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Observation of a transition to a localized ultrasonic
phase in soft matter
Bernard R. Matis 1✉, Steven W. Liskey1, Nicholas T. Gangemi1, Aaron D. Edmunds1, William B. Wilson1,

Virginia D. Wheeler2, Brian H. Houston3, Jeffrey W. Baldwin1 & Douglas M. Photiadis1

Anderson localization arises from the interference of multiple scattering paths in a disordered

medium, and applies to both quantum and classical waves. Soft matter provides a unique

potential platform to observe localization of non-interacting classical waves because of the

order of magnitude difference in speed between fast and slow waves in conjunction with the

possibility to achieve strong scattering over broad frequency bands while minimizing dis-

sipation. Here, we provide long sought evidence of a localized phase spanning up to 246 kHz

for fast (sound) waves in a soft elastic medium doped with resonant encapsulated micro-

bubbles. We find the transition into the localized phase is accompanied by an anomalous

decrease of the mean free path, which provides an experimental signature of the phase

transition. At the transition, the decrease in the mean free path with changing frequency (i.e.,

disorder strength) follows a power law with a critical exponent near unity. Within the

localized phase the mean free path is in the range 0.4–1.0 times the wavelength, the

transmitted intensity at late times is well-described by the self-consistent localization theory,

and the localization length decreases with increasing microbubble volume fraction. Our work

sets the foundation for broadband control of localization and the associated phase transition

in soft matter, and affords a comparison of theory to experiment.
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For strongly disordered three-dimensional (3D) systems the
Anderson transition has been expected to separate phases
comprised of extended and localized states1–6. Early theo-

retical studies based on either scaling arguments derived from
perturbative expansions3 or on renormalization group in 2+ ε
dimensions7,8 predicted a mobility edge in 3D (the energy at
which the transition from localized to extended behavior occurs).
The theoretical predictions are based on analyses of single particle
wavefunctions of disordered systems and are thus applicable to
both quantum mechanical (single particle) and classical waves.
However, predictive capabilities in 3D are still incomplete with
the most powerful theoretical tool available, the supersymmetric
sigma model9, unable to make predictions at the mobility edge6.
Experimental comparisons with theory are (and have been)
inevitably incomplete, but have begun to help develop a more
sound understanding of the phase transition associated with the
localized phase.

Experiments seeking to observe single-particle quantum effects
induced by disorder are complicated by a number of physical
phenomena. Obtaining comparisons between theory and experi-
ment in the electronic case, for which the theory was originally
intended, is greatly complicated by the Coulomb interaction
between electrons6,10–14, and substantial modifications of the
theory are needed to compare with experiment. As a result,
researchers have shifted their focus to systems enabling the study
of non-interacting, single-particle wavefunctions.

Studies on the expansion dynamics of atomic matter waves in a
disordered potential defined by a laser speckle field circumvent
the issues associated with interparticle interactions and have led
to the observation of localization effects in 3D15–17. However,
results of these matter wave experiments are complicated by
certain experimental factors including the range of energy states
that exist within the expanding wavepacket (diffusive and loca-
lized states), the long experimental timescales required, and
subtleties in the random distributions (including anisotropic
correlations within the disordered potentials and the nature of the
quasi-periodic potential). These experimental complications have
led to significant differences between measured values of the
mobility edge and numerical predictions18, and these differences
are still not well understood. In addition, no matter wave
experiment has thus far demonstrated an energy distribution
narrow enough to determine the phase transition’s critical
exponents or multifractal behavior17,18. Studies on dynamical
wave localization where the wavefunction is exponentially atte-
nuated in momentum space show promise for determining the
phase transition’s critical exponents19; however, these experi-
ments are not a real space realization of the Anderson localization
of wave energy by disorder and do not address the question of
Anderson localization in systems with topological disorder.

It was long expected that studying classical waves would pro-
vide a straightforward path to observe localization effects in non-
interacting systems and a means for comparing experiment
directly to theory. Further, experiments aimed at studying clas-
sical wave propagation through a disordered medium can cir-
cumvent the challenges associated with a Bose–Einstein
condensate expansion measurement owing to the long times over
which energy can be measured and the possibility of separating
diffusive from localized effects in frequency domain, which could
lead to measurable localization effects that are not skewed by the
presence of delocalized states as in the case for matter waves. In
the classical case, instead of a single mobility edge (as in the
electronic case) there is expected to be a second, low-frequency
mobility edge driven by Rayleigh scattering, which is a phe-
nomenon that does not occur in quantum systems; the difference
results from the different boundary conditions, which lead to the
different scattering phenomena at low energies and frequencies20.

Thus, one expects in the classical case to observe a disorder-
driven band of localized states at intermediate frequencies,
separated from extended states at low and high frequencies by
two mobility edges8,20–22. Experimental observation of such a
localized phase, however, has proven to be elusive.

The difficulty in observing a localized phase for a classical wave
system in 3D is due in large part to the difficulty in achieving
strong enough scattering with small dissipation. In studies on
light scattering, observation of a phase transition has been diffi-
cult with several early claims of light localization23,24 being
disputed25. In parallel studies, investigators have examined
resonant mesoglass systems and have observed localization effects
in narrow frequency bands near resonance26–28. This is indeed a
significant finding, but it is not the observation of a broad fre-
quency band of localized states that one may fairly interpret as a
localized phase, as originally envisioned.

