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A machine learning inversion scheme for
determining interaction from scattering
Ming-Ching Chang1, Chi-Huan Tung 2,3, Shou-Yi Chang 2, Jan Michael Carrillo4, Yangyang Wang4,
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Small angle scattering techniques have now been routinely used to quantitatively determine

the potential of mean force in colloidal suspensions. However the numerical accuracy of data

interpretation is often compounded by the approximations adopted by liquid state analytical

theories. To circumvent this long standing issue, here we outline a machine learning strategy

for determining the effective interaction in the condensed phases of matter using scattering.

Via a case study of colloidal suspensions, we show that the effective potential can be

probabilistically inferred from the scattering spectra without any restriction imposed by

model assumptions. Comparisons to existing parametric approaches demonstrate the

superior performance of this method in accuracy, efficiency, and applicability. This method

can effectively enable quantification of interaction in highly correlated systems using scat-

tering and diffraction experiments.
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Measuring interaction between particles in condensed
matter has been of paramount interest since it provides
a starting point for describing the statistical properties

of the system under consideration. Elastic scattering and
diffraction techniques have played an important role in this
continued endeavor: From the measured spectra, extensive
effort has been devoted to inferring the nature of forces that
govern the properties of a variety of highly correlated disordered
systems including dense atomic liquids1–4, ionic liquids5 such
as electrolytes6 and molten salts7,8, molecular fluids9,10, suspen-
sions of colloids, micelles and emulsions11–13, solutions of
polymers14,15, and polyelectrolytes16,17. Nonetheless, potential
inversion based on this experimental protocol is often hampered
by the difficulty of precisely modeling the two-point static cor-
relation functions, the quantity of interest in radiation scattering
experiments, in terms of the relevant parameter.

In this report, we present a non-parametric strategy to cir-
cumvent the intrinsic limitation of existing approaches and
demonstrate its feasibility by a case study of charged colloidal
suspensions, a representative soft matter system. When the long-
range electrostatic repulsion dominates overall distances, the
effective interaction between charged colloids can be described by
a hard sphere with a Yukawa tail of screened Coulomb
repulsion18:

βVHSY ðrÞ ¼
1; if r < D

A exp �κðr�DÞ½ �
r ; otherwise

(
ð1Þ

where β � 1
kBT

is the Boltzmann factor, A the coupling parameter

defined as Z2e2

ϵð1þκD
2 Þ

2, D the colloidal diameter, Z the charge number,

e the electric charge, ϵ the dielectric constant of the solvent, and
κ the Debye screening constant. Eq. (1) has been extensively used
to model the electrostatic interaction in a wide variety of charged
colloidal systems including ionized nanoparticles11, self-
assemblies19, and biological systems20. The relevant correlation
function is the interparticle structure factor S(Q) in reciprocal Q
space. One well-adopted approach to determine VHSY(r) from the
measublue S(Q) is through the Ornstein-Zernike (OZ) integral
equation21–23:

hðr12Þ ¼ cðr12Þ þ np

Z
cðr13Þhðr23Þd3r3; ð2Þ

where h(r12)≡ g(r12)− 1 and g(r) is the pair distribution function,
c(r12) is the direct correlation function, and np is the particle
number density. S(Q) is the Fourier transform of g(r). Since both
h(r) and c(r) are unknown, a second closure equation is
required to solve Eq. (2). Several closures have been developed as
parametric12,22,24 or non-parametric25 approximations. Despite
the popularity of the integral equation approach, existing studies
have indicated its limitations: Because the accuracy of a given
closure is not known apriori, its validity in any specific phase
region needs to be justified computationally26–33. Moreover, the
convergence behavior of each closure is found to depend on the
complexity of adopted numerical procedures34. For highly
charged systems, the extraction of VHSY(r) from the corre-
sponding S(Q) is also known to be compounded by the strong
electrostatic interactions35. As alluded to above, no ideal closure
is currently available.

