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Scaling advantage of chaotic amplitude control for
high-performance combinatorial optimization
Timothée Leleu 1,2✉, Farad Khoyratee1,3,4,5, Timothée Levi 1,5,6, Ryan Hamerly 7,8, Takashi Kohno1,2,6 &

Kazuyuki Aihara1,2

The development of physical simulators, called Ising machines, that sample from low energy

states of the Ising Hamiltonian has the potential to transform our ability to understand and

control complex systems. However, most of the physical implementations of such machines

have been based on a similar concept that is closely related to relaxational dynamics such as

in simulated, mean-field, chaotic, and quantum annealing. Here we show that dynamics that

includes a nonrelaxational component and is associated with a finite positive Gibbs entropy

production rate can accelerate the sampling of low energy states compared to that of con-

ventional methods. By implementing such dynamics on field programmable gate array, we

show that the addition of nonrelaxational dynamics that we propose, called chaotic amplitude

control, exhibits exponents of the scaling with problem size of the time to find optimal

solutions and its variance that are smaller than those of relaxational schemes recently

implemented on Ising machines.
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Many complex systems such as spin glasses, interacting
proteins, large-scale hardware, and financial portfolios,
can be described as ensembles of disordered elements

that have competing frustrated interactions1 and rugged energy
landscapes. There has been a growing interest in using physical
simulators called Ising machines in order to reduce time and
resources needed to identify configurations that minimize their
total interaction energy, notably that of the Ising Hamiltonians H
with HðσÞ ¼ � 1

2∑ijωijσ iσ j (with ωij the symmetric Ising cou-
plings, i.e., ωij= ωji, and σi= ±1) that is related to many non-
deterministic polynomial-time hard (NP-hard) combinatorial
optimization problems and various real-world applications2 (see
ref. 3 for a review). Recently proposed implementations include
memresistor networks4, micro- or nano-electromechanical
systems5, micro-magnets6,7, coherent optical systems8, hybrid
opto-electronic hardware9–11, integrated photonics12–14, flux
qubits15, and Bose-Einstein condensates16. In principle, these
physical systems often possess unique properties, such as coher-
ent superposition in flux qubits17 and energy efficiency of
memresistors4,18, which could lead to a distinctive advantage
compared to conventional computers (see Fig. 1(a) and (b)) for
the sampling of low energy states. In practice, the difficulty in
constructing connections between constituting elements of the
hardware is often the main limiting factor to scalability and
performance for these systems15,19. Moreover, these devices often
implement schemes that are directly related to the concept of
annealing (either simulated20,21, mean-field22,23, chaotic18,24, and
quantum17,25) in which the escape from the numerous local
minima26 and saddle points27 of the free energy function can only

be achieved under very slow modulation of the control parameter
(see Fig. 1(c)). These methods are dependent on non-equilibrium
dynamics called aging that, according to recent numerical
studies28, is strongly non-ergodic and seems to explore only a
confined subspace determined by the initial condition rather than
wander in the entire configurational space29 for mean-field spin
glass models. In general, such systems find the solutions of
minimal energy only after many repetitions of the relaxation
process.

Alternative dynamics that is not based on the concepts of
annealing and relaxation may perform better for solving hard com-
binatorial optimization problems30–32. Various kinds of dynamics
have been proposed3,33–36, notably chaotic dynamics18,37–40, but
have either not been implemented onto specialized hardware37,41 or
use chaotic dynamics merely as a replacement to random
fluctuations18,38. It was recently shown that the control of amplitude
in mean-field dynamics can improve the performance of Ising
machines by introducing error-correction terms (see Fig. 1(d)),
effectively doubling the dimensionality of the system, whose role is to
correct the amplitude heterogeneity30. Because of the similarity of
such dynamics with that of a neural network, it can be implemented
especially efficiently in electronic neuromorphic hardware where
memory is distributed with the processing42–44.

In this paper, we show that the addition of the nonrelaxational
part to the relaxation process makes the dynamics able to escape
at a much faster rate than relaxational ones from local minima
and saddles of the corresponding energy function. The expo-
nential scaling factor with respect to system size of the time
needed to reach optimal configurations of spin glasses that can be

Fig. 1 Schematic representation of the proposed chip. Schematic representation of a conventional central processing unit (CPU) and separate memory
with the von Neumann bottleneck problem and b the proposed neuromorphic chip for combinatorial optimization. Universal Asynchronous Receiver/
Transmitter (UART), phase-locked loops (PLL), and global clock buffer with clock enable (BUFGCE) are used for input/output of data, clock management,
and clock gating, respectively. Neurons and synapses are shown in the bottom to illustrate the analogy between the organization of the chip and biological
neural networks. Schema of dynamics in analog state-space x of algorithms based on c annealing on a potential function shown at different times ti and d a
trajectory of proposed chaotic amplitude control scheme shown by the curved gray line with an arrow. Red circles show the discrete space σ.
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found after a very long computation time using state-of-the-art
heuristics, called time to solution, is smaller in the former case,
which raises the question whether the nonrelaxational component
makes the dynamics qualitatively different from the very slow
relaxation observed in classic Monte-Carlo simulations of spin
glasses. In order to extend numerical analysis to large problem
sizes and limit finite-size effects, we implement a scheme that we
name chaotic amplitude control (CAC) on a field programmable
gate array (FPGA, see Fig. 1(b)) and show that the developed
hardware can be faster for finding these optimal configurations in
the limit of large problem sizes than many state-of-the-art algo-
rithms and Ising machines for some reference benchmarks with
enhanced energy efficiency.