We report here observations of a broadband localized phase
spanning up to 246 kHz for sound transmission through a sus-
pending gel (a Bingham fluid) doped with compliant encapsu-
lated microbubbles (EMBs)29–31. A key difference between this
system and those systems searching for light localization is in the
type of resonant scatterer (monopole scattering in this work
versus dipole scattering in the case of light), which give rise to
different near-field couplings that can affect localization32. A key
advantage of this system is the broad, continuous resonance
frequency bandwidth for the EMB dopants spanning 100 s kHz
(afforded by the soft matter disparate wave speeds resulting in the
compressional wavelength being much larger than the EMB
equilibrium diameter), which provides a tunable disorder
strength and allows unprecedented access to the predicted loca-
lized phase and the corresponding phase transition. The transi-
tion into the localized phase occurs at a critical density
ρC= 2.2 × 109 scatterers/m3= 0.09k3 where k is the effective wave
number, and is accompanied by a strong anomalous decrease in
the measured scattering mean free path lS, which provides an
experimental signature of the phase transition. At the phase
transition, the decrease in lS with changing frequency (i.e., dis-
order strength) follows a power law with a critical exponent
γ= 1.08 ± 0.05. Within the localized phase the maximum ratio of
the mean free path to the wavelength, lS/λ, equals unity and this
ratio reaches values as low as lS/λ= 0.4, which is expected for
localization based upon early work by Ioffe and Regel33. Within
the localized phase, the time-dependent transmitted intensity
shows late-time deviations from diffusion, which cannot be
explained by absorption and are in agreement with self-consistent
theory (SCT) predictions; the nature of the soft medium results in
negligible coupling between longitudinal and transverse waves34,
which is a key advantage ensuring the slow transverse waves do
not skew our late-time analysis. Fitting the localized phase
transmitted intensity to the SCT allows us to extract the locali-
zation length ξ, which is found to be more than a factor of five
smaller than the sample thickness at an EMB volume fraction
ϕ= 2.7%. At higher frequencies an observed change in slope of
the frequency-dependent phase angle results in a factor 2.5
reduction in phase velocity and a discontinuous rise in lS/λ, which
corresponds to a second higher-frequency mobility edge and
provides experimental evidence of a finite frequency range for the
localized phase.

Results
EMB-doped soft matter. Our samples consist of an EMB-doped
gel encased within a polymer shell (see Materials and Fabrication
in Methods); the gel and polymer shell are soft since G < < B
where G and B are the shear and bulk moduli, respectively (see
Supplementary Note 1), and the materials exhibit low mechanical
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loss (tan(δ) < 0.03) within the targeted frequency range (see
Supplementary Note 2). A sample is shown in Fig. 1a and the
side-view cross section in Fig. 1b; the thickness of the doped gel
LG= 10 mm while the thickness of the undoped polymer (Ura-
lite) shell LU= 4 mm. The 4 mm-thick polymer shell is acousti-
cally impedance-matched to water with negligible attenuation
and reflection in the frequency range of interest and provides
structural support for the doped gel. Optical images of the gel
doped with EMBs to a volume fraction ϕ= 1.2 ± 0.9% are shown
in Fig. 1c,d, Fig. 1e shows an EMB schematic, and Fig. 1f shows
an EMB image obtained with scanning electron microscopy
(SEM). The effect of the nanoscale shell on sound velocities in
soft materials was previously reported35; also, see EMB char-
acterization with SEM in Methods and Supplementary Fig. 5. We
note the EMBs remain fixed in position within the gel with no
observable time-dependent drift.

Figure 1g shows the EMB diameter D distribution; the average
diameter falls within the 60–95 μm range (with approximately
half the EMB diameters larger than this average value), and the
largest (smallest) measured diameters fall in the 130–140 μm
(1–10 μm) range. Figure 1h shows the predicted EMB resonance
frequency fO versus D, and indicates a large range of EMB
resonance frequencies coincide with the experimental frequency
range (see Supplementary Note 3). Figure 1i shows the predicted
normalized EMB scattering cross section, which indicates a peak
σ(f) upon resonance. Here, σ(f) is determined from the same EMB
model as fO and accounts for acoustic radiation damping; the
Fig. 1i inset shows acoustic radiation damping dominates the

damping coefficient in the fO range of interest (400–800 kHz). For
the undoped gel we find the longitudinal phase velocity
vL= 1498m/s and at f= 700 kHz λ= 2140 μm, which is a factor
of 24 larger than D. Thus, the EMB is driven into resonant radial
oscillations though λ is over an order of magnitude larger than
the equilibrium diameter36.

Localization phase transitions in EMB-doped gel. Normal
incidence measurements are carried out in water (see In-water
measurements in Methods). The sound level SL= 20log10(Pt/
Pref), attenuation coefficient α, and scattering mean free path lS
frequency spectra are obtained from the coherent part of the
transmitted wavepacket, which is accessible by time-windowing
the data; Pt/Pref is the amplitude transmission coefficient where Pt
and Pref are the transmitted and water reference pressure
amplitudes, respectively, lS is determined from the normalized
intensity I=IO ¼ e� LG=lSð Þ and lS= (2α)−1; recall, LG is the doped
gel thickness.