Results and discussion
The position we take here is that developing another closure does
not necessarily provide the most effective solution. Instead of
dealing with the integral equations, iterative approaches including
Boltzmann inversion1 and force matching36 are also developed to
solve the potential inversion problem. Based on the predictor-

corrector scheme, these approaches have proved to be able to
determine the effective pair potentials without assuming their
mathematical form. However, a significant drawback emerged as
in each step of the iteration an independent simulation is required
to provide the connection between the predictor potential and its
corresponding structural feature, which leads to the low effi-
ciency. Another iterative scheme based on test particle insertion37

was developed to circumvent the limitation of heavy computa-
tional load at a cost of the prerequisite of detailed individual
particle trajectories instead of coarse-grained two-point correla-
tion as input. These iterative approaches are also unable to pro-
vide a broad view of the relation between varying interaction
potential and equilibrium structure owning to the fact that the
criteria of convergence only focused on the neighborhood around
the target pair correlation function.

From a Bayesian perspective38 we instead sought to solve this
inversion problem via a machine learning (ML) approach based
on Gaussian process39, which defines a distribution over func-
tions as a conceptual extension of the familiar Gaussian dis-
tribution. Using Eq. (1) we computationally generated an
extensive library of S(Q) from the equilibrium fluid phase (see
Methods), which is defined as the training set {Strain(Q)} in this
study. In the vector space of S(Q), we treated the A, κ, and np of
{Strain(Q)} as a collection of normally distributed random vari-
ables and accordingly determined the statistical relationship of
each variable in the ML process (see Methods). Using the opti-
mized covariance matrix designed to quantify data correlation, we
were able to probabilistically infer the values of A, κ, and np from
a given S(Q) without having to rely on a prescribed parametric
equation, such as OZ equation and a complementary closure, to
specify this mathematical relationship deterministically. The
uncertainties associated with the related parameters naturally
emerge during the inference process embedded in the spectral
analysis procedure.

Feasibility of potential inversion. Before implementing the ML
process, it is critical to first examine the feasibility of our pro-
posed approach. To uniquely determine the potential parameters
from a given S(Q), a necessary condition to meet is the separ-
ability of the dataset in the vector space of S(Q) of dimension 80,
the sampled Q points in our computational trajectory analysis.
Here we used a principal component analysis (PCA) by the sin-
gular value decomposition (SVD)40 to extract relevant informa-
tion of the data distribution in this high dimensional vector space
(see Methods). From the results of singular value analysis41

presented in Fig. 1a, b, it is confirmed that the variance of original
data is mostly retained by the first three statistically significant
singular value ranks. The vector space R3 spanned by these three
singular vectors, denoted as SVD0, SVD1, and SVD2 in Fig. 1c, is
therefore sufficiently expressive in capturing essential features of
the correlated data.

In this R3 vector space, each S(Q) in {Strain(Q)} is represented
by a point and the distribution of a gridded dataset is given in
Fig. 2. As demonstrated by Fig. 2a, it is seen to be narrowly
distributed along one dimension of a twisted three-dimensional
manifold which resembles the shape of a half fern leaf: The
elongated central axis represents the data of hard-sphere fluids
with different volume fraction ϕ defined as π

6 npD
3. Each pinna

bursting forth from the central stalk consists of data points with
the same ϕ but different κ and A. We thoroughly examined the
data distribution presented in Fig. 2a and no inseparable
overlapping was found. This observation, which reflects the
one-to-one mapping between S(Q) and a set of ϕ, 1

κD, and βA in
the colloidal fluid phase, provides initial support for a viable
framework capable of inversely extracting potential parameters

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00778-y

2 COMMUNICATIONS PHYSICS |            (2022) 5:46 | https://doi.org/10.1038/s42005-021-00778-y | www.nature.com/commsphys

www.nature.com/commsphys


from measured scattering functions. The data points collected
from the fluid phase characterized by A < 3 kBT are further
marked by magenta color in Fig. 2a. In this phase region, the
effective interaction of charged colloidal suspensions can be
precisely determined by OZ equation complemented by the MPB-
RMSA closure proposed by Heinen and coworkers32,33, a
sophisticated approach among the continued efforts42,43 aiming

at improving the MSA closure44. Within probed phase regions, its
quantitative accuracy is found to be equivalent to that of
the Rogers-Young closure45 but the computational efficiency is
significantly improved. One can further label the data points
presented in Fig. 2a with the numerical values of ϕ, 1