Results
Mean-field dynamics. For the sake of simplicity, we consider the
classical limit of Ising machines for which the state space is often
naturally described by analog variables (i.e., real numbers) noted
xi in the following. The variables xi represent measured physical
quantities such as voltage4 or optical field amplitude8–13 and
these systems can often be simplified to networks of interacting
nonlinear elements whose time evolution can be written as fol-
lows:

dxi
dt

¼ f iðxiÞ þ βiðtÞ∑
j
ωijgjðxjÞ þ σ0ηi; ð1Þ

where fi and gi represent the nonlinear gain and interaction,
respectively, and are assumed to be monotonic, odd, and inver-
tible “sigmoidal” functions for the sake of simplicity; ηi, experi-
mental white noise of standard deviation σ0 with
hηiðtÞηjðt0Þi ¼ δijδðt � t0Þ; and N, the number of spins. δij and δ(t)
are the Kronecker delta symbol and Dirac delta function,
respectively. Ordinary differential equations similar to eq. (1)
have been used in various computational models that are applied
to NP-hard combinatorial optimization problems such as
Hopfield-Tank neural networks45, coherent Ising machines46,
and correspond to the “soft” spin description of frustrated spin
systems47. Moreover, the steady states of eq. (1) correspond to the
solutions of the “naive” Thouless-Anderson-Palmer (nTAP)
equations that arise from the mean-field description of
Sherrington-Kirkpatrick spin glasses when the Onsager reaction
term has been discarded48. In the case of neural networks in
particular, the variables xi and constant parameters ωij corre-
spond to firing rates of neurons and synaptic coupling weights,
respectively.

It is well known that, when βi= β for all i and the noise is not
taken into account (σ0= 0), the time evolution of this system is
motion in the state space that seeks out minima of a potential
function49 (or Lyapunov function) V given as
V ¼ βHðyÞ þ∑iVbðyiÞ, where Vb is a bistable potential with
VbðyiÞ ¼ � R yi

0 f iðg�1
i ðyÞÞ dy and HðyÞ ¼ � 1

2∑ijωijyiyj is the
extension of the Ising Hamiltonian in the real space with
yi= gi(xi) (see Supplementary Note 1.1). The bifurcation para-
meter β, which can be interpreted as the inverse temperature of
the naive TAP equations48, the steepness of the neuronal transfer
function in Hopfield-Tank neural networks45, or to the coupling
strength in coherent Ising machines8–10, is usually decreased
gradually in order to improve the quality of solutions found. This
procedure has been called mean-field annealing23, and can be
interpreted as a quasi-static deformation of the potential function
V (see Fig. 1(c)). There is, however, no guarantee that a
sufficiently slow deformation of the landscape V will ensure
convergence to the lowest energy state contrary to the quantum
adiabatic theorem50 or the convergence theorem of simulated
annealing51. At fixed β, global convergence to the minimum of

the potential V can be assured if σ0 is gradually decreased with
σ0ðtÞ2 � c

logð2þtÞ and c sufficiently large52. The parameter σ20 is
analogous to the temperature in simulated annealing in this case.
The global minimum of the potential V does not, however,
generally correspond to that of the Ising Hamiltonians H at finite
β. Moreover, the statistical analysis of spin glasses suggests that
the potential V is highly non-convex at low temperature and that
simple gradient descent very unlikely reaches the global
minimum of HðσÞ because of the presence of exponentially
numerous local minima26 and saddle points27 as the size of the
system increases. The slow relaxation time of Monte-Carlo
simulations of spin glasses, such as when using simulated
annealing, might also be explained by similar trapping dynamics
during the descent of the free energy landscape obtained from the
TAP equations27. In the following, we consider in particular the
soft spin description obtained by taking f iðxiÞ ¼ ð�1þ pÞxi � x3i
and yi= g(xi)= xi, where p is the gain parameter, which is the
canonical model of the system described in eq. (1) at proximity of
a pitchfork bifurcation with respect to the parameter p (see theory
of weakly connected neural networks53). In this case, the potential

function Vb is given as VbðxiÞ ¼ ð1� pÞ x2i2 þ
x4i
4 and eq. (1) can be

written as dxi
dt ¼ � ∂V

∂xi
, ∀i.