We point out that in our experiments, we have experimental
access to the real-space transmitted and reflected pressures in
response to an incident, nearly plane wave, and therefore to the
Green’s function G x; t; xO; tO

� �
. From this quantity we can, in a

model-independent manner, evaluate both the average Green’s
function hGðx; t; xO; tOÞi (the coherent field) and correlation
functions of the general form G x; t; xO; tO

� �
G x0; t0; xO; tO
� �� �

.
The latter quantity, related to energy transport, has been the main
focus of localization investigations since Anderson’s original

Fig. 1 Soft gel doped with encapsulated microbubbles. a A Uralite shell encases encapsulated microbubble (EMB)-doped gel (Carbopol ETD 2050, 0.2 wt
%). The center ports are sealed input/output through which the gel was injected. The corner tabs are for suspension and weighting. b Cross-sectional side
view showing material thicknesses: LG and LU for the doped gel and Uralite layers, respectively. c, d Optical images of the gel (on a glass slide) doped to a
volume fraction ϕ= 1.2 ± 0.9%. The scale bar in (c) is 300 μm. The scale bar in (d) is 125 μm. The exaggerated shell thickness and bright spot in the EMB
center are the result of light focusing. e EMB schematic. The enclosed gas (blue) is a mixture of isobutane and isopentane. The shell (gray) is primarily
polyacrylonitrile (PAN). The shell thickness is of order 100 nm. f Scanning electron microscopy image of an EMB. The scale bar is 8 μm. g EMB diameter D
distribution determined via optical microscopy. A total of 238 diameters were measured to obtain the distribution. h Predicted EMB resonance frequency fO
versus D. The purple region corresponds to those diameters within the distribution in (g). The green region corresponds to the experimental frequency
range. i Predicted EMB scattering cross section σ(f) (normalized to the shell outer radius) versus frequency f for D= 90 μm accounting for acoustic
radiation damping. Inset: damping coefficient β as a function of f for damping from acoustic radiation, EMB shell viscosity, and thermal effects.
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work1, as the coherent field vanishes exponentially at late times or
large distances. The coherent field does, however, enable a
measurement of the mean free path via the Fourier transform
G x; ω; xO; ω
� �� ��� �� ¼ GOe

� x�xOj j=2lS where ω is the angular
frequency, which is valid away from the near field (note that
Gðx; ω; xO; ωÞ
� ��� ��2¼ GO

�� ��2e� x�xOj j=lS , which is equivalent to the
expression provided for the normalized intensity). This relation-
ship is common across all existing theoretical models of
localization phenomena3,7,9,37, and describes the scattering of
energy from the coherent field by all physical mechanisms.

As seen in Fig. 2a, we observe significant reductions in SL upon
EMB doping beginning near the anticipated minimum fO ~ 360 kHz.
The lowest SL corresponds to ϕ= 2.7% at f= 742 kHz where the
intensity transmission coefficient decreases eight orders of
magnitude with respect to the water reference (accounting for a
small impedance mismatch between the doped gel and water).
The Fig. 2a doped gel data shows a clear transition in governing
physics from the low-frequency regime where the transmission is
governed by composite material properties resulting in thickness
modes to higher frequencies where EMB oscillations drive the
observed SL. With increasing frequency the number of resonant

EMB diameters per wavelength (i.e., the disorder strength)
increases, which partially explains the observed SL spectra at
higher frequencies.

Figure 2b shows α versus f where attenuation resonances with
amplitudes exceeding 200 Np/m (unexplained by thickness
modes) are observable above 400 kHz. The conclusion of
anomalous attenuation at these frequencies is supported by
reflection measurements (see Supplementary Fig. 7) where no
resonant reflection is observed for f > 400 kHz for any ϕ. Based
upon the Fig. 2 data, as well as our diffusion and localization
analysis (discussed later), we have determined several of these
attenuation resonances to be mobility edges and they are
indicated in Fig. 2b by dashed lines and arrows. The peaks shift
toward lower frequency with increasing ϕ indicating a critical
density for the phase transition. For the strongest lower-
frequency mobility edge (ϕ= 1.2%, f= 527 kHz), based upon
the peak width, the EMB diameter distribution, and total density
ρtot ~ 5.6 × 1010 EMBs/m3 we estimate the critical density
ρC ~ 2.2 × 109 EMBs/m3= 0.09k3. This ρC is a factor of 2.2
larger than the minimum critical density ρC ~ 1.0 × 109 scat-
terers/m3 estimated with the criterion lS/λ ≤ 1 from the early
work of Ioffe and Regel:33 see Supplementary Note 4. The value

