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Quantitative analysis of non-equilibrium systems
from short-time experimental data
Sreekanth K. Manikandan1,4, Subhrokoli Ghosh2,4, Avijit Kundu 2, Biswajit Das 2, Vipin Agrawal1,3,

Dhrubaditya Mitra 1,3✉, Ayan Banerjee 2✉ & Supriya Krishnamurthy 3✉

Estimating entropy production directly from experimental trajectories is of great current

interest but often requires a large amount of data or knowledge of the underlying dynamics.

In this paper, we propose a minimal strategy using the short-time Thermodynamic Uncer-

tainty Relation (TUR) by means of which we can simultaneously and quantitatively infer the

thermodynamic force field acting on the system and the (potentially exact) rate of entropy

production from experimental short-time trajectory data. We benchmark this scheme first for

an experimental study of a colloidal particle system where exact analytical results are known,

prior to studying the case of a colloidal particle in a hydrodynamical flow field, where neither

analytical nor numerical results are available. In the latter case, we build an effective model of

the system based on our results. In both cases, we also demonstrate that our results match

with those obtained from another recently introduced scheme.
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Non-equilibrium thermodynamics at microscopic length
scales is dominated by a fascinating range of phenomena1,
where thermal fluctuations play a crucial role. These

phenomena can now be observed in great detail experimentally,
due to the availability and scope of current microscopic manip-
ulation techniques2. The interpretation and quantitative analysis
of the experimentally available data are however lagging behind
these advances, mostly due to the fact that the vast majority of
these systems are too complicated to model without making
several approximations3, despite having far fewer degrees of
freedom than their macroscopic counterparts. Even when it is
possible to build such simplified models, these are still usually too
complicated to solve except sometimes by numerical analysis of
specific systems, which however lack general insights4. There
could also be other factors making the system hard to solve, such
as the presence of a background flow, for which the spatial
dependence of the flow velocity needs to be known by means of
solving the corresponding Navier-Stokes equation; usually a dif-
ficult task, especially for unsteady flows5,6. In the face of all these
challenges, a relevant question is whether it is at all possible to
gain any precise quantitative information about a complex non-
equilibrium system directly from experimental data, bypassing
the first step of either having a known model to compare with or
building in simplifying assumptions about the system.

Not surprisingly, this question has aroused a lot of recent
interest. Broadly speaking, measurements from experiments can
be used to obtain general information about the system, such as
identifying that detailed balance is broken and hence the system is
out-of-equilibrium7–9 (not always obvious for microscopic sys-
tems such as at the cellular level), or to obtain more specific
properties of the system such as the rate of dissipation of energy
(equivalently the rate of entropy production)10–17, the average
phase-space velocity field7,18,19 related to the so-called thermo-
dynamic force field20,21 or the microscopic forces driving the
system16,19,22. The motivation for such studies is that if quanti-
tative information about the system can be directly obtained from
experimentally observed quantities, then this understanding can
be used for building more realistic and experimentally validated
models of the system of interest7,23,24.

A very informative quantity about a non-equilibrium system is
the rate of entropy production. This quantity not only signals—
when it is non-zero—that the system is out of equilibrium, but
also provides a quantitative measure of how far from equilibrium
a system is and the irreversibility of the dynamics25–27. In the
context of microscopic machines28, a quantification of the
amount of energy dissipated directly provides information about
engine efficiencies29–31 and prescriptions for obtaining optimal
operating conditions32. The value of the entropy production rate
can also be used to obtain information-theoretic quantities of
interest33, or even information about hidden degrees of
freedom34. The entropy production rate is also a very robust
quantity to measure from the experimental point of view, since it
is not so strongly affected by conversion-factor errors in mea-
suring particle positions, as we remark later.

The entropy production rate can be obtained directly from
experimental data, at least for systems where it is understood that
the underlying dynamics is Markovian, by several means. These
include utilizing the Harada–Sasa equality10 that involves a
spectral analysis of trajectory data35,36, determining the average
steady-state current and steady-state probability distribution from
the data11, determining the time-irreversibility of the
dynamics27,37–41 and relatedly determining estimators for the
ratio of forward and backward processes directly from the
data14,42,43. Recent approaches16,19 also advocate inferring first
the microscopic force field from which the entropy production
rate can be deduced.

An alternative strategy to direct estimation, is to set lower
bounds on the entropy production rate44–48 by measuring
experimentally accessible quantities. One class of these bounds,
for example, those based on the thermodynamic uncertainty
relation (TUR)3,48–51, have been further developed into varia-
tional inference schemes, which translate the task of identifying
entropy production to an optimization problem over the space of
a single projected fluctuating current in the system15,52–54.
Recently, a similar variational scheme using neural networks was
also proposed55. As compared to some of the other trajectory-
based entropy estimation methods, these inference schemes do
not involve the estimation of probability distributions over the
phase-space. Rather they usually only involve means and var-
iances of measured currents. Hence they are known to work
better in higher dimensional systems15. In addition, it is proven
that such an optimization problem gives the exact value of the
entropy production rate in a steady state as well as the exact value
of the thermodynamic force field in the phase space of the degrees
of freedom we can measure, if short-time currents are used52–55.
However, these methods have not yet been tested against
experimental data to the best of our knowledge.

