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Estimating time-dependent entropy production
from non-equilibrium trajectories
Shun Otsubo 1✉, Sreekanth K. Manikandan 2,3, Takahiro Sagawa1,4 & Supriya Krishnamurthy 2

The rate of entropy production provides a useful quantitative measure of a non-equilibrium

system and estimating it directly from time-series data from experiments is highly desirable.

Several approaches have been considered for stationary dynamics, some of which are based

on a variational characterization of the entropy production rate. However, the issue of

obtaining it in the case of non-stationary dynamics remains largely unexplored. Here, we

solve this open problem by demonstrating that the variational approaches can be generalized

to give the exact value of the entropy production rate even for non-stationary dynamics. On

the basis of this result, we develop an efficient algorithm that estimates the entropy pro-

duction rate continuously in time by using machine learning techniques and validate our

numerical estimates using analytically tractable Langevin models in experimentally relevant

parameter regimes. Our method only requires time-series data for the system of interest

without any prior knowledge of the system’s parameters.
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The entropy production rate is an important quantitative
measure of a non-equilibrium process and knowing its
value is indicative of useful information about the system

such as heat dissipated1,2, efficiency (if the non-equilibrium sys-
tem in question is an engine3–5) as well as free energy
differences6,7 (if the non-equilibrium process interpolates
between two equilibrium states). In particular, the entropy pro-
duction rate often characterizes the energy consumption of non-
equilibrium systems8. It also provides useful information for
systems with hidden degrees of freedom9,10, or interacting sub-
systems where information-theoretic quantities play a key
role11–14.

The entropy production rate can be directly obtained from the
system’s phase-space trajectory if the underlying dynamical
equations of the system are known15–18. This is not the case
however for the vast majority of systems, such as biological
systems19–21, and consequently, there has been a lot of interest in
developing new methods for estimating the entropy production
rate directly from trajectory data22–33. Some of these techniques
involve the estimation of the probability distribution and currents
over the phase-space22,26, which requires huge amounts of data.
Some other techniques are invasive and require perturbing the
system1,2, which may not always be easy to implement.

An alternative strategy is to set lower bounds on the entropy
production rate34–38 by measuring experimentally accessible
quantities. One class of these bounds, for example, those based on
the thermodynamic uncertainty relation (TUR)38–42, have been
further developed into variational inference schemes which
translate the task of identifying entropy production to an opti-
mization problem over the space of a single projected fluctuating
current in the system26–29. Recently a similar variational scheme
using neural networks was also proposed30. As compared to other
trajectory-based entropy estimation methods, these inference
schemes do not involve the estimation of any kind of empirical
distributions over the phase-space and are hence known to work
better in higher dimensional systems26. In addition, it is proven
that such an optimization problem gives the exact value of the
entropy production rate in a stationary state if short-time cur-
rents are used27–30. The short-time TUR has also been experi-
mentally tested in colloidal particle systems recently43. However,
whether these existing schemes work well for non-stationary
states has not been explored as yet.

Non-stationary dynamics ubiquitously appear in biological
phenomena such as in adaptive responses to environmental
change44 and spontaneous oscillations45, all of which are inevi-
tably accompanied by energy dissipation. However, for a non-
stationary system, it has only been possible to place bounds on
the time-dependent entropy produced during a finite time
interval under specific46,47 or more general48 conditions. In
addition, there is no guarantee that these bounds can be saturated
by any quantity related to the entropy production of the system.
Hence there is no established scheme that has been proven to
work for obtaining the exact entropy production rate under time-
dependent conditions.

Here, we address this problem by proposing a class of varia-
tional inference schemes that can give the exact value of the time-
dependent entropy production rate under non-stationary condi-
tions as well as the entropy production along with single reali-
zations. These schemes, which can be directly implemented on
time-series data obtained from experiments, involve maximiza-
tion over an objective function that consists of a single projected
current determined from the data. We demonstrate that this
objective function can either be of the form dictated by the
recently proposed short-time TUR27–29 or the form recently
suggested in30, or a variation of these. The collection of these
schemes works for both diffusive systems described by

overdamped Langevin equations as well as finite-state-space
systems described by master equations and work for both tran-
sients as well as stationary states.

We implement these variational schemes by means of an effi-
cient algorithm that estimates the entropy production con-
tinuously in time by modeling the time-dependent projection
coefficients with a feedforward neural network and by carrying
out gradient ascent using machine learning techniques. This
algorithm can in principle be directly used on real experimental
data. As a proof of concept, here we consider time-series data
generated by two models; one of a colloidal particle in a time-
varying trap and the other of a biological model that describes
biochemical reactions affected by a time-dependent input signal,
for both of which we can obtain exact solutions for the time-
dependent entropy production rate as well as the entropy pro-
duction along single trajectories. We then demonstrate that our
proposed scheme indeed works by comparing the numerical
implementation to our theoretical predictions (see Fig. 1).