Chaotic amplitude control. In order to define deterministic
dynamics that is inclined to visit spin configurations associated
with lower Ising Hamiltonian without relying entirely on the
descent of a potential function, we introduce error signals, noted
ei 2 R, that modulate the strength of coupling βi to the ith
nonlinear element such that βi(t) defined in eq. (1) is expressed as
βi(t)= βei(t) with β > 0. The time evolution of the error signals ei
are given as follows30:

dei
dt

¼ �ξðgðxiÞ2 � aÞei; ð2Þ

where a and ξ are the target amplitude and the rate of change of
error variables, respectively, with a > 0 and ξ > 0. If the system
settles to a steady state, the values y�i ¼ gðx�i Þ become exactly
binary with y�i ¼ ±

ffiffiffi
a

p
. When p < 1, the internal fields hi at the

steady state, defined as hi=∑jωijσj with σ j ¼ y�j =jy�j j, are such
that hiσi > 0, ∀i30. Thus, each equilibrium point of the analog
system corresponds to that of a zero-temperature local minimum
of the binary spin system.

The dynamics described by the coupled equations (1) and (2) is
not derived from a potential function because error signals ei
introduce asymmetric interactions between the xi and the computa-
tional principle is not related to a gradient descent. Rather, the
addition of error variables results in additional dimensions in
the phase space via which the dynamics can escape local minima.
The mechanism of this escape can be summarized as follows. It can
be shown (see the Supplementary Note 1.2) that the dimension of the
unstable manifold at equilibrium points corresponding to local
minima σ of the Ising Hamiltonian depends on the number of
eigenvalues μ(σ) with μ(σ) > F(a) where μ(σ) are the eigenvalues of
the matrix fωij

jhijgij (with internal field hi) and F a function given as

FðyÞ ¼ ψ0 ðyÞ
ψðyÞ y and ψðyÞ ¼ f ðg�1ðyÞÞ

ðg�1Þ0ðyÞ. Thus, there exists a value of a such
that all local minima (including the ground state) are unstable and
for which the system exhibits chaotic dynamics that explores
successively candidate boolean configurations. The energy is
evaluated at each step and the best configuration visited is kept as
the solution of a run. This chaotic search is particularly efficient for
sampling configurations of the Ising Hamiltonian close to that of the
ground state using a single run although the distribution of sampled
states is not necessarily given by the Boltzmann distribution. Note
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that the use of chaotic dynamics for solving Ising problems has been
discussed previously18,54, notably in the context of neural networks,
and it has been argued that chaotic fluctuations may possess better
properties than Brownian noise for escaping from local minima traps.
In the case of the proposed scheme, the chaotic dynamics is not
merely used as a replacement for noise. Rather, the interaction
between nonlinear gain and error-correction results in the
destabilization of states associated with lower Ising Hamiltonian.
Increasing the amplitude of additive noise σ0 in eq. (1) does not, in
fact, significantly increase the efficiency of the system and σ0 is thus
set to zero.

Ensuring that fixed points are locally unstable does not
guarantee that the system does not relax to periodic and chaotic
attractors. We have previously proposed that non-trivial
attractors can also be destabilized by ensuring the positive rate
of Gibbs entropy production using a modulation of the target
amplitude30. In this paper, we propose an alternative heuristic
modulation of the target amplitude that is more suitable for a
digital implementation on FPGA than the one proposed in30

without significant decrease in performance for most problem
instances (see Supplementary Note 1.3 for a comparison of the
two schemes). Because the value of a for which all local minima is
unstable is not known a priori, we propose instead to destabilize
the local minima traps by dynamically modulating a depending
on the visited configurations σ as follows:

aðtÞ ¼ α� ρ tanh ðδΔHðtÞÞ; ð3Þ

where ΔHðtÞ ¼ Hopt �HðtÞ; HðtÞ, the Ising Hamiltonian of the
configuration visited at time t; andHopt, a given target energy. In
practice, we set Hopt to the lowest energy visited during the
current run, i.e., HoptðtÞ ¼ mint0 ≤ tHðt0Þ. The function tanh is
the tangent hyperbolic. ρ and δ are positive real constants. Lastly,
the parameter ξ (see eq. (2)) is modulated as follows: dξ

dt ¼ Γ when
t− tr < Δt, where tr is the last time for which either the best
known energy Hopt was updated or ξ was reset. Otherwise, ξ is
reset to 0 if t− tr ≥ Δt and tr is set to t. Numerical simulations
shown in the following suggest that this modulation results in the
destabilization of non-trivial attractors (periodic, chaotic, etc.) for
typical problem instances.