Here we test the short-time TUR scheme against the challenges
posed by experimental setups involving colloidal particles in
time-varying potentials with (possible) background flows. In
order to benchmark the scheme, we first test it in a setup where
the entropy production rate of the system can be analytically
predicted for any set of parameters. For this setup, we test our
predictions against both analytical results as well as another
recently proposed numerical scheme, namely stochastic force
inference (SFI)19. After this benchmarking exercise, we apply our
scheme to a modified system for which the underlying model is
both unknown and hard to estimate. Though there is no theo-
retical value to compare within this case, the short-time TUR’s
predictions are again in perfect agreement with that predicted by
the SFI technique19. These results provide a motivation for
modeling this system in terms of coupled Langevin equations
with two free parameters. We demonstrate that such a model
does indeed capture the experimental observations, hence
demonstrating the usefulness of these schemes in modeling
complex scenarios.

Results and discussions
Model. Our results apply to systems with continuous state-space
but a finite-number of degrees of freedom, described by over-
damped Langevin equations of the type

_XμðtÞ ¼ Fμ½XðtÞ� þ Gμν½XðtÞ� � ξν; ð1Þ
Here μ ¼ 1; ¼ ;d is the number of degrees of freedom of the
system and we use ⋅ to refer to the Ito convention. Fμ(X) is a
function of X, but not an explicit function of time t, ξμ is d�
dimensional white-in-time noise such that�
ξμðtÞξνðt0Þ

� ¼ δμνδðt � t0Þ, where �h i denotes averaging over the
statistics of the noise. The corresponding Fokker–Planck equation
for the probability distribution function P is given by:

∂tP ¼ �∂μJμ; ð2aÞ

Jμ � FμP � Dμν∂νP; Dμν ¼
1
2
GμαGαν ; ð2bÞ

where the repeated indices are summed over. In the steady state
∂tP= 0. The total rate of entropy production σ can be obtained
as11,39,

σ ¼
Z

dX F μJμ where ð3aÞ
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F μ �
D�1

μν Jν
P

ð3bÞ

is called the thermodynamic force field15. Overdamped Langevin
equations are excellent descriptions for colloidal particle systems.
Even for systems where the Langevin equation is not known, the
fact that such a description exists in principle is all that is needed
in order to apply Eq. (3a) and obtain σ by determining the current
and steady-state probability density directly from the time-series
data11,15. Another approach is to first infer the terms in the
Langevin equation, Fμ and D16,19 and use Eq. (3a) to obtain σ.
These methods can be applied directly on data obtained from
tracking the system or even by using tracking-free methods in
image space16.

Short-time TUR approach. In this paper, we demonstrate an
alternative method for the simultaneous determination of both
the entropy production rate as well as the thermodynamic force
field F μ from experimental data, using the recently introduced
short-time thermodynamic inference relation52–54. Our method is
built on an exact result obtained in52–54:

σ ¼ max
J

2kB Jh i2
ΔtVar ðJÞ

� �
; ð4Þ

where kB is the Boltzmann constant and J is a weighted scalar
current constructed from the non-equilibrium stationary state as
shown below. The notation 〈⋅〉 stands for an ensemble average.
The current that maximizes the term within the square brackets is
J∝ ΔStot. Here Δt is the short-time interval over which the mean
and variance of the current is evaluated52. In this work, it also
coincides with the sampling rate of the trajectory. As for the
ordinary TUR56, our result too holds for any X that is even under
time reversal. The equality in (4) holds only when X includes all
degrees of freedom of the system. If not, then the RHS of (4) gives
a lower bound. The proof presented for Eq. (4) in ref. 52 was
based on exact results for non-trivial models. It was shown that
Eq. (4) is a consequence of fluctuations of ΔStot becoming
Gaussian, in the Δt→ 0 limit. Later in refs. 53 and54, Eq. (4) was
rigorously proved for overdamped diffusive processes.

Let us now discretize X in time with time interval Δt:
Xμ

0 � � �Xμ
j � � �Xμ

N. We use latin indices as superscripts for the
discrete time labels and the Einstein summation convention is
applied to the greek indices. For a given function d(X) we can
now define a time-discretised scalar function constructed from
the steady-state current,

Jk ¼ dμ
Xk þ Xkþ1

2

� ��
Xμ

kþ1 � Xμ
k
	 ð5Þ

Any such current, when substituted in the expression inside the
square brackets of Eq. (4) can be shown to give a lower bound σL
which is ≤σ. In addition, for a special value of d= d*, J∝ ΔStot
and σL= σ. The algorithm we use, which obtains this d* and σ
through a maximization procedure is as follows:

1. We first obtain a time-series of experimental data: Xk.
2. To be able to perform the maximization we use a set of

basis functions ψm(X), m= 1,…,M, in the space spanned
by X such that

dðXÞ ¼ ∑
M

m¼1
wmψmðXÞ; ð6Þ

where wm 2 Rd and are the parameters to be optimized.
We use two sets of basis functions: Gaussian and linear and
generate all our results in both these bases, for comparison.

3. Maximize Eq. (4) to obtain σ. This maximization is done
using a numerical optimizer: We start with an initial guess
for wm, calculate the time-series Jk, construct the function
within the square brackets in (4) and then maximize over
wm to obtain σ and also the set of values w�

m such that
d� ¼ ∑M

m¼1 w
�
mψmðXÞ maximizes Eq. (4). The maximizing

current J* is constructed from d* using Eq. (5) and in
addition can be shown to be proportional to ΔStot52.