κD, and βA to
examine the characteristics of their distributions. Judging from
the results given in Fig. 2b–d, the distributions of ϕ, 1

κD and βA are
all seen to vary smoothly. This observation suggests that the data
points of these three parameters not only are self-avoiding but
also highly correlated with a certain length scale. One can
therefore uniquely extract the potential parameters from a given
S(Q) in its vector space.

Having verified the feasibility of our proposed approach for
spectral inversion, we can now readily demonstrate its numerical
reliability. For this purpose it is instructive to further investigate
the difference in the heterogeneity of distribution for ϕ, 1

κD, and
βA. We found that the distribution of ϕ is a more slowly varying
function in comparison to that of 1

κD and βA. As exemplified by
Fig. 2e, for the pinna of ϕ= 0.3, both 1

κD and βA are seen to vary
characteristically within Δx ~ 1 and Δx ~ 2, respectively, where
Δx ¼ jx � x0j and x, x0 are the coordinates in the vector space of
S(Q). In addition, the corresponding gradient vectors of 1

κD and
βA are seen to point perpendicularly across and axially along the
blade respectively. Note that the absolute magnitude of gradients
expressed as limΔx!0

Δy
Δx

�� �� where Δy is the difference of
corresponding potential parameters are analogous to the
sensitivity metrics46 defined as the ratio of the separation between
structural features and that between their corresponding interac-
tion potentials. For example, in the high-temperature limit of
βA→ 0, S(Q) of distinct 1

κD distributed in a narrow region around
the central stalk, such distribution corresponds to an extremely
high gradient and thus implies low sensitivity in this region.
These observations provided a comprehensive aspect of the
feasibility of potential inversion. Following the model of Yukawa
potential we can express the discrepancy between interparticle
potentials solely in terms of the related physical quantities, which
benefits the systematic exploration of structure-interaction
relations in the phase diagram. Clearly, the numerical accuracy
of potential extraction depends on how well this observed
distributional heterogeneity is addressed.

Gaussian process regression. In the context of Gaussian Process
(GP)38,39,47, we developed a covariance matrix, as the beating
heart of our non-parametric inversion method, to quantitatively
describe the statistical relationships of ϕ, 1

κD and βA in the vector
space of S(Q) (see Methods). A function f relating S(QD) and A, κ
and np can be formulated as f � GPðμ; kÞ in terms of a prior

Fig. 1 Principal component analysis of the S(Q) dataset. a The eigenvalues of principal components. SVR stands for singular value rank and the singular
value is represented by Σ. As demonstrated in panel b, the results of maximum profile likelihood analysis41 show that the linear subspace spanned by the
first three singular vectors given in Panel c is sufficiently expressive to illustrate the features of the correlated data points. SVD0, SVD1, and SVD2 are
presented as a function of dimensionless unit QD.

Fig. 2 Distributions of potential parameters in the space spanned by
leading singular vectors. a The distributions of training data of hard-sphere
Yukawa (HSY) in the R3 vector space spanned by SVD0, SVD1, and SVD2
given in Fig. 1c. The magenta symbols represent the fluid phase regions
where the effective interaction can be precisely determined by solving the
OZ equation with MPB-RMSA closure 32,33. The blacks symbols represent
the three highly correlated charged colloidal suspensions given in Fig. 4.
Panels b–d give the distributions of ϕ, 1

