-well representation, this means that the site 0 is always a B
site and the site 1 is always an A site. The effective hopping
amplitude in this case reads

t effj ¼ t
α

3
ðn̂";r � n̂";rþδj

Þ; r 2 A: ð42Þ

Therefore, by following the same reasoning as the one leading
to Eq. (20), the vector potential A for the present configuration is
given by

A ¼ 0;
ζℏτeff
3a2

ðx � xcÞ �
ζℏτeff
12a

� �
; ð43Þ

which corresponds to an effective magnetic field three times
larger than the one in Eq. (21). The corresponding LLs energies
are

ϵ LLν ðqyÞ ¼ ± t

ffiffiffiffiffiffiffiffiffiffiffiffi
ν
3τeff
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ζqya

q
; ν 2 N; ð44Þ

For ν= 1, the energy gap is thus larger by a factor
ffiffiffi
3

p
in

comparison to the energy gaps obtained with the previous scheme
presented in Fig. 12a. As this scheme provides a larger gap, it
would be more suitable for the experimental detection of LL
physics.

Fig. 12 Floquet engineering strain schemes. Two possible Floquet
engineering schemes of strain as described in the main text. a Energy offset
Δ linearly growing in the x direction. b Homogeneous energy offsets Δ only
on the A sites.
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Further effects and probing methods. In the discussion above, we
have not considered the possible renormalization of the hopping
parameter J of the ↑ atoms due to the time modulation of
interactions. As presented in ref. 21, if no energy offset is
experienced by the ↑ atoms and if Ω 	 J;U then the hopping
amplitude for the ↑ bosonic atoms is renormalized as
J ! Jeff ¼ JJ 0ðαðn̂#;0 � n̂#;1ÞÞ. When the argument of the Bessel
function is sufficiently small, the hopping amplitude is unaffected
and no back-action of the ↓ atoms takes place onto the ↑ atoms.
This condition can be met when the density of ↓ atoms is small or
when it is homogeneous. So far, we have not specified the sta-
tistics of ↓ atoms. If we consider a Fermi gas of ↓ atoms, we may
have both conditions met at once because Pauli exclusion prin-
ciple will prevent the onsite density to exceed one atom per site
and it will also broaden the density distribution in the presence of
a harmonic trap. The latter may result in a very flat density profile
over the range occupied by the BEC of ↑ atoms. If we consider a
gas of bosonic ↓ atoms, we will instead have to enforce a low
density or a homogeneous distribution in order to prevent the
back-action on the ↑ atoms. Despite the arguments presented
here to neglect back-action effects, it would nevertheless be
interesting to include those, as they will provide a distinct
opportunity to enrich the strain picture discussed in this work
with dynamical effects.

A separate discussion for the actual implementation of the
model concerns the trapping potential. The strain model that we
have analyzed requires a strongly anisotropic harmonic trap
experienced by the BEC of ↑ atoms with ωx≫ ωy, where ωx,y are
the harmonic trapping frequencies in the two spatial directions.
In this work, we have actually considered ωy→ 0 to simplify the
theoretical analysis. However, we have not included trapping
effects on the ↓ atoms, assuming that one can independently
control the confinement of the two atomic species. In this case,
several scenarios are possible, which affect the back-action
discussed before and the corresponding probing methods. When
the harmonic trap is absent or negligible, we obtain the picture
discussed in this work for the single-particle spectrum. However,
in the presence of a strong confinement and for fermionic ↓
atoms, we will have the opportunity to reveal the presence of LL
physics when the corresponding Fermi level at the center of
the system is fixed between the LL gaps. In this case, LLs will
manifest through jumps in the density profile that will confer the
typical wedding cake structure to the fermionic gas, see ref. 90.
Near these jumps, which are going to be partly smeared out
because the LLs are not perfectly flat, we also expect to find
valley-dependent edge modes that represent a clear signature of
the valley Hall physics.

Several techniques can be employed to directly probe the
properties of LLs, as well as the nature of the pseudo-magnetic
fields. One possibility would be to monitor the real space
dynamics of a wave packet of ↓ atoms, initially prepared in the
vicinity of a Dirac point; such a wave packet will exhibit a
cyclotron motion, as illustrated in refs. 90,104. We point out that
this would be a direct probe of the valley-dependent pseudo-
magnetic field (and thus highlight the time-reversal invariant
nature of the system), since the chirality of the cyclotron orbits is
opposite at the two valleys. Similarly, acting on the wave packet
with a constant force will generate a Hall drift105, whose direction
will depend on the valley considered. Another approach would be
to prepare a uniform fermionic gas of ↓ atoms at half-filling. In
this case, circular lattice shaking will allow us to spectroscopically
resolve the LLs by measuring the absorbed energy. Moreover,
band mapping techniques make possible to identify valley-
dependent absorption processes, thus allowing to extract the

valley Hall conductivity through the corresponding valley circular
dichroism51.

Conclusions
In this work, we have presented a strategy to generate a strain
field in optical lattices that is implemented by coupling an atomic
species to a trapped BEC via well-tailored density-assisted tun-
neling terms. By changing the shape of the BEC profile or the type
of density-assisted tunneling terms, distinct strain profiles can in
principle be generated. We have focused on the implementation
of uniaxial linear strain in the honeycomb lattice applied along
one of the three crystalline axes of the lattice, which is realized by
considering a strongly anisotropic harmonic trapping potential.
We have then discussed two limits of interest, namely the non-
interacting and the Thomas–Fermi limits. After investigating the
spectral features, we have identified the Thomas–Fermi regime as
most suitable to reproduce the ideal linear strain configuration.
Indeed, this regime minimizes the effects of regions with inho-
mogeneous magnetic field and requires smaller atomic clouds.

The Thomas–Fermi regime may also provide an interesting
scenario to study the effect of quantum fluctuations originating
from the phonon modes of the BEC or the effect of exciting the
BEC collective modes, which would provide time-dependence to
the synthetic gauge field. Some of these effects have a corre-
spondence in solid-state system and originate from the lattice
vibrations of the crystal. Another interesting scenario, which is
more specific to cold atoms, is to investigate the strongly inter-
acting regime for the bosonic gas near the Mott insulator phase.
In this case, low filling and strong quantum fluctuations would
provide a very different regime as compared to what is studied in
solid-state materials. Our results therefore suggest a distinct
direction to investigate the interplay of dynamical gauge fields, as
realized through synthetic strain fields, and quantum matter with
ultracold atoms.

While our work has focused on the two-dimensional honey-
comb lattice where a spin-1/2 relativistic theory represents the
effective description, interesting effects originating from strain
can also take place in other dimensions (for the case of Weyl
semimetals see, for instance, ref. 106 and references therein) or in
models represented by higher-spin effective descriptions107. Our
scheme therefore offers the opportunity to explore more generic
strain effects beyond the paradigmatic honeycomb lattice (gra-
phene-type) case. An interesting perspective concerns the possi-
bility of shaping the density profile of the BEC, for instance using
digital micromirror devices108, in view of realizing tunable strain
configurations in optical lattices of arbitrary geometry.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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