Fig. 2 Sound transmission through encapsulated microbubble-doped gel. a Sound level SL (referenced to a water measurement) versus frequency f for an
undoped sample (open black circles), and three doped samples with encapsulated microbubble (EMB) volume fractions ϕ= 1.2% (solid green triangles),
ϕ= 2.7 ± 0.5% (open blue squares), and ϕ= 9.9 ± 1.8% (solid gray diamonds). Several low-f thickness modes are indicated. The shaded yellow region
highlights the anticipated EMB resonance frequency range. A correction factor is applied to the data to account for the finite sample thickness: −0.64 dB
for the undoped sample and −0.36 dB for the doped samples. b Attenuation coefficient α versus f for the undoped sample and two doped samples from
(a). Dashed lines and arrows indicate the frequency ranges for the two localized phases, which are bounded by mobility edges (identified by attenuation
peaks). c Ratio of the scattering mean free path lS to the wavelength λ versus f for the two doped samples in (b). The x-axis frequency range spans the
anticipated range of EMB resonance frequencies. The black arrows indicate the mobility edges (corresponding to the indicated α peaks in b) d, α (left
vertical axis) and change in the phase angle Δθ (right vertical axis) versus f for ϕ= 2.7%. Note, the α spectrum in (d) is the same spectrum shown in (b).
The black arrows indicate the mobility edges.
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of ρC found here is also in close agreement with the results of
numerical calculations both for a system of resonant point
scatterers (ρC= 0.08k3)38 and for light scattering by cold atoms
(ρC= 0.1k3)39.

Figure 2c shows lS/λ versus f for the same dopant concentra-
tions presented in Fig. 2b, and the mobility edges, corresponding
to those frequencies at which lS/λ shows a sharp anomalous
decay, are indicated by arrows. From the ϕ= 1.2% dataset it is
clear the transition to the localized phase, identified by the
minimum at f= 527 kHz, occurs when lS/λ falls below unity. The
data for ϕ= 2.7% further shows that even if the criterion lS/λ ≤ 1
is satisfied the phase transition does not occur until ρ= ρC, which
indicates both criteria must be met before the system transitions
to a localized phase. Across samples, we find that within the
localized phase lS/λ never exceeds 1.0 and can be as low as 0.4.
Further, for ϕ= 2.7% and at f= 526 kHz (center of the phase)
lS= 1.0 mm (lS/λ= 0.65), which is a factor ~ 9.2 larger than the
equilibrium diameter for the EMB with that resonance frequency.

Also shown in Fig. 2c is a discontinuity in lS/λ at f= 618 kHz
for ϕ= 2.7%. The discontinuity occurs at the same frequency as
an attenuation peak (the higher-frequency mobility edge) as seen
in Fig. 2d where α is plotted along with the phase change Δθ
(from which we determine vL). For f < 618 kHz waves are
localized while for f > 618 kHz lS/λ saturates to values around
1.4. Also, for f > 618 kHz vL is lowered by a factor of 2.5 and this
slowing suggests a transition to a different transport regime; we
suspect this higher frequency regime above the second mobility
edge is primarily governed by the wave’s small spatial extent at
those frequencies20 and by the EMB enclosed gas because gaseous
isobutane and pentane have wave speeds ~200 m/s40,41, which is
comparable to the measured vL= 334 m/s in this higher-
frequency regime, and also because even at these higher
frequencies the EMB frequency-dependent concentration is still
near the maximum in the D distribution shown in Fig. 1g.
Nevertheless, the lS/λ discontinuity provides experimental
evidence of a finite frequency range for the localized phase in
agreement with predictions for scalar wave localization8,20–22; the
phase occurs for frequencies between the indicated attenuation
peaks in Fig. 2b and the corresponding lS/λ minima in Fig. 2c.
Following the same procedure used to determine ρC, we estimate
the scatterer density ρ ~ 0.05k3 at f= 773 kHz for ϕ= 1.2%,
which suggests the higher-frequency transition to extended states
might also occur because ρ does not increase as f3.

The mean free path is not expected to contain an indication of
Anderson localization as the interference responsible for this
phenomena appears only in the higher-order averages hGG¼ i;
this well-known expectation is again true across all existing
theoretical models3,7,9,37,42. From first principles with no weak-
coupling approximations, field-theoretic methods applied to a
random, Gaussian distributed collection of point scatterers
demonstrate that the spontaneous symmetry breaking leading to
diffusive behavior, and a breakdown of perturbative expansions,
does not occur in the calculation of the mean Green’s function7,9.
Thus, the renormalized diffusion responsible for Anderson
localization is not accessible in the measurement of the mean
Green’s function, and hence not in the mean free path. While we
have found this to be the case in the localized phase, we
nevertheless have observed strong anomalies in the mean free
path at the mobility edges separating localized and extended
states (with the mobility edge identification supported by late-
time analysis of the higher-order Green’s functions, as discussed
later). We believe this observation of the anomalous behavior for
the mean free path, which serves as a clear experimental signature
of the mobility edge, is associated with the notion that our system
contains a macroscopic number of internal degrees of freedom
(resonances). The presence of such resonances generally leads to a

slowing of the diffusive energy velocity in the perturbative
models43–46 and has only been briefly considered in a field-
theoretic context47; however, these works do not examine
potential effects associated with a near vanishing mean free path
at the mobility edge. An explanation of this phenomena will
require additional theoretical work.

We point out the lowest klS values occur for frequencies
associated with the distribution of EMB fO (see Supplementary
Fig. 8). At the low-frequency mobility edge klS= 3.2 ± 0.1 and
klS= 3.6 ± 0.1 for ϕ= 1.2% and 2.7%, respectively, while between
the mobility edges and in the localized phase the minimum
klS= 2.4 ± 0.1 and klS= 2.9 ± 0.1 for ϕ= 1.2% and 2.7%,
respectively. The klS values found here are comparable to values
found for sound localization in mesoglasses26–28.