Hardware independent time-to-solution scaling. In order to test
if the nonrelaxational dynamics of chaotic amplitude control
might be able to accelerate the search of mean-field dynamics for
finding the ground state of typical frustrated systems, we look for
the ground states of Sherrington-Kirkpatrick (SK) spin glass
instances using the numerical simulation of eqs. (1) to (3) and
compare time to solutions with those of two closely related
relaxational schemes: noisy mean-field annealing (NMFA)22 and
the simulation of the coherent Ising machine (simCIM, see
Supplementary Note 4.1-2). Because finding the ground states of
SK spin glasses is a NP-hard problem, it cannot be assured that
the states found by heuristic solvers, even after a very long
computation time, are the real ground states. In order to compare
the performance of a set of heuristic solvers, we can define for
each instance the “optimal” energy as the one equal to the lowest
energy found repeatedly (>106 times) by these heuristics after a
very long computation time. States that have this optimal energy
are called solution states in the following. Because the arithmetic
complexity of calculating one step of these three schemes is
dominated by the matrix-vector multiplication (MVM), it is
sufficient for the sake of comparison to count the number of
MVM, noted ν, to find the solution state energy of a given

instance with 99% success probability, with νðKÞ ¼ K lnð1�0:99Þ
ln ð1�p0ðKÞÞ

and p0(K) the probability of visiting a solution state configuration
at least once after a number K of MVMs in a single run. In Fig. 2,
NMFA (a) and the CAC (b) are compared using the averaged
success probability 〈p0〉 of finding the solution state for 100
randomly generated SK spin glass instances per problem size N
(see Supplementary Note 3 for details about the benchmark set).
Note that the success probability of the mean-field annealing
method does not seem to converge to 1 even for large annealing
time (see Fig. 2(a)). Because the success probability of NMFA and
simCIM remains low at larger problem size, its correct estimation
requires simulating a larger number of runs, which we achieved
by using GPU implementations of these methods. On the other
hand, the average success probability 〈p0〉 of CAC is of order 1
when the maximal number of MVM is large enough, suggesting
that the system rarely gets trapped in local minima of the Ising
Hamiltonian or non-trivial attractors. In Fig. 2(c) and (d) are
shown the qth percentile (with q= 50, i.e., the median) of the

Fig. 2 Matrix-vector multiplication to solution for Sherrington-Kirkpatrick instances. a, b Average success probability 〈p0〉 of finding the solution state
configuration of 100 Sherrington-Kirkpatrick spin glass instances and c, d 50th percentile (median) of the matrix-vector multiplication (MVM) to solution
distribution ν50 vs. system size N. a, c noisy mean-field annealing (NMFA). b, d CAC. Thicker lines correspond to the duration of simulation K= 105.0.
Dotted black lines show the minimum of the median MVM to solution ν50 with respect to the number of MVMs of a single run K. eMVM to solution ν�qðNÞ
distribution. Lower, higher, and upper whisker of boxes show the 50th, 80th, and 90th percentiles of the distribution. The upper right inset shows the
exponential scaling factor γ of the 50th percentile with ν50 � eγ

ffiffiffi
N

p
for CAC, NMFA, and simCIM.
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MVM to solution distribution, noted νq(K;N), for various dura-
tion of simulation K, where K is the number of MVMs of a single
run. The minimum of these curves, noted ν�qðNÞ with
ν�qðNÞ ¼ minKνqðK;NÞ, represents the optimal scaling of MVM
to solution vs. problem size N15. Using the hypothesis of an
exponential scaling with the square root of problem size N, CAC
exhibits significantly smaller scaling exponent (γ= 0.18 ± 0.06)
than the NMFA (γ= 0.47 ± 0.04) and simCIM (γ= 0.54 ± 0.03,
see inset in Fig. 2(e)). We have verified that this scaling advantage
holds for various parameters of the mean-field annealing (see
Supplementary Note 4.1). Note that a root-exponential scaling
behavior of the median time to solution has been previously
reported for SK spin glass problems15,55 and other NP-Hard
problems56. We consider both cases of a root-exponential and
exponential scaling as possible hypotheses in the following. Note
that a similar root-exponential scaling at finite size N is observed
when we apply the CAC algorithm to solving problems from the
recently proposed Wishart planted instances57,58 in the “easy”
regime (see Supplementary Note 3.3).

Benchmark of the FPGA implementation. Although comparison
of algebraic complexity indicates that CAC has a scaling advantage
over mean-field annealing, it is in practice necessary to compare its
physical implementation against other state-of-the-art methods
because the performance of hardware depends on other factors such
as memory access and information propagation delays. To this end,
CAC is implemented into a FPGA because its similarity with neural
networks makes it well-fitted for a design where memory is dis-
tributed with processing (see Supplementary Note 2 for the details of
the FPGA implementation). The organization of the electronic cir-
cuit can be understood using the following analogy. Pairs of analog
values xi and ei, which represent averaged activity of two types of
neurons, are encoded within neighboring circuits. This micro-
structure is repeated N times on the whole surface of the chip, which
resembles the columnar organization of the brain. The nonlinear
processes fi(xi), which model the local-population activation func-
tions and are independent for i ≠ j, are calculated in parallel. The
coupling between elements i and j∈ {1,…,N} that is achieved by the
dot product in eq. (1) is implemented by circuits that are at the
periphery of the chip and are organized in a summation tree
reminiscent of dendritic branching (see Fig. 1(b)). The power con-
sumption of the developed hardware never exceeds 5W because of
limitations of the development board that we have used.