Results
Short-time variational representations of the entropy produc-
tion rate. The central results we obtain, summarized in Fig. 1, are
applicable to experimental data from any non-equilibrium sys-
tem, at least in principle, described by an overdamped Langevin
equation or a Markov jump process even without knowing any
details of the equations involved. Here, we use the model of a
generic overdamped Langevin dynamics in d-dimensions in order
to introduce the notations. We consider an equation of the form:

_xðtÞ ¼ AðxðtÞ; tÞ þ BðxðtÞ; tÞ � ηðtÞ; ð1Þ
where A(x, t) is the drift vector, and B(x, t) is a d × d matrix, and
η(t) represents a Gaussian white noise satisfying
hηiðtÞηjðt0Þi ¼ δijδðt � t0Þ. Note that we adopt the Ito-convention
for the multiplicative noise. The corresponding Fokker-Planck
equation satisfied by the probability density p(x, t) reads

∂tpðx; tÞ ¼ �∇ jðx; tÞ; ð2Þ

jiðx; tÞ ¼ Aiðx; tÞpðx; tÞ �∑
j
∇j Dijðx; tÞpðx; tÞ
h i

; ð3Þ

where D is the diffusion matrix defined by

Dðx; tÞ ¼ 1
2Bðx; tÞBðx; tÞT ð4Þ

and j(x, t) is the probability current. Equations of the form Eq. (2)
can, for example, be used to describe the motion of colloidal
particles in optical traps49–52. In some of these cases, the Fokker-
Planck equation can also be solved exactly to obtain the instan-
taneous probability density p(x, t).

Whenever j(x, t) ≠ 0, the system is out of equilibrium. How far
the system is from equilibrium can be quantified using the
average rate of the entropy production at a given instant σ(t),
which can be formally obtained as the integral53

σðtÞ ¼
Z

dx Fðx; tÞ jðx; tÞ; ð5Þ

where F(x, t) is the thermodynamic force defined as

Fðx; tÞ ¼ jT ðx; tÞDðx; tÞ�1

pðx; tÞ : ð6Þ

Note that the Boltzmann’s constant is set to unity kB= 1
throughout this paper. Further, the entropy production along a
stochastic trajectory denoted as S[x( ⋅ ), t] can be obtained as the
integral of the single-step entropy production

dS ¼ F xðtÞ; tð Þ � dxðtÞ; ð7Þ
where ∘ denotes the Stratonovich product. This quantity is related
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to the average entropy production rate as σ(t)= 〈dS(t)/dt〉, where
〈⋯ 〉 denotes the ensemble average. Similar expressions can be
obtained for any Markov jump processes if the underlying
dynamical equations are specified17.

In the following, we discuss two variational representations
that can estimate σ(t), F(x, t), and S[x( ⋅ ), t] in non-stationary
systems, without requiring prior knowledge of the dynamical
equation. We also construct a third simpler variant and comment
on the pros and cons of these different representations for
inference.

TUR representation. The first method is based on the
TUR26,38–42, which provides a lower bound for the entropy
production rate in terms of the first two cumulants of non-
equilibrium current fluctuations directly measured from the tra-
jectory. It was shown recently that the TUR provides not only a
bound, but even an exact estimate of the entropy production rate
for stationary overdamped Langevin dynamics by taking the
short-time limit of the current27–29. Crucially, the proof in Ref. 28

is also valid for non-stationary dynamics.
This gives a variational representation of the entropy

production rate, given by the estimator

σTURðtÞ :¼
1
dt

max
d

2hJdi2
VarðJdÞ

; ð8Þ

where Jd is the (single-step) generalized current given by
Jd≔ d(x(t)) ∘ dx(t) defined with some coefficient field d(x). The

expectation and the variance are taken with respect to the joint
probability density p(x(t), x(t+ dt)). In the ideal short-time limit
dt→ 0, the estimator gives the exact value, i.e., σTUR(t)= σ(t)
holds28. The optimal current that maximizes the objective
function is proportional to the entropy production along a
trajectory, J�d ¼ cdS, and the corresponding coefficient field is
d*(x)= cF(x, t), where the constant factor c can be removed by
calculating 2hJdi=VarðJdÞ ¼ 1=c.