Figure 3 shows lS versus f near the mobility edge at f= 527 kHz
for ϕ= 1.2%. Clearly, lS decreases rapidly in the vicinity of the
critical frequency fC at which the phase transition occurs, and we
find this rapid decrease in lS obeys the power law lS ¼
a f � fC
�� ��γþb with the critical exponent γ= 1.08 ± 0.05 (an
additional power law fit to the mobility edge at f= 773 kHz
shown in Fig. 2c for ϕ= 1.2% yielded γ= 1.01 ± 0.11). The
divergence of a scaling parameter is a key property of the
Anderson transition: scaling arguments derived from perturbative
expansions predict such a power law behavior for the rapid
decrease of the conductivity at the Anderson transition in
disordered electronic system3, while numerical calculations
predict such a behavior for the divergence of the correlation
and localization lengths at the transition48,49, and dynamical
localization measurements with matter waves find a power law
behavior for the scaling parameter on both sides of the
transition18. However, we point out the critical exponent found
here applies to the mean free path in a weakly dissipative
medium, which distinguishes the exponent from those deter-
mined through numerical calculations for the correlation and
localization lengths48,49 in non-dissipative systems. The value
γ= 1.08 found here should thus be interpreted as a measure of

Fig. 3 Scattering mean free path critical exponent. Scattering mean free
path lS versus frequency f for an encapsulated microbubble volume fraction
ϕ= 1.2% at the 527 kHz mobility edge. Note, the data shown here is the
same dataset shown in Fig. 2c. The error bars represent the statistical
uncertainty, and are determined through knowledge of the uncertainties in
the measured sound level (±3 dB) and the measured doped gel thickness
(±0.01 mm). The solid red line is a fit to the power law shown in the graph’s
legend with R2= 0.995, which yields the critical exponent γ= 1.08 ± 0.05.
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the lS renormalization critical exponent and not as a claim of a
measured correlation length critical exponent.

Wave propagation at the mobility edge. At late-times, diffusion
sets in unless the system has passed through a localization
transition50,51. To study late-time behavior of the transmitted
energy we use a narrow impulse with Δt < 10 μs. Figure 4a shows P
versus t for ϕ= 1.2% across multiple speckles (see In-water
measurements in Methods). We find the coherent field (260 μs < t
< 268 μs) is speckle independent. However, a strong incoherent
field is observed for t > 269 μs, which varies across speckles and
shows temporal fluctuations that vary on a time scale corre-
sponding to the input wavepacket. The temporal fluctuations are
highlighted in Fig. 4b where we have time-windowed the data to
remove the coherent field. Such fluctuations are the result of wave
interference along multiple scattering paths52–54.
Figure 4c shows I/IO for ϕ= 1.2% after digitally filtering the

Fig. 4b data to include the 400–550 kHz frequency range; note
the frequency range was chosen to target the lower range of
EMB resonance frequencies up to the high-frequency side of
the f= 527 kHz lS/λ minimum in Fig. 2c (i.e., the low-f mobility
edge). Here, I/IO is averaged over 11 speckles where I= Pt2(2ρGvL)−1

is computed for each speckle based upon Pt, the doped gel density
ρG, and vL. Classically, I/IO decays according to the exponential law
I=IO ¼ e�t=τD where τD−1 is the lowest eigenvalue of the diffusion
operator�D∇2 55, and the Fig. 4c data shows excellent agreement to
an exponential model. From the linear fit shown in Fig. 4c we obtain
a characteristic diffusion time τD= 8.9 ± 0.5 μs, which yields a
diffusion coefficient D* ¼ L2G τDπ

2
� ��1 = 1.14 ± 0.07m2/s. The

values found here for τD and D* yield a diffusion length

lD ¼ D*τD
� �1=2

= 3mm, which is more than a factor of 3 smaller
than LG. Diffusion occurs in our samples in this frequency range
(400–550 kHz) because while the doped gel is a strongly scattering
medium, the lS/λ and ρC criteria for localization are not satisfied. We
expect our analysis to be weakly dependent on internal reflections
since the ratio of the penetration depth zO to the doped gel thickness
zO/LG=K can be more than an order of magnitude less than unity
where K ¼ 2lS 1þ Rð Þ=3LG 1� Rð Þ and the internal reflectivity R is
estimated by averaging over the reflected sound level within the
50–800 kHz range (see Supplementary Fig. 7). Furthermore, we do
not expect absorption to skew our late-time diffusion (or
localization) analysis as the characteristic absorption time τa found
from fitting the ϕ= 1.2% data within the localized phase to the

Fig. 4 Diffusion and localization fluctuations in encapsulated microbubble-doped gel. a Pressure P versus time t for an encapsulated microbubble volume
fraction ϕ= 1.2% measured in different speckles. The incident wavepacket is based on a Gaussian first derivative, which provides a narrow impulse.
The coherent pressure field is observable for 260 μs < t < 268 μs, and is followed by the incoherent field. Inset: measured frequency spectrum of the
incident wavepacket. b Incoherent pressure field after time-windowing the data shown in (a). c Normalized transmitted intensity peak envelope I/IO versus
t for ϕ= 1.2% after digitally filtering the data in (b) to include the 400–550 kHz range. Here, I/IO is found from averaging over 11 different speckle
measurements. Normalization is done so the input pulse peak is unity. The dashed red line is a linear fit to the data. d I/IO versus t for ϕ= 2.7% and for the
340–465 kHz range. Here, I/IO is found from averaging over 11 different speckle measurements. The dashed red line is the result of a linear fit to the data
similar to that shown in (c). The solid blue line is a fit to the self-consistent theory (SCT) of localization. Note, the time range in (a, b) is the experiment
time while in (c, d) the time range has been shifted so the maximum in I/IO for the incoherent field occurs shortly after t= 0s.
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localization SCT is significantly higher than τD= 8.9 μs and also
because a value τa ≤ 10 μs is not consistent with the experimental
data at late times across the full range of ϕ studied here (see the
discussion on absorption in the next section).