Furthermore, the thermodynamic force is proportional to d*
that maximizes (4)52–54, i.e.,

F / d� ð7Þ
Hence, by solving an optimization problem, where the RHS of Eq.
(4) is maximized in the space of all currents we can obtain σ as
the optimal value as well as its conjugate thermodynamic force
field, F ¼ c d� where the proportionality constant can be fixed
by using Var(J*)= 2〈J*〉 at Δt→ 052 as, c ¼ 2hJ�i

Var ðJ�Þ.
We note that, for any set of basis functions ψm(X),

m= 1,…,M which give an adequate representation of d(X), an
analytic solution to the maximization problem is known54. This
solution gives a deterministic estimate of σ as,

σ ¼ 2�ψk ðΞ�1Þk;l �ψl

Δt
; ð8Þ

where �ψk ¼ hψki and Ξk;l ¼ hψkψli � �ψk�ψl . Further, the optimal
coefficients can be directly computed without any optimization as

ω�
k ¼

ðΞ�1Þk;l �ψl

ð�ψk ðΞ�1Þk;l �ψlÞ
: ð9Þ

Repeated indices are summed over as before. Numerically, this
involves inversion of the matrix Ξ. On the one hand, if d; N , andM
are not very large, this deterministic scheme is faster compared to a
numerical optimization algorithm, and does not get stuck in local
maxima. On the other hand, numerical optimization schemes can in
principle simultaneously handle the optimization of parameters of
the basis functions. This is discussed in some detail in ref. 53. In
addition, numerical optimization schemes have also been extended to
systems driven in a time-dependent manner57, where it is as yet
unclear how the deterministic scheme will perform.

In this work, we implement the numerical optimization scheme
using a particle-swarm optimizer. We provide a brief introduc-
tion to the algorithm in the “Methods” section. We note that
refs. 53,54 have already demonstrated the feasibility of the scheme
described here with numerical data. Here we test this scheme
instead on controlled experimental setups.

Colloidal particle in a stochastically shaken trap. To test the
inference scheme we first apply it to an experimental problem for
which the rate of entropy production is known from
theory58–61—a colloidal particle in a stochastically shaken optical
trap. This model was first experimentally studied in62. We study it
again in order to understand the limitations posed by experi-
mental setups for our inference scheme as well as test and
benchmark our scheme for a system where the results are known.

We trap a polystyrene particle in an optical trap; further details
of how the experiment is performed may be found in the
“Methods” section. We modulate the position of the center of the
trap λ(t) along a fixed direction x on the trapping plane
perpendicular to the beam propagation (+z). The modulation is a
Gaussian Ornstein–Uhlenbeck noise with zero mean and
covariance λð0ÞλðsÞ� � ¼ Aτ0 expð�jsj=τ0Þ, i.e.,

_λðtÞ ¼ � λðtÞ
τ0

þ
ffiffiffiffiffiffi
2A

p
η; ð10Þ

where η is Gaussian, has zero-mean and is white-in-time. The
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correlation time τ0 is held fixed for all our experiments. Note that
Aτ0 can be interpreted as an effective temperature63.

The dynamics of the colloidal particle is well described by an
overdamped Langevin equation,

_xðtÞ ¼ �K
γ

xðtÞ � λðtÞ½ � þ
ffiffiffiffiffiffi
2D

p
ξ; ð11Þ

where K is the spring constant of the harmonic trap, γ is the drag
coefficient, ξ is the thermal noise, D= kBT/γ is the diffusion
coefficient of the particle, and T the temperature of the medium.
The noise ξ is also Gaussian, zero-mean, and white-in-time and
mutually independent from the noise η in Eq. (10). Equations
(11) and (10) together define the model we call the Stochastic
Sliding parabola. Starting from arbitrary initial conditions for x
and λ, the system reaches a non-equilibrium steady state, with the
probability distribution function and current given respectively
by58

Pðx; λÞ ¼
exp � ðδþ 1Þ δ2θðx� λÞ2 þ δ θx2 þ λ2ð Þþ λ2ð Þ

2Dτ0θ δ2ðθþ 1Þþ 2δþ 1ð Þ
� �

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2τ20θ δ2ðθþ 1Þ þ 2δþ 1ð Þ

δðδþ 1Þ2

r ; ð12aÞ

Jðx; λÞ ¼
δ δ2θðλ� xÞþ δλþ λð Þ
δ2ðθþ 1Þþ 2δþ 1ð Þτ0

� δ2θðδxþ x� δλÞ
δ2ðθþ 1Þþ 2δþ 1ð Þτ0

0
B@

1
CAPðx; λÞ; ð12bÞ

where the dimensionless parameters θ and δ are defined as,

δ ¼ Kτ0
γ

; θ ¼ A
D
: ð13Þ

The rate of entropy production and the thermodynamic force
field for this model are,

σ ¼ δ2θ

ðδ þ 1Þτ0
; ð14aÞ

F ðxÞ � F x

F λ

� �
¼

δ δ2θðλ� xÞþ δλþ λð Þ
Dτ0 δ2ðθþ 1Þþ 2δþ 1ð Þ
� δ2ðδxþ x� δλÞ

Dτ0 δ2ðθþ 1Þþ 2δþ 1ð Þ

0
B@

1
CA ð14bÞ

In Fig. 1, we compare the above exact results to the outcome of
the inference algorithm applied to numerically generated data for
this model. Different sets of time-series data were generated by
varying the noise amplitude ratio θ by varying A, keeping the
other parameters fixed. In Fig. 1a, we show the trajectories of the
system in the (x, λ) space for three different θ values. In Fig. 1b,
we see that the inference algorithm predicts a value σL which is
lower than the true value σ in the beginning, but gets very close to
the true value, after a relatively modest number of steps.