NEEP representation. The second variational scheme is the Neural
Estimator for Entropy Production (NEEP) proposed in Ref. 30. In
this study, we define the estimator σNEEP in the form of a var-
iational representation of the entropy production rate as

σNEEPðtÞ :¼
1
dt

max
d

hJd � e�Jd þ 1i; ð9Þ

where the optimal current is the entropy production itself,
J�d ¼ dS, and the corresponding coefficient field is d*(x)= F(x, t).
Again, in the ideal short-time limit, σNEEP(t)= σ(t) holds. Eq. (9)
is a slight modification of the variational formula obtained in
Ref. 30; we have added the third term so that the maximized
expression itself gives the entropy production rate. Although it
was derived for stationary states there, it can be shown that such
an assumption is not necessary in the short-time limit. We pro-
vide proof of our formula using a dual representation of the
Kullback–Leibler divergence54–56 in Supplementary Note 2.

Fig. 1 Estimating the entropy production along non-stationary trajectories. a Schematic of our inference scheme. The box on the left displays a trajectory
generated by the breathing parabola model in which a fluctuating colloidal particle (orange circle) inside a harmonic trap is driven out of equilibrium as the
stiffness of the trap decreases. The system parameters for the simulations shown here are: the parameter for the protocol of the changing stiffness
α= 11.53, the diffusion constant D= 1.6713 × 10−13, the time interval of trajectories Δt= 10−2, and the observation time τobs= 1. The position at time t is
described as xt. The box on the right displays the steps in our inference scheme: we train the model function d(x, t∣θ) with parameters θ to get the optimal
values θ*, and use them for estimating the (single-step) entropy production ΔbS. b Estimated entropy production along a single trajectory. The dashed green
line is the estimated entropy production, and the solid black line is the true entropy production calculated analytically. The estimation is conducted for the
trajectory depicted in panel (a) after training the model function using 105 trajectories. The blue circles (variance-based estimator (Eq. (14)) and green
triangles (simple dual representation (Eq. (10)) are the estimated entropy production rate using (c) 104 or (d) 105 trajectories, and the black line is the true
value. The model function is trained with the simple dual representation in both cases. As is evident, the variance-based estimator reduces the statistical
error significantly. In (c) and (d), the mean of ten independent trials are plotted for the estimated values, and the error bars correspond to the standard
deviation divided by

ffiffiffiffiffi
10

p
.
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In contrast to the TUR representation, NEEP requires the
convergence of exponential averages of current fluctuations, but it
provides an exact estimate of the entropy production rate not
only for diffusive Langevin dynamics but also for any Markov
jump process. Since there are some differences in the estimation
procedure for these cases28,30, we focus on Langevin dynamics in
the following, while its use in Markov jump processes is discussed
in Supplementary Note 2.

Simple dual representation. For Langevin dynamics, we also
derive a new representation, named the simple dual representa-
tion σSimple by simplifying he�Jd i in the NEEP estimator as

σSimpleðtÞ :¼
1
dt

max
d

2hJdi �
VarðJdÞ

2

� �
: ð10Þ

Here, the expansion of he�Jd i in terms of the first two moments
is exact only for Langevin dynamics and hence this representation
cannot be used for Markov jump processes to obtain σ (however,
as shown in57, the equivalence of the TUR objective function to
the objective function in the above representation continues to
hold in the long-time limit). The tightness of the simple dual and
TUR bounds can be compared as follows: In Langevin dynamics,
for any fixed choice of Jd,

σdt ≥
2hJdi2
VarðJdÞ

≥ 2hJdi �
VarðJdÞ

2
; ð11Þ

where we used the inequality 2a2
b ≥ 2a� b

2 for any a and b > 0.
Since a tighter bound is advantageous for the estimation56,58,
σTUR would be more effective for estimating the entropy
production rate for the Langevin case.

On the other hand, σNEEP and σSimple have an advantage over
σTUR in estimating the thermodynamic force F(x, t), since the
optimal coefficient field is the thermodynamic force itself for
these estimators. In contrast, σTUR needs to cancel the constant
factor c by calculating 2hJdi=VarðJdÞ ¼ 1=c, which can increase
the statistical error due to the fluctuations of the single-step
current (see Supplementary Note 2 for further discussions and
numerical results). In the next section, we propose a continuous-
time inference scheme that estimates in one shot, the time-
dependent thermodynamic force for the entire time range of
interest. This results in an accurate estimate with less error than
the fluctuations of the single-step current. σNEEP and σSimple are
more effective for this purpose, since the correction of the
constant factor c, whose expression is based on the single-step
current, negates the benefit of the continuous-time inference for
σTUR. In Table 1, we provide a summary of the three variational
representations.