With increasing ϕ, we find noticeable late-time deviations from
diffusion for frequencies near and at the mobility edge as evident
by the ϕ= 2.7% dataset in Fig. 4d. Here, the frequency range was
again chosen to target the lower range of EMB resonance
frequencies up to the high-frequency side of the f= 445 kHz lS/λ
minimum in Fig. 2c. The Fig. 4d data indicates the onset of a
time-dependent reduction of the diffusion coefficient. A fit of the
Fig. 4d data to the phenomenological SCT of localization50 where
at late times in the Anderson localized regime the average
transmission coefficient is given by T(t) ~e−ηt/tp+1. Here,
η= (DB/ξ2)exp(−LG/ξ), DB is the bare diffusion coefficient, and
ξ is the localization length. The restriction 0.5 ≤ p ≤ 1.0 yields
ξ= 9.62 mm and DB comparable to D*. The value of ξ found here
is a factor of 5 larger than the lowest value found for the localized
phase. That ξ is found to be nearly equal to LG in this frequency
range agrees with a statistical interpretation of localization: a
range of localization lengths exist in the sample and even though
ξ diverges at the mobility edge the finite sample dimensions
restrict the measurement of closed loops of wave transport to
length scales less than the sample thickness (as pointed out in
Ref. 24.). In addition, the SCT fit shown in Fig. 4d accounts for
absorption and yields τa ~ 2τD, which represents a marked
decrease in τa at the mobility edge with respect to that found
for the localized phase. This reduction in τa at the mobility edge is
consistent with a renormalization group theory in 2 + ε
dimensions8, which predicts an anomalous rise in attenuation
(absorption) of the incoherent field due to fluctuations in the
wave diffusivity as the mobility edge associated with the
Anderson transition is approached from the conducting side.
Therefore, we attribute the value of τa found here to the change in
the fundamental nature of wave propagation as the system
approaches the mobility edge. That the late-time behavior
observed in Fig. 4d accompanies an anomalous rise in attenuation
(consistent with Ref. 8.) and yields ξ ~ LG suggests the deviation
from diffusion shown in Fig. 4d is primarily due to fluctuations in
wave diffusivity and represents the onset of a localized phase.

Intensity transmission in the localized phase. We next consider
the late-time behavior for frequencies between the lS/λ minima
identified as mobility edges in Fig. 2c. Further, we present late-
time data for an additional sample with ϕ= 1.0 ± 0.6% (the α

spectrum for this sample is provided in Supplementary Fig. 9).
Similar to the late-time behavior observed in Fig. 4d, the data
presented in Fig. 5 also shows late-time deviations from diffusion,
which is a hallmark of localization. Each of the Fig. 5 datasets are
well-fitted by the SCT, and from these SCT fittings we find ξ at
least a factor of four times smaller in the localized phase than near
the mobility edge and also comparable to λ indicating waves are
localized to a length scale comparable to the wavelength; for
ϕ= 2.7% and at f= 490 kHz ξ/λ= 1.1 and we find the ratio ξ/λ
depends on both ϕ and f. As evident from the Fig. 5 data, we find
stronger late-time deviations from diffusion with increasing ϕ,
which is accompanied by a reduction in ξ to a length scale a factor
of 5.2 smaller than the doped gel thickness. Within the localized
phase zO ~ 9.0 × 10−4 m for ϕ= 1.2%, which suggests wave
localization occurs in the doped gel beyond a small penetration
depth. The SCT fittings shown in Fig. 5 account for absorption
and yield absorption times τa ≥ 100 μs and absorption lengths
la ≥ 62 mm, which suggests negligible absorption within the
localized phase.

Also shown in Fig. 5 are SCT predictions for when τa ~ τD: the
dashed red lines correspond to setting τa= 10 μs with all other
parameters kept as specified for each ϕ. If τa= 10 μs then the SCT
cannot account for the observed late-time deviations from
linearity shown in Fig. 5. This provides supporting evidence that
τa is indeed >10 μs, that the values of τD shown in Fig. 4c&d are
not due to absorption, and that absorption does not skew the
observation of localization effects. We find that for τa > 2τD the
change in ξ determined from the SCT fittings to the data is less
than the experiment’s spatial resolution.