First, we compare the FPGA implementation of CAC against
state-of-the-art CPU algorithms: break-out local search59 (BLS)
that has been used to find many of the best known maximum-
cuts (equivalently, Ising energies) from the GSET benchmark set
(https://web.stanford.edu/~yyye/yyye/Gset/), a well-optimized
single-core CPU implementation of parallel tempering (or
random replica exchange Monte-Carlo Markov chain
sampling)60,61 (PT, courtesy of S. Mandrà), simulated annealing
(SA)62. Figure 3(a) shows that the CAC on FPGA has the smallest
real time to solution τ�q against most other state-of-the-art
algorithms despite just 5W power-consumption where τ�qðNÞ is
the optimal qth percentile of time to solution with 99% success
probability and is given as τ�qðNÞ ¼ minTτqðT;NÞ where τ(T) of a
given instance is τðTÞ ¼ T lnð1�0:99Þ

ln ð1�p0ðTÞÞ
and T is the duration in

seconds of a run. The probability p0(T) is evaluated using 100
runs per instance. The results of the CAC algorithm run on a
CPU are also included in Fig. 3. The CPU implementation of
CAC written in python for this work is not optimized and is
consequently slower than other algorithms. However, its scaling
of time to solution with problem size is consistent with that of

CAC on FPGA. Figure 3 shows that CAC implemented on either
CPU or FPGA has a significantly smaller increase of time to
solution with problem size than SA run on CPU. Note that the
power consumption of transistors in the FPGA and CPU scales
proportionally to their clock frequencies. In order to compare
different hardware despite the heterogeneity in their power
consumption, the qth percentile of energy-to-solution E�

q , i.e., the
energy E�

q required to solve SK instances with E�
q ¼ Pτ�q and P the

power consumption, is plotted in Fig. 3(b). For the sake of
simplicity, we assume a 20 watts power consumption for the
CPU. These numbers represent typical orders to magnitude for
contemporary digital systems. CAC on FPGA is 102 to 103 times
more energy efficient than state-of-the-art algorithms running on
classical computers.

The Monte-Carlo methods SA and PT have moreover been
recently implemented on a special-purpose electronic chip called
Digital Annealer (DA)20. In Fig. 4, we show the scaling exponents of
50th and 80th percentiles of the MVM and time to solution
distribution for problem sizes N= 800 to N= 1100 based on the
hypothesis of scaling in eγN obtained by fitting data shown in Figs. 2
and 3 (see “CAC fully parallel” and ‘CAC 100 × 100”, respectively, in
Fig. 4 for the numerical values of the scaling exponents), and
compare them to that reported for SA and PT implemented on CPU
and DA. Note that we replicated the benchmark method of ref. 20

for the sake of the comparison by fitting time to solution from
N= 800 up to N= 1100. The scaling obtained from fitting the
MVM to solution in Fig. 2 is based on the assumption that the
matrix-vector multiplication can be calculated fully in parallel in a
time that scales as log(N) instead of N2 (see Methods section) at least
up to N= 1100. We include this hypothesis because many other
Ising machines exploit the parallelization of matrix-vector multi-
plication for speed up20,63, whereas the current implementation of
CAC iterates on block matrices of size 100 by 100 and is thus only
partially parallel because of resource limitations specific to the
downscale FPGA used in this work. Note that the number of matrix-
vector multiplications necessary to find the solution state dominates
the exponential scaling rather than the time to compute one matrix-
vector multiplication. The scaling of time to solution for chaotic
amplitude control observed is significantly smaller than the ones of
standard Monte-Carlo methods SA and PT20, especially in the case
of a fully parallel implementation. The scaling exponents of fully
parallel CAC is smaller than that of DA and on par with that of PT
on DA (PTDA), although CAC does not require simulating replica
of the system and is thus faster in absolute time than PTDA20.

Next, the proposed implementation of chaotic amplitude
control is compared to other recently developed Ising machines
(see Fig. 5). The relatively slow increase of time to solution with
respect to the number of spins N when solving larger SK
problems using CAC suggests that our FPGA implementation is
faster than the Hopfield neural network implemented using
memresistors (mem-HNN)4, the restricted Boltzmann machine
using a FPGA (FPGA-RBM)55 at large N. Extrapolations are
based on the hypotheses of scaling in eγN and eγ

ffiffiffi
N

p
by fitting the

available experimental data up to N= 100 for mem-HNN and
FPGA-RBM, N= 150 for NTT CIM, and N= 1100 for FPGA-
CAC. Figure 5 shows that mem-HNN, FPGA-RBM, and NTT
CIM have similar scaling exponents, although FPGA-RBM tends
to exhibit a scaling in eγN rather than eγ

ffiffiffi
N

p
for N ≈ 10055. It can be

nonetheless expected that the algorithm implemented in mem-
HNN, which is similar to mean-field annealing, has the same
scaling behavior as simCIM and NMFA (see Fig. 2). Note that the
lines showing the scaling in eγ