We note that the variational representations are exact only
when all the degrees of freedom are observed; otherwise, they give
a lower bound on the entropy production rate. This can be
understood as an additional constraint on the optimization space.
For example, when the i-th variable is not observed, it is
equivalent to dropping xi from the argument of d(x) and setting
di= 0. We also note that the variational representations are exact
to order dt; in practice, we use a short but finite dt. The only
variational representation which can give the exact value with any
finite dt is σNEEP, under the condition that the dynamics are
stationary30.

An algorithm for non-stationary inference. The central idea of
our inference scheme is depicted in Fig. 1a. Equations (8), (9),
and (10) all give the exact value of σ(t) in principle in the Lan-
gevin case, but here, we elaborate on how we implement them in
practice. We first prepare an ensemble of finite-length trajectories,
which are sampled from a non-equilibrium and non-stationary

dynamics with Δt as the sampling interval:

Γi ¼ xðiÞ0 ; x
ðiÞ
Δt ; :::; x

ðiÞ
τobs

ð¼ xðiÞMΔtÞ
n o

ði ¼ 1; :::;NÞ: ð12Þ

Here, i represents the index of trajectories, N is the number of
trajectories, and M is the number of transitions. The subscript (i)
will be often omitted for simplicity. Then, we estimate the entropy
production rate σ(t) using the ensemble of single transitions
fxt ; xtþΔtgi at time t. σ(t) is obtained by finding the optimal
current that maximizes the objective function which is itself
estimated using the data. Hereafter, we use the hat symbol for
quantities estimated from the data: for example, bσSimpleðtÞ is the
estimated objective function of the simple dual representation.
We also use the notation bσðtÞ when the explanation is not
dependent on the particular choice of the representation. The
time interval for estimating bσðtÞ is set to be equal to the sampling
interval Δt for simplicity, but they can be different in practice, i.e.,
transitions {xt, xt+nΔt} with some integer n≥1 can be used to
estimate bσðtÞ for example.

Concretely, we can model the coefficient field with a
parametric function d(x∣θ) and conduct the gradient ascent for
the parameters θ. As will be explained, we use a feedforward
neural network for the model function, where θ represents, for
example, weights and biases associated with nodes in the neural
network. In this study, we further optimize the coefficient field
continuously in time, i.e., optimize a model function d(x, t∣θ)
which includes time t as an argument. The objective function to
maximize is then given by

f ðθÞ :¼ 1
M

∑
M�1

j¼0
bσðjΔtÞ: ð13Þ

The optimal model function d(x, t∣θ*) that maximizes the
objective function is expected to approximate well the thermo-
dynamic force F(x, t) (or c(t)F(x, t) if σTUR is used) at least at
jΔt(j= 0, 1, . . . ), and even at interpolating times if Δt is
sufficiently small. Here, θ* denotes the set of optimal parameters
obtained by the gradient ascent, and we often use d* to denote the
optimal model function d(x, t∣θ*) hereafter.

This continuous-time inference scheme is a generalization of
the instantaneous-time inference scheme. Instead of optimizing a
time-independent model function d(x∣θ) in terms of bσðjΔtÞ with a
fixed index j, the continuous-time scheme needs to perform only
one optimization of the sum Eq. (13). This makes it much more
data efficient in utilizing the synergy between ensembles of single
transitions at different times. This also ensures that we can get the

Table 1 A summary of the comparison between the different
variational representations considered in this work. σNEEP is
the Neural Estimator for Entropy Production (NEEP)
representation (Eq. (9)), σSimple is the simple dual
representation (Eq. (10)), and σTUR is the thermodynamic
uncertainty relation (TUR) based representation (Eq. (8)).
They have different applicabilities to Markov jump
processes and Langevin dynamics. The optimal coefficient
field d*(x) that maximizes a variational representation is
equivalent to or proportional to the thermodynamic force
F(x, t). The TUR representation is the tightest as shown in
Eq. (11).

Rep. Markov jump Langevin Optimal field Tightness

σNEEP Yes Yes d*(x)= F(x, t) Loose
σSimple No Yes d*(x)= F(x, t) Loose
σTUR No Yes d*(x)∝ F(x, t) Tight
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smooth change of the thermodynamic force, interpolating
discrete-time transition data.