We find a significant increase in DB with respect to D* in the
diffusive regime, which is consistent with observations of sound
localization in mesoglasses27 and further theoretical work is
needed to address the large values of DB obtained from these fits.
Interestingly, values for DB found here vary at most 13%
across samples from 33.35 to 38.70 m2/s. Though one might
expect a decrease in DB with increasing ϕ since DB ¼ 1=3

� �
vElS ¼

1=3
� �

vE ρσ
� ��1

where vE is the energy velocity, differences in the
average lS across samples (both at the mobility edge and in the
localized phase) are less than the experiment spatial resolution,
which might suggest negligible changes are expected for DB

within the range of ϕ studied here (assuming a constant vE).
Additional estimates for lS within the different regimes (i.e., at the
mobility edge and in the localized phase) based upon ρσ

� ��1
, the

known diameter distribution, and σ predicted with EMB theory29

confirm the expected constant DB across the measured ϕ range.

Fig. 5 Localization in encapsulated microbubble-doped gel. Normalized transmitted intensity peak envelope I/IO versus time t found from averaging over
11 different speckle measurements for three separate encapsulated microbubble (EMB) volume fractions: ϕ= 1.0% in (a), ϕ= 1.2% in (b), and ϕ= 2.7% in
(c). The frequency ranges were chosen to target those frequencies between the mobility edges identified in Fig. 2c and Supplementary Fig. 9, and the
incoherent wave data is digitally filtered to target a specific range. Solid blue lines are fits to the self-consistent theory (SCT) of localization. The bare
diffusion coefficient DB, the localization length ξ, and the absorption time τa serve as free-fitting parameters for the SCT fitting and the parameters for each
ϕ are specified. Dashed red lines correspond to setting τa= 10 μs in the SCT fit while keeping all other parameters fixed at the values specified for each ϕ.
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We point out the value of vE found here is only a factor 1.25
larger than the value found in Ref. 27.

Discussion
From the data analysis accompanying Fig. 4 and 5 it is clear the
lS/λ minimum at f = 527 kHz in Fig. 2c for ϕ= 1.2% separates
the frequency ranges associated with diffusion and localization,
which supports the conclusions that the minimum occurs at the
mobility edge and the localized phase extends over the specified
frequency range. We find comparable widths for each mobility
edge attenuation peak shown in Fig. 2b (Δf ~ 40–50 kHz), which
further suggests a common origin. Our data also indicates a
localization transition originating from the localized phase is also
accompanied by an anomalous reduction of the mean free path,
and that the observed attenuation resonances and lS/λ minima
provide an experimental signature of the mobility edge. We
further point out for ϕ= 9.9 ± 1.8% the broad minimum in SL
versus f in Fig. 2a centered upon 636 kHz and spanning
613–782 kHz corresponds to a mobility edge with ρC ~ 0.09k3.
This demonstrates a significant mobility edge variation with
increasing disorder (in agreement with Ref. 17.). The mobility
edge shift to lower frequencies observed in Fig. 2b suggests the
ϕ= 9.9% SL minimum at 350 kHz might also a mobility edge,
and further work is required to shed light on the results in the
high-ϕ limit.

It is interesting that localization effects are observed despite the
values for klS being greater than 1 (true for our work and also
prior studies). Theoretical works predicting a critical density for
scalar wave localization within a system of resonant point
scatterers38 have suggested that in such a system the Ioffe-Regel
criterion klS ~ 1 is only valid qualitatively and cannot be used as a
quantitative condition for Anderson localization in three-
dimensions; this has been attributed primarily to the coherent
wavepacket being strongly affected by the effective medium’s
spatial dispersion, which prevents the definition of the mean free
path and effective wave number in the conventional way. That the
critical density found here is in agreement with that predicted for
a system of resonant point scatterers suggests a non-negligible
contribution from the medium’s spatial dispersion on the
coherent wavepacket.

We also point out that in prior work on sound localization in
mesoglasses28 stronger localized behavior was found near a
minimum in the amplitude transmission coefficient with mobility
edges on either side of the minimum (determined via SCT fit-
tings). This, however, is quite different from our results in that we
find stronger localized behavior away from the lS/λ minima
identified as mobility edges as opposed to near the minima: for
example, the frequency range shown in Fig. 5b begins at a fre-
quency more than 70 kHz higher than the minimum in lS/λ. In
addition, we find evidence of strong attenuation of the incoherent
wave at the mobility edge due to fluctuations in the wave diffu-
sivity, and this result is absent in the mesoglass literature. The
discrepancies could most likely be due to the differences in the
unique systems themselves for here the frequency-dependent
disorder strength is generated through variations in EMB reso-
nance frequencies and topological disorder while for the case of
the mesoglass samples the disorder is generated by variations in
the weak couplings between brazed aluminum beads.

In summary, our work demonstrates broadband control of
sound localization and phase transitions in soft matter. Localized
phases as broad as 246 kHz are observed, which are separated
from extended states by mobility edges. The phase transition is
found to be accompanied by a strong anomalous decrease of the
mean free path at the mobility edge. We determine the critical
density needed for the localized phase and find evidence of an

extended-state transport regime at the highest frequencies used in
our experiments and above the critical frequency at which the
system transitions out of the localized phase. We anticipate our
work will enable further investigations in soft and condensed
matter physics, and will aid in the realization of materials gov-
erned by the physics of Anderson localization impacting broad
areas of technological importance including materials with tun-
able acoustic and elastic properties, high-frequency thermo-
electric heat transport, and phonon excitation and suppression, to
name a few.