κD and βA. The detailed distributions
for ϕ= 0.3 are given as an example in e.
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mean function μ and a prior covariance function k. Given a
training set (X, Y), where X represents the n sets of S(QD) in
{Strain(Q)} and Y represents the corresponding n sets of regression
targets of A, κ and np, the purpose of the ML process is to
determine μ and k from the knowledge of training data. Following
the standard procedure of GP39, a constant function is used to
specify μ. The n × n covariance matrix KXX specifies the correla-
tions between training data pairs modeled by the radial basis
function (RBF) kernel (see Methods). The Gaussian observational
noise term is added to the kernel matrix K= KXX+ σ2I where σ
describes the variance of observational noise, and I denotes
identity matrix. The hyperparameters l and σ are determined by
maximizing the log marginal likelihood using a gradient descent
algorithm during training39,48. Given a test point X*, the goal of
GPR is to estimate Y*= f(X*), where the convariance matrix of
the test set is denoted as KX�X�

, and KXX�
consists of entries

measuring the correlations between training and test points. For
simplicity, K≡ KX, K� � KXX�

, and K�� � KX�X�
. For a S(QD)

measured from the equilibrium fluid phase, the relevancy of its A,
κ and np with those in the training sets should follow the same
correlation patterns deduced from the training process. There-
fore, regression targets can be determined from this joint dis-
tribution:

Y

Y�

� �
� N μðXÞ

μðX�Þ

� �
;

K KT
�

K� K��

" # !
; ð3Þ

where T indicates matrix transposition and N denotes normal
distribution.

Another extensive set of S(Q) termed as {Stest(Q)} was
simulated separately from the equilibrium fluid phase to gauge
the numerical accuracy of our proposed method. Figure 3
presents the comparison of input parameters in simulations and
those inverted from {Stest(Q)}. All three extracted parameters are
in remarkable accord with their computational inputs, but ϕ is in
closer quantitative agreement as indicated by the relative error E.
The origin of this varying degree of uncertainty is worth
exploring: As illustrated in Fig. 2e, both 1

κD and βA exhibit
extreme changes within a relatively short Euclidean distance in
comparison to the large-scale variation of ϕ. This observation
suggests that the susceptibility of S(Q) towards the variation of
potential variables is inherently determined by their distributions
in the vector space of S(Q). The difference in E can therefore be
viewed as a reflection of landscape heterogeneity for different
parameters.

In Fig. 4a–c we give the comparison of VHSY(r) calculated from
the ML-extracted parameters specified by the solid lines in Fig. 3
and their corresponding references used in the simulation. To
demonstrate the numerical accuracy of our approach, the S(Q)

of three highly correlated systems, as indicated by the black
symbols in Fig. 2a, were calculated and compared with their
references in {Strain(Q)}. Accordingly the corresponding coherent
intensities of small-angle neutron scattering (SANS) I(Q) were
also calculated assuming the system consists of monodisperse
densely-packed spherical particles (see Methods). From the
results presented in Fig. 4d–f, it is clearly seen that the differences
between the reference I(Q) and S(Q) (blue dashed curves) and
the reconstructed I(Q) and S(Q) (red solid curves) are indeed
indistinguishable on the scale of our plots. This observation
demonstrates that the structural variation of suspending charged
particles caused by the change of VHSY(r) with the magnitude of E
given in Fig. 3a–c cannot be detected by elastic scattering
techniques. The insets in Fig. 4d–f also show that the difference in
I(Q) is within the range of statistical variation of resolution of
general SANS instruments. For the three strongly correlated
systems presented in Fig. 4d–f, integral equation theories are
often unable to determine ϕ, κ, and A from S(Q) in a numerically
precise manner35. The validity of our proposed ML approach for
quantitatively extracting VHSY(r) from the scattering spectra of
charged colloidal suspensions over a wide range of ϕ in the
equilibrium fluid phase is therefore verified.