ffiffiffi
N

p
in Fig. 5 can be seen as a lower

bound of the TTS if the sub-exponential scaling is finite-size
effect.
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It is noteworthy to mention that a recent implementation of the
simulated bifurcation machine63 (SBM), which is not based on the
gradient descent, similarly to CAC, but based on adiabatic evolutions
of energy conservative systems performs well in solving SK problems.
Both SBM and CAC exhibit smaller time to solution than other
gradient based methods. SBM has been implemented on a FPGA (the
Intel Stratix 10 GX) that has approximately 5 to 10 times more
adaptive logic modules than the KU040 FPGA used to implement
CAC. In order to compare SBM and CAC if implemented on an
equivalent FPGA hardware, we plot in Fig. 5 the estimation of the
time to solution for a fully parallel implementation of CAC using the
hypothesis that one matrix-vector multiplication of size 1100 × 1100
can be achieved in 0.3 μs. This is the same time to compute a MVM
that we can infer from time to solution reported in ref. 63 for SBM

with binary connectivity given that problems of size N= 100
(N= 700) are solved in 29 μs (55ms) and 94 (81000) MVMs,
respectively. Note that SBM can reach the solution states after
approximately 20 times less MVMs than CAC at N= 100 but only 5
times less MVM at N= 1000, suggesting that the speed of SBM
depends largely on hardware rather than an algorithmic scaling
advantage. Moreover, the simulated bifurcation machine63 does not
perform significantly better than our current implementation of CAC
for solving instances of the reference MAXCUT benchmark set called
GSET (https://web.stanford.edu/~yyye/yyye/Gset/) (see Table 1)
because CAC can find better cuts and exhibits smaller time to
solution for multiple GSET instances even compared to the case of
the implementation on the smaller KU040 FPGA with the probability
of finding maximum cuts of the GSET in a single run that is much
smaller with SBM. Comparison of the scaling behavior of time to
solution between CAC and SBM is unfortunately not possible based
on available data63.

Estimation of time to solution distribution. Next, we consider
the whole distribution of time to solution in order to compare the
ability of various methods to solve harder instances. As shown in
Fig. 6(a), the cumulative distribution function (CDF) P(τ; T) of
time to solution with 99% success probability τ is not uniquely
defined as it depends on the duration T of the runs. We can
define an optimal CDF P*(τ) that is independent of the runtime T
as follows: P*(τ)=maxTP(τ; T). Numerical simulations show that
this optimal CDF is well described by lognormal distribution, that
is P�ðlogðτÞÞ � N ðμ; ffiffiffi

v
p Þ where ffiffiffi

v
p

is the standard deviation of
log(τ) (see Fig. 6(b), (c), and (d) for the cases of CAC, SA, and
NMFA, respectively). In Fig. 6(e), it is shown that the scaling of
the standard deviation

ffiffiffi
v

p ðNÞ with the problem size N is sig-
nificantly smaller for CAC, which implies that harder instances
can be solved relatively more rapidly than using other methods.
This result confirms the advantageous scaling of higher percen-
tiles for CAC that was observed in Figs. 2 and 3.

Conclusions
The framework described in this paper can be extended to solve
other types of constrained combinatorial optimization problems
such as the traveling salesman45, vehicle routing, and lead optimi-
zation problems. Moreover, it can be adapted to a variety of recently
proposed Ising machines4–13,15, which would benefit from imple-
menting a scheme that does not rely solely on the descent of a
potential function. In particular, the performance of CIM9,10, mem-
HNN4, and chip-scale photonic Ising machine14, which have small

Fig. 3 Time to solution of the field programmable gate array (FPGA) implementation for Sherrington-Kirkpatrick instances. a Lower, higher, and upper
whisker of boxes show the 50th, 80th, and 90th percentiles of the time to solution τ�q distribution in seconds vs. the square root of problem size

ffiffiffiffi
N

p
for the

FPGA implementation of chaotic amplitude control (CAC) with a maximum of 5W power consumption and the following algorithms running on a CPU
(20W): CAC, simulated annealing (SA), and parallel tempering (PT). b The same as a for the energy-to-solution E*. Power consumption of the FPGA is
considered constant with respect to N because of the pipelined implementation.

Fig. 4 Scaling exponents of the proposed method. Scaling exponents
γ

log ð10Þ of the 50th (a) and 80th (b) percentiles of the time to solution
distribution based on the hypotheses of scaling in eγN obtained by fitting
data of the number of matrix-vector multiplication (MVM) to solution vs.
problem size N shown in Fig. 2 of the proposed chaotic amplitude control
dynamics and the scaling exponents reported in ref. 20. Colored boxes show
the 90% confidence interval in the scaling exponents. CAC: chaotic
amplitude control; SA: simulated annealing; PT: parallel tempering; DA:
digital annealer; PTDA: parallel tempering on DA. Exponents of SA, PT, DA,
and PTDA are taken from ref. 20. CAC (100 × 100) and CAC (fully parallel)
are estimated using time (see Fig. 3) and MVM (see Fig. 2) to solution,
respectively.
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time to solution for small problem sizes (N ≈ 100) for which it may
be sufficient to do rapid sampling based on convex optimization64

but with a relatively large scaling exponent, which limits their
scalability, could be improved by adapting the implementation we
propose if these hardware can be shown to be able to simulate larger
numbers of spins experimentally. Rapid progress in the growing field
of Ising machines may allow to verify scaling behaviors of the

various methods at larger problem sizes and, thus, limit further
finite-size effects.