Methods
Materials and fabrication. The soft suspending gel (Carbopol ETD 2050) is
obtained from the Lubrizol corporation. The pre-expanded EMBs (043 DET 80
d20) are obtained from Expancel (part of the Technical Solutions Group within
Nouryon). The Uralite 3140 polymer is acquired from Ellsworth Adhesives.

Uralite 3140 is a two-component, low viscosity elastomer. Prior to combining
parts A and B, the thicker Part A is degassed for several minutes to remove
undesired trapped air. Subsequently, Part A is combined with Part B and then the
entire mixture is again degassed for several minutes. Following degassing, the
mixture is transferred to a pressure vessel that is connected to the mold into which
the mixture is injected. Following a 24 h partial cure, the Uralite is baked at 82 °C
for 4 h to hasten the curing time. Once the 4 mm-thick Uralite shell is fully cured
the top is trimmed and a cap is glued in place using Uralite as the glue. All
subsequent caps (those covering the gel injection ports) and suspension/weighting
tabs are glued onto the shell with a water-resistant glue.

Preparation of the gel is done by slowly adding the Carbopol ETD 2050 powder
(0.2 wt %) to agitated water. Mixing is continued for several minutes to ensure
consistency, and a neutralizer is added so that the final gel is pH neutral. The entire
mixture is then degassed to remove any undesired trapped air. During degassing,
the break occurs after ~1.5 min for the undoped material while multiple breaks are
observed with increasing EMB concentration. The total degassing time is about 1 h.
Following degassing, the gel is mechanically injected into the Uralite shell. For
those samples requiring EMBs, the EMBs are added to the gel following the gel
preparation and prior to degassing. Finally, the EMB/gel mix is then degassed prior
to mechanical injection into the Uralite shell.

Sample thickness was measured using Starrett calipers with a resolution of
1.0 × 10−5 m. Sample mass is measured on a scale with a resolution of either
5.0 × 10−4 kg or 1.0 × 10−5 kg. Volume of gel-based material is measured using a
graduated cylinder with a line width of ~5 × 10−4 m. From these measurements,
the sample density and EMB volume fraction are determined; note that for the
samples discussed in the main text, the target volume fractions were ϕ= 0.5%,
ϕ= 2.0%, and ϕ = 10%.

EMB characterization with scanning electron microscopy. Scanning electron
microscopy (SEM) is used to confirm EMB surface uniformity as well as to quantify
the EMB shell thickness. Figure 1f of the main text shows an SEM image of an EMB
following fabrication of a Uralite-doped sample and subsequent exposure of the
EMB by cutting into the doped polymer with scissors. The image in Fig. 1f shows
an EMB with no significant surface abnormalities or deviations from a spherical
geometry. Also, Supplementary Fig. 5 shows an SEM image of an intentionally
deflated EMB, which allows for a measurement of the shell thickness. A thickness
measurement is made where the deflated shell maintains contact with the
remaining polymer cavity. Multiple measurements of the shell thickness within the
highlighted region of Supplementary Fig. 5 gave a value ~350–580 nm with an
average of ~437 nm (note, the way the EMB has collapsed suggests the true EMB
thickness is half the measured thickness, or ~219 nm).

In-water measurements. Measurements are carried out using a 0.5 MHz piston-
faced immersion transducer and a Reson TC 4035 hydrophone from Teledyne
Marine. The experiments utilize a Krohn-Hite 5920 arbitrary waveform generator.
Prior to the output waveform reaching the source, the waveform is filtered with an
Ithaco 4302 dual 24 dB/octave filter and then amplified using an E&L 240 L RF
power amplifier. The hydrophone signal is amplified using an Ithaco 1201 low-
noise preamplifier before being digitized for data collecting and processing. For all
datasets presented 1000 measurements are collected, averaged together, and a
background subtraction is used to eliminate any y-axis offset. The sample tem-
perature was monitored throughout the duration of the experiments and was
T ~ 296–298 K. Samples are held in place underwater using fishing line with
weights to hold the sample stationary. Appropriate correction factors are applied to
the data, which account for the finite sample thickness as well as the
measurement range.

Supplementary Fig. 6 shows the transmitted pressure P versus time t for the
water reference (no sample), an undoped sample, and for ϕ= 1.2% (the maximum
pressure decreases over an order of magnitude upon doping). The wavepacket
shown in Supplementary Fig. 6 for the water reference (No Sample dataset) was
used to collect the data presented in Fig. 2 of the main text. The data shown in
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Supplementary Fig. 6 indicates the undoped sample group velocity is equal to that
of water. Further, at f= 700 kHz we determine the attenuation coefficient
α= 15 Np/m for the undoped sample, which is a factor of 59 smaller than the
maximum αmeasured for ϕ= 1.2% (881 Np/m) and indicates minimal attenuation
due to the soft materials.

For measuring within independent speckles, the sample was translated within the
plane perpendicular to the central axis from the source transducer to the hydrophone.
We use displacements larger than the wavelength of sound in water at 500 kHz, namely
λ ~ 3mm. The sample was displaced such that the source-hydrophone central axis
traced a circle counterclockwise about the sample center. Furthermore, the aerial
dimensions of the hydrophone sensor are smaller than the speckle coherence area (~λ2),
which ensures measurements within independent speckles.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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