As we run the algorithm longer, σL saturates to something very
close to the actual value. The inference algorithm also
simultaneously gives an optimal force field d*(x) which is very
similar to the thermodynamic Force field F μðxÞ expected from
theory (see Supplementary Fig. S1 in Supplementary Note 1).
From Eq. (14), it is clear that σ increases linearly with θ or
equivalently the parameter A. Figure 1c illustrates that the
inference algorithm captures this behavior accurately. Since we
are limited by the minimal resolution of the time series in probing
the Δt→ 0 limit of Eq. (4), the inferred value of entropy
production is in general different from the exact value by an
O½Δt� term. For this model, we can also compute this correction
analytically as (using expressions previously obtained in ref. 61),

σΔt ¼ σ � δ4θ2 δ2ðθ þ 1Þ þ 1
� 	

ðδ þ 1Þ2τ20 δ2ðθ þ 1Þ þ 2δ þ 1
� 	Δt þ O½Δt�2; ð15Þ

c )

b)

a)

Fig. 1 The short-time inference scheme tested on numerical data.
a Brownian trajectories of the Stochastic sliding parabola for different
values of θ= A/D [θ= 0.22, 0.55 and 0.77], where A is the amplitude of
the noise in the Ornstein–Uhlenbeck process defined in Eq. (10) and D is
the room temperature diffusion constant. b The inferred entropy production
rate (σL) plotted against the number of steps in the optimization process for
θ= 0.33 obtained using a sampling interval Δt= 0.1 ms. The dashed line
corresponds to the true entropy production rate. c Inferred entropy
production as a function of the parameter θ. The blue line corresponds to
the theoretical value of σ, Eq. (14). The squares correspond to the inferred
values of σ using the inference scheme (Eq. (4)) in the Gaussian basis, and
triangles correspond to inference using the linear basis. The green dashed
line corresponds to the best estimate of σ that can be obtained using
inference with a sampling interval Δt= 0.0001 s, using Eq. (15). The error
estimates are set by computing the standard deviation over the values
obtained for an ensemble of 8 trajectories (see the “Methods” section). The
parameters used in the simulation are as follows: relaxation time in the
harmonic trap, τ= 0.0012 s, the relaxation time of the Ornstein–Uhlenbeck
process τ0= 0.0025 s, the room temperature diffusion constant
D= 1.645 × 10−13 m2 s−1, and time-step used in the numerical integration
Δt= 0.0001 s.
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where σΔt is the result one gets from Eq. (4) for a fixed value of Δt.
Notice that the O½Δt� correction increases with the value of θ. The
inferred values of σ indeed lie between these two limits.

Next, we tested the algorithm on experimentally generated data
for the same model. In the experiments, we varied A ranging from
0.1 to 0.35 in units of 0:6 ´ 10�6

� 	2
m2 s�1 (corresponds to θ

varying from 0.22 to 0.77), while the other experimental
parameters such as the trap stiffness, as well as the bath
temperature, were assumed to be constant for the entire length of
the experiment. In reality, however, the laser used to trap the
particle is prone to power fluctuations, and there can also be
minor changes in the bath temperature due to heating caused by
the long exposure to the laser. For large values of θ, we also expect
non-harmonic effects to be significant, due to the particle
exploring the peripheral regions of the trap64. We comment in
the following paragraph on the implications of these fluctuations
for our results. An immediate consequence is however that the
theoretically predicted values Eq. (12a) can only be used as a
reference. We benchmark our results instead by comparing them
with values obtained by the application of the stochastic force
inference technique (SFI) scheme recently proposed in19, which
gives an independent estimate of both σ as well as the force fields.

Experiments for individual parameter sets were carried out for
a duration of 100 s, with a sampling rate of 10 kHz for the particle
position. Only about 2/3rd of the available experimental data was
used and the remaining 1/3rd was discarded because of the
presence of uncontrolled experimental errors in them. For the
analyzed data, each of the 100 s long data sets were further
divided into 12.5 s long patches, upon which the inference
algorithm was then tested. In Fig. 2, we demonstrate the results of

the analysis of the experimental data. The dark-blue dashed line
corresponds to the theoretically predicted value, Eq. (12a), of the
entropy production rate for the model given by Eqs. (10) and (11)
with the given parameters. The blue line is the entropy
production for a slightly modified model obtained by analyzing
the data obtained from SFI and calculating the drift and diffusion
terms from it (see Supplementary Note 2 for details). The region
between the red dashed lines corresponds to the error bar set by
the variation in model parameters (namely the drift and diffusion
coefficients) in different experiments as quantified by the SFI
analysis. The data points are the results of our inference
algorithm as well as the SFI scheme. As is evident, our inference
scheme predicts exactly the same or very similar values for σ as
the SFI algorithm, for all values of A.

The prediction of the inference scheme and SFI matches also
for the thermodynamic force (Fig. 3a, b). Namely, the optimal
current d*(x), which we get as an outcome of our inference
algorithm, also matches F̂ ðxÞ, which is F ðxÞ estimated from the
trajectory data by means of the SFI technique19. We conclude that
our inference algorithm infers the correct entropy production
value, as well as the correct thermodynamic force field, for the
experimental data, since we get the same results when using a
completely independent and different technique.