Variance-based estimator. In principle, all the three variational
representations work as an estimator of the entropy production
rate as well. However, as we detail in Supplementary Note 2, once
we have obtained an estimate of the thermodynamic force d*≃ F
(taking into account the correction term for bσTUR) by training the
model function, it is possible to use a variance-based estimator of
the entropy production rate,

1
2dt

VarðJd� Þ ’
1
2dt

VarðJFÞ ¼ σðtÞ; ð14Þ

which can considerably reduce the statistical error. This is due to

the fact that dhJdi fluctuates around hJdi more than dVarðJdÞ does
around Var(Jd) for any choice of d, for small dt (see Supple-
mentary Note 2 for the derivation). The above advantage in using
the variance as an estimator, instead of the mean, would normally
be masked by noise in the estimation of d*. However, if the
coefficient field is trained by bσSimple or bσNEEP with the continuous-
time inference scheme, remarkably, d* is obtained with an
accuracy beyond the statistical error of dhJdi since it takes the extra
constraint of time continuity into account. This results in the

error of dVarðJd� Þ being smaller than that of dhJd� i, because of the
difference in how the leading-order terms of their statistical
fluctuation scale with dt. We note that bσTUR is not appropriate for
this purpose, since in this case, d* should be multiplied by

2dhJdi= dVarðJdÞ to obtain an estimate of the thermodynamic force,
which increases the statistical error to the same level as dhJdi.

In numerical experiments, we mainly use bσSimple for training
the coefficient field to demonstrate the validity of this new
representation and use the variance-based estimator for estimat-
ing the entropy production rate.

We adopt the data splitting scheme28,30 for training the model
function to avoid the underfitting and overfitting of the model
function to trajectory data. Concretely, we use only half the
number of trajectories for training the model function, while we
use the other half for evaluating the model function and
estimating the entropy production. In this scheme, the value of
the objective function calculated with the latter half (we call it test
value) quantifies the generalization capability of the trained
model function. Thus, we can compare two model functions, and
expect that the model function with the higher test value gives a
better estimate. We denote the optimal parameters that maximize
the test value during the gradient ascent as θ*. Hyperparameter
values are obtained similarly. Further details, including a pseudo
code, are provided in Supplementary Note 1.

Numerical results. We demonstrate the effectiveness of our
inference scheme with the following two linear Langevin models:
(i) a one-dimensional breathing parabola model, and (ii) a two-
dimensional adaptation model. In both models, non-stationary
dynamics are repeatedly simulated with the same protocol, and a
number of trajectories are sampled. We estimate the entropy
production rate solely on the basis of the trajectories and compare
the results with the analytical solutions (see Supplementary
Note 3 for the analytical calculations). Here, these linear models
are adopted only to facilitate comparison with analytical solu-
tions, and there is no hindrance to applying our method to
nonlinear systems as well28.

We first consider the breathing parabola model that describes a
one-dimensional colloidal system in a harmonic-trap
Vðx; tÞ ¼ κðtÞ

2 x2, where κ(t) is the time-dependent stiffness of
the trap. This is a well-studied model in stochastic

thermodynamics49,50,59 and has been used to experimentally
realize microscopic heat engines consisting of a single colloidal
particle as the working substance60,61. The dynamics can be
accurately described by the following overdamped Langevin
equation:

_xðtÞ ¼ � κðtÞ
γ

xðtÞ þ
ffiffiffiffiffiffi
2D

p
ηðtÞ: ð15Þ

Here γ is the viscous drag, and η is Gaussian white noise. We
consider the case that the system is initially in equilibrium and
driven out of equilibrium as the potential changes with time.
Explicitly, we consider a protocol, κ(t)= γα/(1+ αt), where the
parameters α, γ as well as the diffusion constant D are chosen
such that they correspond to the experimental parameter set used
in60 (see Supplementary Note 3).

In Fig. 1, we illustrate the central results of this paper for the
breathing parabola model. We consider multiple realizations of
the process of time duration τobs as time-series data (Fig. 1a). The
inference takes this as input and produces as output the entropy
production at the level of an individual trajectory bSðtÞ for any
single choice of realization (Fig. 1b), as well as the average
entropy production rate bσðtÞ (Fig. 1c, d). Here, the entropy
production along a single trajectory bSðtÞ is estimated by summing
up the estimated single-step entropy production:

ΔbSðtÞ :¼ d
xt þ xtþΔt

2
; t þ Δt

2

����θ�
� �

ðxtþΔt � xtÞ; ð16Þ

while the true entropy production S(t) is calculated by summing
up the true single-step entropy production:

ΔSðtÞ :¼ F
xt þ xtþΔt

2
; t þ Δt

2

� �
ðxtþΔt � xtÞ: ð17Þ

Note that their dependence on the realization x( ⋅ ) is omitted
in this notation for simplicity.