Conclusions
In conclusion, we have developed a ML inversion method, based
on the framework of Gaussian process, to inversely determine the
effective interaction of colloidal suspensions from their scattering
spectra. By treating the probability distributions of the relevant
potential parameters in the vector space of the scattering func-
tion, our non-parametric approach circumvents the mathematical
constraints inherent to deterministic models for spectral analysis.
We demonstrated that our approach offers several advantages
over the existing parametric approaches from the standpoint of
numerical accuracy, computational efficiency (see Methods), and
general applicability. While the ML method present in this work
relied on the model of Yukawa potential unlike the aforemen-
tioned model-free iterative approaches, this method still provided
crucial physical insights in determining the coarse-grained
interactions as it directly yielded the related physical quantities.
Complemented by computer simulations, our method can be
systematically extended for solving the inversion scattering pro-
blems of various colloidal systems characterized by different
effective interactions49–52. Moreover, one recognized challenge in
the analysis of scattering data of interacting systems is to take
polydispersity into account adequately53. In this pursuit, our ML
strategy can enable quantitative characterization of highly inter-
acting systems characterized by significant variations of interac-
tion potential and particle size which cannot be addressed
precisely by existing decoupling approximations18,54,55. Another

Fig. 3 Comparison of potential parameters in simulations and those inverted by machine learning. The comparison of the extracted a ϕ, b 1
κD, and c

lnðβAÞ and their corresponding computational references. The numerical accuracy of reconstruction is quantified by the relative error E given in each panel.
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merit of our strategy is those parameters affect the scattering
spectra yet independent of the pair interaction, for example, the
bulk number density can also be inferred probabilistically from
ML. In contrast, the conventional iterative approaches require the
knowledge of the number density of particles in advance, which is
in general unavailable in SANS experiments, especially for the
micellar solutions.

In principle, the applicability of this method is not restricted to
structural studies of colloidal systems. The essential idea underlying
this method of spectral analysis, which does not suffer from the
drawbacks of explicit modeling, allows quantitative extraction of
relevant parameters based on which the targeted systems are
computationally constructed. We are optimistic that our approach
will provide a useful toolbox to facilitate the progress in many
important inversion problems of radiation scattering, diffraction,
and imaging56–59 experiments from strongly correlated systems
which traditionally have been difficult and time-consuming to solve.

Methods
Molecular dynamics (MD) simulation. Using molecular dynamics (MD) simu-
lation, 27,000 S(QD) samples of charged colloidal suspensions in their equilibrium
fluid phase were simulated based on Eq. (1). The ranges of parameters are chosen
to be 0 < βA < 20, 0 < ϕ < 0.45, and 0 < 1

κD < 0:5 respectively, so that no splitting in
the second peak60 of S(QD), which signifies the formation of the non-ergodic glassy
state is observed. Based on the form of μ ≡ {ϕ, κ, A} we separate the simulated
S(QD) into two main subsets:

● Grid15K contains grid sample points with 30 unique ϕ values:
ϕ∈ (0.015, 0.03, 0.045, . . . , 0.45), 25 unique κ values:
1
κD 2 ð0:02; 0:04; 0:06; :::; 0:5Þ, and 20 unique A values: βA∈ (1, 2, 3, . . . ,
20), such that there are totally 30 × 25 × 20= 15, 000 sample points. It is
the {Strain(Q)}.

● Rand12K covers the specified μ range with 12, 000 uniform distributed
random data points. It is the {Stest(Q)}.

The simulation cell contains 16, 384 particles with an initial number density of
np ¼ 3

4π ϕ δ
�3. Canonical (NVT) ensemble simulation was performed, where the

temperature was maintained at T= 1.0 via a Nose-Hoover thermostat61,62 and

integrated using the velocity-Verlet algorithm63 with integration timestep of

0.001τ. Here δ; τ ¼ δðβmÞ12, and m= 1 are the standard LJ reduced units for
distance, time, and mass respectively. The excluded hardcore of D= 1δ in VHSY(r)
used in our simulation is modeled by the repulsive component of 12-6 truncated-
shifted Lennard-Jones (LJ) model21:

VLJ ðrÞ ¼
4ϵ ðσrÞ12 � ðσrÞ6 þ 1

4

� �
; if r < 2

1
6σ

0; if r ≥ 2
1
6σ

(
ð4Þ

where βϵ= 500 and σ ¼ 2�
1
6 δ in reduced units.