A colloidal particle trapped near a microbubble. We now
demonstrate how our scheme performs in estimating the rate of
entropy generation for the case where the mechanical force on the
colloidal particle is not known. For this purpose, we study a particle
trapped in the vicinity of a microscopic bubble of size 20–22 μm.
We have already used this experimental setup to study one or more
microbubbles with colloidal particles moving in the liquid in a
different context65,66. The microbubbles are nucleated on a
liquid–glass interface. The surface is pre-coated by linear patterns
of a MB-based soft oxometalate (SOM) material. We focus a laser
beam on any region along this pattern, the SOM material gets
intensely heated, and a microbubble forms. The top of the bubble is
colder than its bottom where it is anchored to the interface. As the
surface tension is a function of temperature, the variation of the
surface tension along the surface of the bubble sets up a Marangoni
stress, driving a flow along the surface of the bubble. Marangoni
flow around freely floating bubbles under a temperature gradient
have been studied both experimentally67 and analytically68. The
additional complexity here is the presence of the bottom surface on
which the flow must satisfy no-slip boundary conditions. The flow
around the bubble in this setup is not yet known in detail although
an approximate description, valid if we are not too close to the
bubble, has been developed66, as shown in Fig. 4. This flow drags
the trapped colloidal particle and changes its steady-state prob-
ability distribution (Fig. 5a, b). Since the flow streamlines are
directed towards the bubble, we expect that these will confine the
trapped particle more than the case without the bubble. This is
indeed the case as we show later. We expect that the underlying
description of the particle is still an overdamped Langevin equa-
tion, including a flow velocity field u(x). However, the quantifi-
cation of this flow field is rather difficult, even numerically, as
argued above. As a result, we have a system where the details of the
microscopic description and forces are unknown. Our inference
scheme, on the other hand, is easily applicable even in this context.

At the level of the non-equilibrium trajectories of the system,
we see that there is a qualitative difference from the case without
the bubble. First, we see that the particle is more confined in the
trap along the x direction, when there is a bubble in the vicinity
(see Fig. 5b) as mentioned earlier. This confinement is caused
both by the flow towards the bubble (as shown in Fig. 4), which
gets balanced at the confined position by the opposing force of

Fig. 2 The short-time inference scheme tested on experimental data. Test
of our inference algorithm on experimental data for different values of the
parameter A (or θ) where A is the amplitude of the noise in the
Ornstein–Uhlenbeck process defined in Eq. (10) and θ is defined in Eq. (13).
The dark-blue dashed line corresponds to the theoretical value given by Eq.
(14). The squares and triangles corresponds to the entropy production rate
σ estimated from the experimental data using our thermodynamic
uncertainty relation (TUR)-based inference scheme (Eq. (4)) with a
Gaussian basis and a linear basis, and using Δt= 0.1 ms. The error bars
correspond to averages over eight independent realizations of duration
12.5 s. The circles correspond to σ estimated using the stochastic force
inference scheme (SFI)19 for the whole 100 s data set, and the error bars for
these correspond to a self-consistent estimate of the inference error that
the SFI provides19. The blue line corresponds to σ predicted by a model
obtained from SFI (Supplementary Note 2), and the red dashed lines
correspond to error bars for this SFI-based model. The parameters used in
the experiment are as follows: the corner-frequency of the harmonic trap,
fc= 135 ± 10 Hz, relaxation time of the Ornstein–Uhlenbeck process
τ0= 0.0025 s, temperature of the aqueous medium T= 298 K, and the rate
at which the trajectory is sampled: Δt= 0.0001 s.
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the confining potential, as well as the reduced fluctuations close to
the bubble due to proximity effects69. Further statistical analyses
also reveal weaker non-equilibrium currents (see Supplementary
Note 3 and Supplementary Fig. S2 for details). Consistent with
these observations, on applying the inference algorithm, we
observe that the value of σ is substantially reduced in the presence
of the bubble. The corresponding entropy production rates

estimated are σ= 244.68 kB s−1 for the no-bubble case and
σ= 7.66 kB s−1 for the case with the bubble. We also find that the
thermodynamic force, estimated using the inference scheme, is
significantly reduced along the x direction, and the force field is
less tilted along that direction as compared to the case without the
bubble, as shown in Fig. 5c.

To further analyze the effect of the bubble, we performed
another experiment, where we trapped the particles at different
distances from the bubble. As we go a distance d ~ 1.5r (r is the
radius of the microbubble) from the surface of the bubble, we see
that the inferred value of σ gets closer to the value the system
would have had in the absence of the bubble. This is
demonstrated in Fig. 6.

The significance of the inferred value of σ has to be discussed in
the light of these findings. In the case without the bubble, it is
exactly the total heat dissipated to the environment as a
consequence of maintaining the system in a non-equilibrium
steady state (by shaking the trap). In the case with the bubble,
however, this is not the case. We present a possible mathematical
description of this situation as an overdamped Langevin equation
with space-dependent diffusion and damping terms in an
unknown flow field u(x). Since the trap constrains the particle
motion on scales that are at least two orders of magnitude smaller
than the distance to the bubble, u(x) is further assumed to be a
constant ud at a distance d from the surface of the bubble. σ
calculated from this model, reproduces the values we find from
the experimental data, independent of ud, and purely as a
consequence of the space-dependent diffusion and damping term,
and the two fitting parameters a and b. This is demonstrated in
Fig. 6. As we discuss in Supplementary Note 4, however, there is
another component of the entropy production, related to the

Fig. 3 The thermodynamic force fields obtained from the inference scheme. Thermodynamic force field obtained as the optimal field d*(x, λ) using Eq. (7)
(shown in black) compared to F̂ ðx; λÞ (shown in blue) which is the thermodynamic force field obtained using the stochastic force inference technique19, in
two cases. The parameter choices used correspond to two for different values of θ= A/D [a θ= 0.22, and b θ= 0.55], where A is the amplitude of the
noise in the Ornstein–Uhlenbeck process defined in Eq. (10) and D is the room temperature diffusion constant. We see that d*(x, λ) agrees well with
F̂ ðx; λÞ.