Specifically, we model the coefficient field d(x, t∣θ) by a
feedforward neural network, and conduct the stochastic gradient
ascent using an ensemble of single transitions extracted from 104

or 105 trajectories (see Supplementary Note 1 for the details of the
implementation) with Δt= 10−2s and τobs= 1s. We note that, in
recent experiments with colloidal systems, a few thousand of
realizations of the trajectories have been realized with sampling
intervals as small as Δt= 10−6s62, and trajectory lengths as long
as many tens of seconds60,61.

A feedforward neural network is adopted because it is suitable
for expressing the non-trivial functional form of the thermo-
dynamic force F(x, t)30,63, and for continuous interpolation of
discrete transition data64. In Fig. 1b, the entropy production is
estimated along a single trajectory. We can confirm the good
agreement with the analytical value. In Fig. 1c, d, the entropy
production rate is estimated using 104 and 105 trajectories. In
both cases, the simple dual representation is used to train the
model function on half the number of trajectories. On the other
half, we use both the simple dual representation as well as the
variance-based estimator in Eq. (14) for the estimation, in order
to compare their relative merits. We see, quite surprisingly, that
the variance-based estimator performs better than the simple dual
representation and has much less statistical error. Since the
simple dual representation is essentially just a weighted sum of
the mean and variance, this implies that the error in it is due to
the noise in the mean, as also explained above (and in
Supplementary Note 2).

Another advantage of our method is that it also spatially
resolves the thermodynamic force F(x, t), which would be hard to
compute otherwise. To demonstrate this point, we further analyze
a two-dimensional model that has been used to study the adaptive
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behavior of living systems21,44,65,66. The model consists of the
output activity a, the feedback controller m, and the input signal l,
which we treat as a deterministic protocol. The dynamics of a and
m are described by the following coupled Langevin equations:

_aðtÞ ¼ � 1
τa

aðtÞ � �aðmðtÞ; lðtÞÞ½ � þ
ffiffiffiffiffiffiffiffi
2Δa

p
ηaðtÞ; ð18aÞ

_mðtÞ ¼ � 1
τm

aðtÞ þ
ffiffiffiffiffiffiffiffiffi
2Δm

p
ηmðtÞ; ð18bÞ

where ηa and ηm are independent Gaussian white noises,
�aðmðtÞ; lðtÞÞ is the stationary value of a given the instantaneous
value of m and l, and a linear function �aðmðtÞ; lðtÞÞ ¼ αmðtÞ �
βlðtÞ is adopted in this study.

We consider dynamics after the switching of the input as
described in Fig. 2a. For separation of time scales τm≫ τa, the
activity responds to the signal for a while before relaxing to a
signal-independent value, which is called adaptation44. Adapta-
tion plays an important role in living systems for maintaining
their sensitivity and fitness in time-varying environments.
Specifically, this model studies E. coli chemotaxis21,44,65,66 as an
example. In this case, the activity regulates the motion of E. coli to
move in the direction of a higher concentration of input
molecules by sensing the change in the concentration as described
in Fig. 2a.

In this setup, the system is initially in a non-equilibrium
stationary state (for t < 0), and the signal change at t= 0 drives
the system to a different non-equilibrium stationary state. We
show the results of the estimation of the entropy production rate

Fig. 2 Estimation in the adaptation model. a Sketch of the model. The line with an arrow represents activation, and the line with a flat end represents
inhibition. The average dynamics of the output activity a and the feedback controller m after the switching of the inhibitory input l are plotted. b Estimated
entropy production rate. The blue circles are the estimated values of a single trial (using 104 trajectories) using the variance-based estimator (Eq. (14)).
The black line is the true entropy production rate. The labels d1, d2, and d3 are the time instances when we also estimate the thermodynamic force as
shown in (c). c Analytical solutions for the thermodynamic force at the instances d1, d2, d3, and (d) estimates over 104 trajectories. Here the horizontal
axis is the direction of a, the vertical axis is that of m, and an arrow representing the size of 100 is shown at the top of each figure for reference. The
brighter the color, the larger the thermodynamic force as shown in the color bar. Note that in this particular case, the thermodynamic force becomes
weaker as time evolves, and hence the size of the vectors reduces. The system parameters are set as follows: the time constants τa= 0.02, τm= 0.2, the
coefficients of the mean activity function α= 2.7, β= 1, the strengths of the white noise Δa= 0.005(t < 0), 0.5(t≥ 0),Δm= 0.005, and the inhibitory input
l(t)= 0(t < 0), 0.01(t≥ 0), which are taken from realistic parameters of E. coli chemotaxis65,66. The trajectories of length τobs= 0.1 are generated with the
time interval Δt= 10−4. The simple dual representation (Eq. (10)) is used for training the model function.
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and the thermodynamic force in Fig. 2b, c, respectively. Because
of the perturbation at t= 0, the non-equilibrium properties
change sharply at the beginning. Nonetheless, the model function
d(x, t∣θ*) estimates the thermodynamic force well for the whole
time interval (Fig. 2c), and thus the entropy production rate as
well (Fig. 2b). In particular, we plot the result of a single trial in
Fig. 2b, which means that the statistical error is negligible with
only 104 trajectories. We note that the entropy production rate is
orders of magnitude higher than that of the breathing parabola
model. The results of Figs. 1 and 2 demonstrate the effectiveness
of our method in estimating a wide range of entropy production
values accurately. In the numerical experiments, we have used
Δt= 10−4s. We note that sampling resolutions in the range
Δt= 10−6s to 10−3s have been shown to be feasible in realistic
biological experiments67. We also note that an order of 103