As displayed in Fig. 5, only marginal difference between the model potential
VHSY(r) and VHSY−LJ(r) is observed. Each simulation proceeded for 5τ where the
simulation box size is changed to specify a value of ϕ, and another 25τ where the
final 5τ was used to calculate S(QD) using the existing procedure64,65. Simulations
were performed at the OLCF-4 Summit supercomputer at Oak Ridge National
Laboratory (ORNL) using LAMMPS66 with graphical processing unit (GPU)
acceleration.

Examples of simulated S(QD) are given in Fig. 6. Upon changing volume
fraction ϕ ¼ π

6 npD
3 and A, its evolution is consistent with documented results (for

example see refs. 11,12,32,33).

Fig. 5 Potential model used in the simulation. The hard-sphere Yukawa
potential (black curve) and the approximated potential used in our
simulations (red curve) by replacing the hardcore with truncated-shifted
Lennard-Jones interaction.

Fig. 4 Reconstructed interparticle potentials and scattering functions. Panels a–c present examples of VHSY(r) calculated based on ϕ, κ, and A given
Fig. 3. The references used in computer simulations and those determined by ML inversion are presented in dashed and solid curves, respectively. The
magnitude of uncertainties calculated based on the errors in Fig. 3 are represented by the shaded regions. The color scheme is the same as that of Fig. 3.
Panels d–f give the reconstructed S(Q) (insets) and I(Q) calculated from three highly correlated systems (yellow curves in panels a–c) and upper right
most points in Fig. 3). Both computationally generated reference S(Q) and I(Q) (black dashed curves) and their ML reconstructions (red solid curves) are
indistinguishable within the scales used in these plots.
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SVD and PCA analysis of MD data. We re-sampled each S(QD) for QD∈ (0.2,
0.4, 0.6, . . . , 16.0) such that 80 QD sample points in each simulated S(QD) are kept.
This way, the dimension of the vector space of S(QD) is 80. Each S(QD) is therefore
represented by a point in this R80 vector space. Visualization of data distribution
can be facilitated by dimensionality reduction: The data was arranged into a
80 × 27, 000 matrix F. Using Singular Value Decomposition (SVD)40, F can be
decomposed into F=UΣVT.

The diagonal entries of Σ2 are proportional to the percentages of the variance of
the original data projected onto each corresponding principal axis. This Principal
Component Analysis (PCA)40 allows us to re-express the data as a set of new
orthogonal variables to extract their intrinsic correlations. To remove the
subjectivity involved in deciding the correct number of component axes to retain,
we use the analysis of maximum profile likelihood41 to identify the statistical gap
where the singular values begin to level off, as in Fig. 1a.

Determining the hyperparameters in machine learning from the data dis-
tributions. In the framework of the Gaussian Process, the covariance matrix KXX

specifies the correlations between training data pairs modeled by the radial basis
function (RBF) kernel. Specifically, for x; x0 2 X, kernels kðx; x0Þ as entries of KXX

are formulated by the following squared exponential expression:

kðx; x0Þ ¼ exp
�ðx � x0Þ2

2l2

� �
; ð5Þ

where l is the correlation length which measures the similarity between training
data points. The Gaussian observational noise term is added to the kernel matrix
K= KXX+ σ2I where σ describes the variance of observational noise, and I denotes
identity matrix. To facilitate the optimization process of the hyperparameters l and
σ, we first investigate the packing pattern of data in the manifold using the pair
distance distribution function (PDDF)67:

pðzÞ ¼ 1

N2 ∑
N

i¼1
∑
N

j¼1
δðjxi � xjj � zÞ; ð6Þ

where δ is the Dirac delta function. The shape of PDDF (black curve) given in
Fig. 7a suggests a nearly evenly distribution of data points67.