Fig. 4 Flow around the bubble. The cross-section of the streamlines of fluid
flow around a bubble of radius a in planes parallel and perpendicular to the
wall (the wall is the gray plane at z= 0) and the bubble is the represented
by the green sphere. It can be seen that the flow has cylindrical symmetry
and draws the fluid from all directions. The streamlines of the fluid flow are
drawn over the pseudo-color plot of the normalized logarithm of the flow
speed. Figure and caption are taken from ref. 66—reproduced by permission
of The Royal Society of Chemistry.
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work that the flow does against the confining potential42,70. This
component, which does indeed depend on the value of ud, is not
estimated by our inference scheme, due to the fact that ud is a
field (corresponding to the velocities of the molecules of the
thermal bath) which is odd under time reversal, for which the
TUR does not hold3,56,71–73. Hence, we expect that the values of σ
we find close to the bubble are underestimates of the true value.
We elaborate on this point in Supplementary Note 4.

Mathematical model. The colloidal system in the presence of the
bubble and consequently the flow ud, can be simulated using the
following equations:

_x � ud ¼ � x � λð Þ
τd

þ
ffiffiffiffiffiffiffiffi
2Dd

p
ηðtÞ;

_λ ¼ � λ

τ0
þ

ffiffiffiffiffiffi
2A

p
ξðtÞ;

ð16Þ

where,

τd ¼ τ a expð�bdÞ þ 1
� 	

;

Dd ¼
D

a expð�bdÞ þ 1
:

ð17Þ

Here the parameters a and b can be tuned to match the experi-
mental data. Particularly, 1/b stands for a characteristic length
scale below which the flows created by the bubble are significant.
When the distance of the trapped particle from the bubble is
much greater than 1/b, we expect that the expressions will match
the case without the bubble. Using a trial and error approach, we
obtained the fit parameters as a= 282.743 and b= 1/3 μm−1.

We remark that, as we did for the case without the bubble, the
SFI technique could be used to model this case as well, since it
explicitly gives the drift and diffusion terms. These are however
particularly susceptible to erroneous estimates of a conversion
factor, which is needed to obtain the particle trajectory data in
units of nm. We expand on this issue in the “Methods” section as
well as in Supplementary Note 2. This error can be thought of as
assigning wrong units to the affected phase-space coordinates.
Since σ is a sum over all phase-space coordinates, its evaluation is
not affected by such an error unlike other quantities such as forces,
diffusion terms, and the thermodynamic force. Another way to
understand this is to note that σ quantifies the irreversibility of the
dynamics, which again is clearly not affected by a choice of units.

Fig. 5 The colloidal system in the presence of the bubble. a The
microbubble–colloidal particle system. b System trajectories without (red)
and with (green) the bubble in the neighborhood of the colloidal particle.
We see that the colloidal particle is strongly confined in the presence of the
bubble. c The thermodynamic force field computed as the optimal field
d*(x) (Eq. (7)) without the bubble (red) and in the presence of the bubble
(green). The corresponding entropy production rates estimated are
σ= 244.68 kB s−1 for the no-bubble case and σ= 7.66 kB s−1 for the case
with the bubble. The parameters used in the experiment are as follows: the
corner-frequency of the harmonic trap, fc= 57 ± 3 Hz, relaxation time of the
Ornstein–Uhlenbeck process τ0= 0.025 s, temperature of the aqueous
medium T= 298 K, the rate at which the trajectory is sampled:
Δt= 0.0001 s and the amplitude of the Ornstein–Uhlenbeck noise
A ¼ 0:3 ´ ð0:6 ´ 10�6Þ2m2 s�1.

Fig. 6 Inference scheme tested in the presence of the bubble. Short-time
thermodynamic uncertainty relation (TUR) and stochastic force inference
(SFI) estimates for the entropy production rate in the colloidal system in
the presence of the bubble, as a function of the distance from the surface
of the bubble. The values of σ inferred with the short-time TUR (green
squares), the SFI (purple diamonds), and the ad-hoc model in Eq. (16) (red
dashed line) are in good agreement. The fit parameters, defined in Eq. (17)
used for the free parameters in the model are, a= 282.743 and b= 1/
3 μm−1. Note that a is dimensionless. The error estimates are standard
deviations over an ensemble of 6 trajectories, each of length 10 s and
sampling interval Δt= 0.0001 s, for both the schemes. The parameters
used in the experiment are as follows: the corner-frequency of the
harmonic trap, fc= 135 ± 10 Hz, relaxation time of the Ornstein–Uhlenbeck
process τ0= 0.0025 s, temperature of the aqueous medium T= 298 K
and the amplitude of the Ornstein–Uhlenbeck noise
A ¼ 0:3 ´ ð0:6 ´ 10�6Þ2m2 s�1.
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Hence our model for the setup with the bubble only tries to
reproduce the value of σ as a function of distance.