realizations are typical in DNA pulling experiments68.
The thermodynamic force in Fig. 2c has information about the

spatial trend of the dynamics as well as the associated dissipation
since it is proportional to the mean local velocity F(x, t)∝ j(x, t)/
p(x, t) when the diffusion constant is homogeneous in space. At
the beginning of the dynamics (t= 0), the state of the system
tends to expand outside, reflecting the sudden increase of the
noise intensity Δa. Then, the stationary current around the
distribution gradually emerges as the system relaxes to the new
stationary state. Interestingly, the thermodynamic force aligns
along the m-axis at t= 0.01, and thus the dynamics of a becomes
dissipationless. The dissipation associated with the jumps of a
tends to be small for the whole time interval, which might have
some biological implications as discussed in Refs. 21,66.

So far, we have shown that our inference scheme estimates the
entropy production very well in ideal data sets. Next, we
demonstrate the practical effectiveness of our algorithm by
considering the dependence of the inference scheme on (i) the
sampling interval, (ii) the number of trajectories, (iii) measure-
ment noise, and (iv) time-synchronization error. The analysis is
carried out in the adaptation model, for times t= 0 and t= 0.009,
at which the degrees of non-stationarity are different. The results
are summarized in Fig. 3. In most of the cases, we find that the
estimation error defined by bσðtÞ � σðtÞ

�� ��=σðtÞ is higher at t= 0
when the system is highly non-stationary.

In Fig. 3a, b, we demonstrate the effect of the sampling interval
Δt on the estimation. For both the t values, we find that the
estimation error does not significantly depend on the sampling
interval Δt in the range 10−5 to 10−3, which demonstrates the
robustness of our method against Δt.

In Fig. 3c, d, we consider the dependence of the estimated
entropy production rate on N—the number of trajectories used
for the estimation. We find that roughly 103 trajectories are
required to get an estimate that is within 0.25 error of the true
value for t= 0.009. On the other hand, we need at least 104

trajectories at t= 0 to get an estimate within the same accuracy.
This is because the system is highly non-stationary at t= 0 and
thus the benefit of the continuous-time inference decreases.

In Fig. 3e, f, the effect of measurement noise is studied. Here,
the measurement noise is added to trajectory data as follows:

yjΔt ¼ xjΔt þ
ffiffiffiffi
Λ

p
η j; ð19Þ

where Λ is the strength of the noise, and η is a Gaussian white
noise satisfying hηiaηjbi ¼ δa;bδi;j. The strength Λ is compared to
Λ0= 0.03 which is around the standard deviation of the variable
m in the stationary state at t > 0. We find that the estimate
becomes lower in value as the strength Λ increases, while a larger
time interval for the generalized current can mitigate this effect.
This result can be explained by the fact that the measurement
noise effectively increases the diffusion matrix, and its effect

becomes small as Δt increases since the Langevin noise scales as
/ ffiffiffiffiffi

Δt
p

while the contribution from the measurement noise is

independent of Δt. Since the bias in dVarðJdÞ is the major source of
the estimation error, we expect that the use of a bias-corrected
estimator31,69 will reduce this error. Indeed, we do find that the
bias-corrected estimator, star symbols in Fig. 3e, f, significantly
reduces the estimation error (see Supplementary Note 1 for the
details).