The scaling exponents we have reported in this paper are based
on the integration of the chaotic amplitude control dynamics
using a Euler approximation of its ODEs. We have noted that the
scaling of MVMs to solution of SK spin glass problems is reduced
when the Euler time step is decreased (see Supplementary

Fig. 5 Median time to solution and extrapolations for the exponential and sub-exponential scaling hypotheses on different Ising machines. For chaotic
amplitude control on field programmable gate array (CAC, FPGA) and digital annealer (DA), the lower, higher, and upper whisker of boxes show the 50th,
80th, and 90th percentiles of the real time to solution distribution. Markers show the experimental and simulated data. Dashed and full straight lines show
the fit of the logarithm of median time to solution vs. problem size N and its square root

ffiffiffiffi
N

p
, respectively, and extrapolations up to N= 2000.

Table 1 Performance of the field programmable gate array (FPGA) implementation of chaotic amplitude control (CAC) on the
GSET. Performance of the FPGA implementation of CAC in finding the maximum cuts known, i.e., lowest Ising Hamiltonian
known, of graphs in the GSET benchmark. id, Copt, CCAC, CSBM are the name of instances, best maximum cuts known from ref. 73,
the proposed method after 100 runs, and Toshiba bifurcation machine on FPGA63 (FPGA-SBM), respectively. CSBM is evaluated
using >100 runs but shorter time per run. The difference in cuts between CAC and SMB is given by ΔCCAC/SBM= CCAC− CSBM.
pCAC0 and pSBM0 are the probabilities that FPGA-CAC and FPGA-SBM find the cut CCAC and CSBM in a single run, respectively.
Moreover, < tBLS > and < tCAC > are the averaged time over 20 and 100 runs, respectively, to find the corresponding best cut in
successful runs using BLS written C++ and running on a Xeon E5440 2.83 GHz59 and the proposed scheme implemented on the
KU040 FPGA. Moreover, TTSCAC and TTSSBM are the time to find the best cut with 99% success probability using CAC and
SBM, respectively, on FPGA. Times are written with parentheses around them if the cuts found are not the best known ones. The
times are in seconds. For each instance, the smaller TTS from the two last columns of the table is shown in bold when the
comparison is applicable.

id N Copt CCAC CSBM ΔCCAC/SBM pCAC0 pSBM0 < tBLS > < tCAC > TTSCAC TTSSBM

22 2000 13359 13359 13359 0 0.11 0.018 560 3.33 157.11 2.7
23 2000 13344 13342 13342 0 0.25 0.0490 (278) (6.52) (45.26) (0.94)
24 2000 13337 13337 13337 0 0.34 0.0077 311 7.27 20.78 3.1
25 2000 13340 13340 13340 0 0.38 0.0022 148 10.43 33.61 15
26 2000 13328 13328 13328 0 0.42 0.0050 429 15.32 40.95 3.2
27 2000 3341 3341 3341 0 0.91 0.0479 449 7.69 4.1 0.26
28 2000 3298 3298 3298 0 0.18 0.0690 432 10.12 63.32 0.45
29 2000 3405 3405 3405 0 0.47 0.0039 17 11.72 2732.62 1.2
30 2000 3413 3413 3413 0 0.01 0.0045 (283) 7.06 21.86 2.8
31 2000 3310 3309 3310 –1 0.18 0.0012 (285) (9.98) (4067.07) 5.3
32 2000 1410 1410 1410 0 0.01 0.0012 336 17.67 2323.94 33
33 2000 1382 1380 1382 –2 0.03 0.0002 402 (22.93) (749.47) 120
34 2000 1384 1384 1384 0 0.04 0.0015 170 24.85 255.62 27
35 2000 7687 7685 7685 0 0.26 0.0002 (442) (20.67) (437.53) (479)
36 2000 7680 7679 7677 2 0.09 0.0001 (604) (20.97) (159.94) (1597)
37 2000 7691 7690 7691 –1 0.03 0.0001 (444) (5.24) (5.24) 1278
38 2000 7688 7688 7688 0 0.01 0.0003 (461) 19.05 5872.14 213
39 2000 2408 2408 2408 0 0.44 0.0006 251 11.23 16.39 266
40 2000 2400 2396 2400 –4 0.03 0.0001 431 (15.35) (1703.22) 48
41 2000 2405 2405 2405 0 0.02 0.0020 73 3.04 623.12 48
42 2000 2481 2481 2479 2 0.39 0.0002 183 17.89 178.53 (240)
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Note 2.8). The scaling exponents of CAC might thus be smaller
than reported in this paper in the limit of a more accurate
numerical integration over continuous time. It is therefore
important future work to evaluate the scaling for N≫ 1000 using
a faster numerical simulation method. Such numerical calcula-
tions require a careful analysis of the integration method of
ODEs, numerical precision, and tuning of parameters. It is also of
considerable interest to implement CAC on multiple FPGAs for
very high parallelization65 and on analog physical systems for
further reduction of power consumption.