Conclusion
In conclusion, we have experimentally tested a simple and
effective method, based on the thermodynamic uncertainty
relation52–54 for inferring both the rate of entropy production σ
and the corresponding thermodynamic force fields, in micro-
scopic systems in non-equilibrium steady states. We have con-
firmed that an entirely independent method, SFI19, gives the same
answers in all the situations we have studied, hence adding weight
to the physical significance of our findings. We have also carried
out an extensive investigation of the convergence properties of
our code as several parameters or hyper parameters are varied, as
well as a comparison with the SFI algorithm (see Supplementary
Notes 5, which includes Supplementary Figs. S3–S5 and Supple-
mentary Notes 6, which includes Figs. S6 and S7).

Our short-time inference scheme does not need any model in
order to be applicable. However, we can use our findings to come
up with plausible models, which give the same σ values for a
range of parameters, even in cases where modeling the system
from the first principles is complicated. In this regard, it would
also be interesting to perform a systematic study of different
algorithmic schemes available to model a complex non-
equilibrium systems, with a focus on the advantages and dis-
advantages when applied to experimental data.

Experimental systems that would be particularly interesting to
study are molecular motors or other cellular processes. Recently,
ref. 74 tried to quantify the activity of a cell by measuring the
power spectral density of the fluctuations of the position of a
phagocytosed micron-sized bead inside a cell. As it is possible to
also trap such beads inside a cell with optical tweezers74, this too
could be a very interesting system to study. Finally, in other recent
work57, it has been demonstrated that inference schemes of this
kind can also be made to work for non-stationary non-equilibrium
states, further diversifying the scope of this class of techniques.

Methods
Experiment
A single colloidal particle in a stochastically shaken trap. The experimental setup consists
of a sample chamber placed on a motorized xyz-scanning microscope stage, which
contains an aqueous dispersion of spherical polystyrene particles (Sigma-Aldrich) of
radius r= 1.5 μm. The sample chamber consists of two standard glass cover-slips (of
refractive index ~ 1.52) on top of one another. The thickness of the chamber is kept at
~100 μm by applying double-sided sticky tape in between the cover-slips. The aqueous
immersion is made out of double distilled water at room temperature, which acts as a
thermal bath. A single polystyrene particle is confined by an optical trap, which is
created by tightly focusing a Gaussian laser beam of wavelength 1064 nm by means of a
high-numerical-aperture oil-immersion objective (×100, NA = 1.3) in a standard
inverted microscope (Olympus IX71). The trap is kept fixed at a height, h= 12 μm
from the lower surface of the chamber in order to avoid spatial variation in the viscous
drag due to the presence of the wall. The corner-frequency of the trap (fc) is set to be
135Hz. For the first set of experiments, the center of the trap is modulated (λ(t)) using
an acousto-optic deflector, along a fixed direction x in the trapping plane, perpendicular
to the beam propagation (+z). Thus, the modulation may be represented as a Gaussian
Ornstein–Uhlenbeck noise with zero mean and covariance
λðsÞλðtÞ� � ¼ Aτ0 expðjt � sj=τ0Þ. The correlation time τ0 is held fixed for all our
experiments. We determine the barycenter (x, y) displacement of the trapped particle by
recording its back-scattered intensity from a detection laser (wavelength 785 nm, co-
propagated with the trapping beam) in the back-focal plane interferometry config-
uration. The measurement is carried out using a balanced-detection system comprising
of high-speed photo-diodes75, with sampling rate of 10 kHz and final spatial resolution
of 10 nm. In all cases, the trap parameters including the conversion factors for the
trajectory data were calibrated by fitting the probability distribution of the particle
position in thermal equilibrium to the Boltzmann distribution
PðxÞ ¼ ð2πDτÞ�1=2 expð�x2=2DτÞ, where τ is the relaxation time in the trap, given by
τ= 1/(2πfc). We assume that the diffusion constant D has the room temperature value,
D= 1.645 × 10−13m2 s−1. It is important to note that we assume that the trap para-
meters, as well as the conversion factor for the trajectory data, are unaffected when the
Ornstein–Uhlenbeck modulation is turned on. However, in practice, the trap para-
meters can indeed be altered by small amounts over long durations of measurement

(−100 s), primarily due to the power fluctuations of the trapping laser. Further, the
probe particle also moves in the y and z directions in the trap, which we have not
measured here. These factors led to issues that prevented us from producing an exact
replica of the theoretical model in the experiment. However, we have taken into account
these limitations in our analysis as detailed in Supplementary Note 2.

In the second set of experiments, i.e., for those with the microbubble, we employ
a coverslip that is pre-coated by a polyoxometalate material76,77 absorbing at 1064
nm as one of the surfaces of the sample chamber (typically bottom surface), and
proceed to focus a second 1064 nm laser on the absorbing region. A microbubble is
thus nucleated—the size of which is controlled by the power of the 1064 nm laser76.
Typically, we employ bubbles of size between 20 and 22 μm. Note that the sample
chamber also contains the aqueous immersion of polystyrene particles. We trap a
polystyrene probe particle at different distances from the bubble surface, and
modulate the trap center in a manner similar to the experiments without the
bubble. The particle is trapped at a axial height corresponding to the bubble radius.
The other experimental procedures remain identical to the first set of experiments.
However, an important additional step here is the determination of the distance of
the particle from the bubble surface. This we accomplish by using the pixels-to-
distance calibration provided in the image acquisition software for the camera
attached to the microscope, which we verify by measuring the diameters of the
polystyrene particles in the dispersion (the standard deviation of which is around
3% as specified by the manufacturer), and achieve very good consistency. Note that
we obtain a 2-d cross-section of the bubble as is demonstrated in Fig. 5a, and are
thus able to determine the surface-surface separation between the bubble and the
particle with an accuracy of around 5%. During the experiment, we also ensure that
the bubble diameter remains constant by adjusting the power of the nucleating
laser—indeed the bubble diameter is seen to remain almost constant for the 100 s
that we need to collect data for one run of the experiment.