Finally, in Fig. 3g, h, the effect of synchronization error is
studied. We introduce the synchronization error by starting the
sampling of each trajectory at ~t and regarding the sampled
trajectories as the states at t= 0, Δt, 2Δt, . . . (actual time series is
t ¼ ~t;~t þ Δt; :::). Here, ~t is a stochastic variable defined by

~t ¼ unið0;ΠÞ
Δt0

� 	
Δt0; ð20Þ

where uni(0,Π) returns the value x uniformly randomly from
0 < x <Π, the brackets are the floor function, and Δt0 ¼ 10�4 is
used independent of Δt. The strength Π is compared to Π0 which
approximately satisfies σ(Π0) ≈ σ(0)/2. We find that the estimate
becomes an averaged value in the time direction, and the time
interval dependence is small in this case.

In conclusion, we find that our inference scheme is robust to
deviations from an ideal dataset for experimentally feasible
parameter values and even steep rates of change of the entropy
production over short-time intervals.

Conclusion
The main contribution of this work is the insight that variational
schemes can be used to estimate the exact entropy production
rate of a non-stationary system under arbitrary conditions, given
the constraints of Markovianity. The different variational repre-
sentations of the entropy production rate: σNEEP, σSimple, and
σTUR, as well as their close relation to each other, are clarified in
terms of the range of applicability, the optimal coefficient field,
and the tightness of the bound in each case, as summarized in
Table 1.

Our second main contribution is the algorithm we develop to
implement the variational schemes, by means of continuous-time
inference, namely using the constraint that d* has to be con-
tinuous in time, to infer it in one shot for the full-time range of
interest. In addition, we find that the variance-based estimator of
the entropy production rate, performs significantly better than
other estimators, in the case when our algorithm is optimized to
take full advantage of the continuous-time inference. We expect
that this property will be of practical use in estimating entropy
production for non-stationary systems. The continuous-time
inference is enabled by the representation ability of the neural
network and can be implemented without any prior assumptions
on the functional form of the thermodynamic force F(x, t). Our
work shows that the neural network can effectively learn the field
even if it is time-dependent, thus opening up possibilities for
future applications to non-stationary systems.

Our studies regarding the practical effectiveness of our scheme
when applied to data that might conceivably contain one of
several sources of noise, indicate that these tools could also be
applied to the study of biological19 or active matter systems70. It
will also be interesting to test whether these results can be used to
infer new information from existing empirical data from mole-
cular motors such as kinesin71 or F1-ATPase72,73. The thermo-
dynamics of cooling or warming up in classical systems74 or the
study of quantum systems being monitored by a sequence of
measurements75–78 are other promising areas to which these
results can be applied.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00787-x ARTICLE

COMMUNICATIONS PHYSICS |            (2022) 5:11 | https://doi.org/10.1038/s42005-021-00787-x | www.nature.com/commsphys 7

www.nature.com/commsphys
www.nature.com/commsphys


Fig. 3 Estimation with imperfect data in the adaptation model. Four variations from ideal data are considered: (a)(b) with different sampling intervals Δt,
(c)(d) with a different number of trajectories N, (e)(f) with the measurement noise (Eq. (19)), and (g)(h) with the synchronization error (Eq. (20)).
(b)(d)(f)(h) are the error analysis of (a)(c)(e)(g) between the estimated and the true entropy production rate (:¼ jbσðtÞ � σðtÞj=σðtÞ) at two time instances
t= 0 and 0.009. The strength of the measurement noise Λ is shown in units of Λ0, the standard deviation of m in the stationary state at t > 0. The strength
of the synchronization error Π is shown in units of Π0, the approximate time instance when the entropy production rate becomes half of its initial value. The
black line is the true entropy production rate as used in Fig. 2. a, b The estimation is robust against the choice of the sampling interval. c, d The number of
trajectories required for the convergence is large near the initial highly non-stationary time. e, f As for the strength of the measurement noise Λ increases,
the estimate reduces because of the effective increase of the diffusion matrix. A larger time interval as well as correcting the bias (via Eq. (S4) of
Supplementary Note 1) substantially mitigate this effect. g, h The estimate becomes an averaged value in the time direction. In contrast to (e)(f), the time
interval dependence is small. For (a)–(h), the simple dual representation (Eq. (10)) is used for training the model function, and the variance-based
estimator (Eq. (14)) is used for the estimation. The mean of ten independent trials are plotted, and the error bars correspond to the standard deviation
divided by

ffiffiffiffiffi
10

p
. The system parameters are the same as those in Fig. 2 except τobs= 0.01.
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Data availability
Trajectory data and the estimation results can be accessed online at https://doi.org/
10.5281/zenodo.571699579.

Code availability
Computer codes implementing our algorithm and interactive demo programs are
available online at https://github.com/tsuboshun/LearnEntropy.
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