Because no heterogeneous clustering of data is observed, the expectation values
of the potential parameters associated with any given data point can be determined
by its correlation between other data points through the optimized kernel functions
used in GP. Information about the distributions of ϕ, 1

κD and βA can be further
deduced from their autocorrelation functions (ACF)68:

CμðzÞ ¼
hμðxÞμðx þ zÞix � hμðxÞi2x

h½μðxÞ�2ix � hμðxÞi2x
; ð7Þ

where h�ix represents the spatial average over position x of all sample points in the
vector space. From the results given in Fig. 7(a) Cϕ(z) is characterized by a slow
relaxation with a characteristic length that is larger than the scale of the probed
spatial domain. This observed decaying behavior is consistent with the smooth
variation of ϕ revealed by Fig. 2(b). On the contrary, the self-correlations of κ and
A are no longer retained when z > 2. This result gives a quantitative measure
regarding the average length of their distributions shown in Fig. 2e. Because the
length scale estimated by Equation (7) is a spatial range beyond which each

parameter is allowed to vary randomly, it therefore defines the upper limit of the
correlated spatial range of each parameter. Figure 7b–d presents the marginal
likelihood surfaces over the two relevant parameters, the correlation length l and
the variance of observational noise σ2, the central ingredients of the covariance
matrix describing the correlation of training data on the framework of GP. For ϕ,
1
κD and lnðβAÞ, the contours are seen to be unimodal and convex with different
degrees of skewness which reflects the characteristic patterns of their distributions
in the vector space of S(Q). The determination of the optimal l and σ2 for ϕ, 1

κD and
βA is greatly facilitated by these monotonic features. The optimized l and σ2

obtained from gradient descent39,48 are marked by red cross symbols in
Fig. 7(b–d). It is instructive to indicate that the optimized l for each parameter is
indeed less than its correlation length determined by ACF analysis given in Fig. 7a.
In this paper, we adopt the sklearn GaussianProcessRegressor library69

due to its efficiency and convenience of implementation. We give the results of
optimization in Table 1. It is found that lϕ= 7.74, lκ= 0.922, lA= 0.373, and
σϕ= 1.94 × 10−7, σκ= 1.16 × 10−4, σA= 1.83 × 10−2, respectively. The numerical
accuracy of these values is cross-validated. It is also noted that they are consistent
with the calculations of ACF given in Fig. 7a.

The efficiency of our ML inversion approach. The computational demand of our
method is extremely lightweight when compared to existing integral equation
approaches. Our method does not require large-scale GPU cloud. The whole
training process can be completed in hours, and testing can be completed in
minutes or seconds. On a standard i7 laptop computer without GPU, our imple-
mentation of our ML process for 15,000 data points takes about 3 h to finish and a
few minutes for testing all the other 12,000 data points. In general, solving an
inversion problem from one S(Q) curve takes less than 10−3 s. In comparison, it
takes approximately 0.1 s to generate a S(Q) from a specific combination of ϕ, κ,

Fig. 6 Examples of simulated S(QD). a ϕ= 0.015, b ϕ= 0.15, c ϕ= 0.30,
and d ϕ= 0.45. The value of 1

κD ¼ 0:3 and 0 < βA < 20.

Fig. 7 The log marginal likelihood surfaces of l and σ. a ϕ, b 1
κD, and c

lnðβAÞ. The optimal values are marked by the red crosses. Panel d gives the
PDDF p(z) of {Strain(Q)} (black curve), and the auto correlations of ϕ
(Cϕ(z), red curve), κ (Cκ(z), green curve), and A (CA(z), blue curve). Due to
the sparsity of available pairs, the upturns observed in the range of z > 6
lack statistical significance.

Table 1 The parameters l and σ of the radial basis function
(RBF) kernel determined by gradient descent optimization.

θ l σ

ϕ 7.74 1.94 × 10−7

1
κD 0.922 1.16 × 10−4

lnðβAÞ 0.373 1.83 × 10−2

l and σ are used to quantitatively represent the correlation and self-dispersion of the related
potential parameters in the vector space of S(Q).
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and A using the state-of-art integral equation approach32,33. Moreover, for a
general curve fitting routine, hundreds of iterations are often required to obtain
satisfactory agreement between parametric models and experimental data. Overall
the efficiency is improved significantly by our non-parametric ML approach in
comparison to the existing parametric integral equation approaches.

Data availability
The datasets generated during the current study are available from both corresponding
authors on request.

Code availability
The computer codes used for simulations and analyses are available from both
corresponding authors upon request.
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