As opposed to the previous setting, the particle is now trapped in a region where it
experiences: (1) a temperature gradient created by the laser beam used to generate the
microbubble, (2) the microscopic flow generated due to the bubble, which affects
particle trajectory, and (3) Faxen-like corrections to the viscous drag coefficient of the
encompassing fluid due to the proximity to a wall78—which is the bubble surface in
this case. Now, since the trap parameters—particularly the conversion factor for the
trajectory data—are determined for the equilibrium setting, it is clear that there could
be significant deviations from those in the non-equilibrium configuration produced
due to the presence of the bubble in close proximity of the trapped probe particle. It is
also clear that the previous procedure for obtaining the trap parameters will not work
in this case. This severely hampers any exact modeling and as a result we concentrate
on getting only the value of σ and its variation as a function of the distance to the
bubble, both of which are robust against the above errors.

Numerical algorithm. Our aim is to maximize a cost function C, which is a
function of a set of parameters w. We use a particle-swarm optimization
algorithm79 to achieve this. A domain is chosen and Np particles are initialized in
that domain. The kth particle follows Newtonian dynamics given by:

d
dt

ωk ¼ Vk ð18aÞ

d
dt

Vk ¼ AkðωÞ: ð18bÞ

Here ωk and Vk are the position and velocity vector of the kth particle and Ak is a
stochastic function that depends on the position of all the particles. Different
variants of this algorithm use different A. The simplest—the one that we use—is
called the Original PSO. Let us first define the following:

● The kth particle carries an additional vector Pk which is equal to ωk for
which the value of the function C as observed by the kth particle was
maximum in its history.

● At any point of time let G denote the position of the particle in the whole
swarm for which the function has the maximum value.

The function A is given by

Ak
μ ¼ W1δμνU

1
νðPk

ν � ωk
νÞ þW2δμνU

2
νðGν � ωk

νÞ ð19Þ

Here the Greek indices run over the dimension of space. W1 and W2 are two
weights. The two terms in Eq. (19) push the particle in two different directions: one
towards the point in history where the particle found the function to be a maxima
and the other towards the point where the swarm finds the maximum value of the
function at this point of time. These are multiplied by two random vectors U1 and
U2 of dimension same as the dimension of space. Each of the components are
independent, uniformly distributed (between zero and unity), random numbers.

We keep track of the highest value of the function seen by the swarm and also
the location of that point. There are two major advantages to this over standard
gradient ascent algorithms: one, it does not require evaluation of the gradient of the
function and two, it can be parallellized straightforwardly. All the numerical results
reported in this paper are obtained using this algorithm. We implement this
optimization scheme using open-sourced PYSWARM package in Python80, with a
default choice for the hyper parameters.
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Implementation of the algorithm. Here we describe how we applied this algo-
rithm to numerical/experimental data. We generate numerical data using first
order Euler integration of Eqs. (10) and (11) with a time step of Δt= 0.0001. In
either case, we generate many copies of trajectories of length 12.5 s, and construct
the cost function in Eq. (4) using Eq. (5) and Eq. (6). We have tried out two
different choices of basis functions to construct d(X). The first one is a Gaussian
basis in which we represent d(X) as,

dðXÞ ¼ ∑
M

m¼1
ωme

� x�xmð Þ2
2b2x e

� λ�λmð Þ2
2b2
λ : ð20Þ

Making use of the spatial symmetry of the problem, we assume d(X) to be an anti-
symmetric function, with d(− X)=−d(X), and that reduces the dimensionality of
the problem by a factor of 2. HereM is the number of Gaussian functions, and bi are
the variance of the Gaussian in the x and λ direction. The centers of the Gaussian
(xm, λm) are placed equally spaced in a rectangular region enclosing the data. Both
M and bi are hyper parameters. We usedM= 16 and b2x=λ ¼ fx=λgmax=30. Secondly,
we have also tried a linear basis (motivated by the prior knowledge of the linearity of
the system) where we take

dðXÞ ¼ ω1x þ ω2λ: ð21Þ
In Supplementary Note 6 which includes Supplementary Figs. S6 and S7, we study
the dependence of the output of the algorithm, for both basis functions, on Δt,
length of the time-series data, Np as well as M.

Since we have used a finite amount of data to construct the cost function, it will be
prone to statistical errors. Therefore, we independently maximize the cost function for
different 12.5 s long data sets, and take their mean value as the optimized estimate of
σ. We show the value of sigma inferred (σL) as a function of the number of steps in the
optimization algorithm for different 12.5 s long data sets in Fig. 7.

Data availability
The data used to produce the results in this paper is available at https://doi.org/10.6084/
m9.figshare.14176664.

Code availability
We use the open-sourced PYSWARM package in Python80 for the optimization task.
The algorithm used to produce the results in this paper is available at https://doi.org/
10.6084/m9.figshare.14174369. We perform the stochastic force inference (SFI) analysis
using the algorithm provided with ref. 19.
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