Nonrelaxational dynamics described herein is not limited to arti-
ficial simulators and likely also emerge in natural complex systems. In
particular, it has been hypothesized that the brain operates out of
equilibrium at large scales and produces more entropy when per-
forming physically and cognitively demanding tasks66,67 in particular
for the ones involving creativity for maximizing reward rather than
memory retrieval. Such neural processes cannot be explained simply
by the relaxation to fixed point attractors49, periodic limit cycles68, or
even low-dimensional chaotic attractors whose self-similarity may
not be equivalent to complexity but set the conditions for its
emergence67,69. Similarly, evolutionary dynamics that is characterized
as non-ergodic when the time required for representative genome
exploration is longer than available evolutionary time70 may benefit
from nonrelaxational dynamics rather than slow glassy relaxation for
faster identification of high-fitness solutions. A detailed analytic
comparison between the slow relaxation dynamics observed in
Monte-Carlo simulations of spin glasses with the one proposed in
this paper is needed in order to explain the apparent difference in
their scaling of time to solution exhibited by our numerical results.

Methods
We target the implementation of a low-power system with maximum power supply
of 5W using a XCKU040 Kintex Ultrascale Xilinx FPGA integrated on an Avnet

board. The implemented circuit can process Ising problems of up to at least
1100 spins fully connected and of >2000 spins sparsely connected within the 5W
power supply limit. Data is encoded into 18 bits fixed point vectors with 1 sign, 5
integer and 12 decimal bits to optimize computation time and power consumption.
An important feature of our FPGA implementation of CAC is the use of several
clock frequencies to concentrate the electrical power on the circuits that are the
bottleneck of computation and require a high-speed clock. For the realization of the
matrix-vector multiplication, each element of the matrix is encoded with 2 bits
precision (wij is− 1, 0 or 1). An approximation based on the combination of logic
equations describing the behavior of a multiplexer allows to achieve 104 multi-
plications within one clock cycle. The results of these multiplications are summed
using cascading DSP and CARRY8 connected in a tree structure. Using pipelining,

a matrix-vector multiplication for a squared matrix of size N is computed in
2þ 5 logðN�4Þ

log ð5Þ þ ðNuÞ2 clock cycles (see Supplementary Note 2.4) at a clock frequency

of 50MHz with u= 100, which is determined by the limitation of the number of
available electronic component of the XCKU040 FPGA. The block size u can be
made at least 3 times larger using commercially available FPGAs, which implies
that the number of clock cycles needed to compute a dot product can scale almost
logarithmically for problems of size N ≈ 1000 (see Supplementary Note 2.4 for
discussions of scalability) and that the calculation time can be further significantly
decreased using a higher-end FPGA. The calculation of the nonlinearity fi and error
terms is achieved at higher frequency (300MHz and 100Mhz) using DSP in
8+ (N/u) and 9+ (N/u) clock cycles, respectively. In order to minimize energy
resources and maximize speed, the nonlinear and error terms are calculated
multiple times during the calculation of a single matrix-vector multiplication (see
Supplementary Note 2).

Prior to computing the benchmark on the Sherrington-Kirkpatrick instances, the
parameters of the system (see Supplementary Note 2.8) are optimized auto-
matically using Bayesian optimization and bandit-based methods71. The automatic
tuning of parameters for some previously unseen instances is out of the scope of
this work but can be achieved to some extent using machine learning techniques72.

Data availability
Sherrington-Kirkpatrick instances used in this paper are available upon request to T.
Leleu. The GSET instances are available at https://web.stanford.edu/~yyye/yyye/Gset/.

Code availability
Requests for code availability should be addressed to T. Leleu.

Fig. 6 Estimation of time to solution distribution of chaotic amplitude control for Sherrington-Kirkpatrick (SK) instances. a Cumulative distribution of
the time to solution P(τ) for N= 400 SK problems. The black line corresponds to the maximum of P(τ; T) with respect to the duration of the runs T. b, c, d
Optimal cumulative distribution P*(τ) with P�ðlogðτÞÞ � N ðμðNÞ; ffiffiffi

v
p ðNÞÞ for chaotic amplitude control (CAC) (b), simulated annealing (SA) (c), and noisy

mean-field annealing (NMFA) (d), respectively. e Standard deviation
ffiffiffi
v

p
of the logarithm of time to solution distribution vs. problem size N. Shaded regions

show the 99% confidence interval in the standard deviation. simCIM: simulation of the coherent Ising machine.
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