
ARTICLE

Electromagnetic response in spiral magnets and
emergent inductance
Daichi Kurebayashi1,3✉ & Naoto Nagaosa 1,2

Emergent electromagnetism in magnets originates from the strong coupling between con-

duction electron spins and those of noncollinear ordered moments and the consequent Berry

phase. This offers possibilities to develop new functions of quantum transport and optical

responses. The emergent inductance in spiral magnets is an example recently proposed and

experimentally demonstrated, using the emergent electric field induced by alternating cur-

rents. However, the microscopic theory of this phenomenon is missing, which should reveal

factors to determine the magnitude, sign, frequency dependence, and nonlinearity of the

inductance L. Here we theoretically study electromagnetic responses of spiral magnets by

taking into account their collective modes. In sharp contrast to collinear spin-density wave,

the system remains metallic even in one dimension, and the canonical conjugate relation of

uniform magnetization and phason coordinate plays an essential role, determining the

properties of L. This result opens a way to design the emergent inductance of desired

properties.
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Quantum transport phenomena in magnets include variety
of effects such as magneto-resistance1–3, planar Hall effect4,
spin-dependent tunneling5, anomalous Hall effect6–10, and

spin Hall effect11–16. Spin-orbit interaction is often relevant to these
phenomena, because the transport reflects the orbital motion of
electrons while the magnetism comes from electron spins. In
addition to the conventional ferromagnetism and antiferromag-
netism, recent focus is the noncollinear spin structures, which
are induced by several mechanisms, e.g., frustrated exchange
interaction17, Ruderman–Kittel–Kasuya–Yosida interaction18–24,
Fermi surface nesting25,26, and Dzyaloshinskii–Moriya spin–orbit
interaction27–29. Note that there are situations where the system
shows noncollinear spins without the spin–orbit interaction, which
we study below. Noncollinear spin configurations are associated
with the quantal Berry phase30. The quantal Berry phase produces
the emergent electromagnetic field31–33; emergent electric field e is
defined as

ei ¼ � 1
c
∂ai
∂t

¼ _

2e
n � ∂in ´ ∂tn
� �

; ð1Þ

while the emergent magnetic field b by

bi ¼ ð∇ ´ aÞi ¼
_

2e
εijkn � ð∂jn ´ ∂knÞ; ð2Þ

where n is the direction of the spin. Note here that b is associated
with the noncoplanar spin structure such as the skyrmion, while e is
induced by the dynamics of spins. The emergent electromagnetic
field is the origin of many electromagnetic phenomena including
the topological Hall effect by b34–37 and emergent electromagnetic
induction by e38.

A helical or spiral spin structure with a single wavevector Q is a
noncollinear but coplanar structure with b= 0 in the ground
state, while e is induced by its dynamics. Recently, it has been
proposed that the alternating current driven motion of the spiral
leads to the inductance L, which is inversely proportional to the
cross-section A of the sample in sharp contrast to the conven-
tional inductor with L being proportional to A39,40. The
mechanism is based on the spin-transfer torque; the angular
momentum transfer between the conduction electrons and
magnetic structure drives the motion of the latter, which pro-
duces the emergent electric field given by Eq. (1). In this picture,
the quantum dynamics of the conduction electrons is not treated
on the microscopic basis and only their current density j appears
in the analysis.

Experimentally, the inductance L of a short-period helimagnet
Gd3Ru4Al12 has been observed41. The value of L is around
~100 nH, which is comparable to the best commercial value,
while the size of the sample is ~10−5 smaller. Here there appeared
several issues. One is the sign of the inductance L. Usually, the
magnetic energy induced by the current is given by LI2/2 (I:
current) and the negative L means that the system is unstable.
Therefore, it is urgent to understand what determines the sign of
L and its relation to the stability of the system. The second
important issue is frequency dependence. The quality factor Q(ω)
is given by Q(ω)= Lω/R with R being the resistance and ω the
angular frequency. Experimentally, the Debye-type ω-dependence
with the cut-off of the order of 10kHz has been observed41. This
limits the value of Q(ω), and a wider range of frequency is needed
for the applications. The third one is the nonlinearity with respect
to the current density. The tilt angle ϕ is expanded in the current
density j as ϕ=Aj+ Bj3+ Cj5, and this phenomenological
expression well describes the experimental result41. However,
the microscopic understanding of this nonlinearity is missing.
Recently, Ieda and Yamane40 studied a related problem taking
into account the Rashba spin–orbit interaction together with the

nonadiabatic β-term. They found the sign change of L from
positive to a negative value as β increases.

In this paper, we microscopically derive an emergent
inductance in spiral magnets by the linear response theory and
determine the role of collective magnetic excitations in the
emergent induction. Furthermore, by introducing nonlinear
pinning potentials, we discuss the nonlinearity in the emergent
inductance and the effect of the depinning transition of the
magnetic excitations to the sign of the inductance.

Results
Models. In this paper, we study the microscopic model of a
spiral magnet composed of one-dimensional electrons coupled
with localized spins by exchange interaction. The spiral
order occurs at Q= 2kF with kF being the Fermi wavenumber of
the conduction electrons. This can be regarded as the
Ruderman–Kittel–Kasuya–Yosida interaction25,26 or the Peierls
instability42,43. Assuming that Q is incommensurate with the
original lattice, the spiral order breaks two kinds of symmetries,
i.e., the translational symmetry and the SU(2) spin rotational
symmetry. The resulting symmetry is the combination of these
two, i.e., the translation combined with the spin rotation, and
hence the number of the Goldstone boson is 3 in the absence of
the spin–orbit interaction. Two of which are the fluctuation of
the plane of the spin rotation, and the last one is the so-called
phason corresponding to ψ in the expression of the director n of
the localized spin which acts as the order parameter;

nðrÞ ¼ η1 cosðQ � rþ ψÞ þ η2 sinðQ � rþ ψÞ þ η3m; ð3Þ
where ηi is a unit vector in a Cartesian coordinates. Here note
that the uniform spin component m perpendicular to the spin
rotating plane is the generator of ψ corresponding to the
“momentum” of the “coordinate” ψ. The basic idea of the
present paper is that the inductance L of the system is related to
the imaginary part of the complex impedance Z(ω), which is
inverse of the conductance Σ(ω). Both the spin-transfer torque
and the resultant emergent electric field are included in the
conductance Σ(ω) due to the collective modes of the spiral
spins, i.e., the uniform magnetization and phason. Here some
remarks are in order about the difference between the spiral
magnet and the conventional collinear spin density wave, which
share a similar phason collective mode. One is that the system
remains metallic even in the perfectly nested case for the spiral
state while it is gapped in the collinear spin density wave. In the
latter case, the broken symmetry is the translational symmetry
and the spin rotational symmetry. The Goldstone mode corre-
sponding to the former is the phason, while that for the latter is
the spin-wave. These two are decoupled in the bilinear order,
and only the phason contributes to the conductivity. The pha-
son is usually pinned by the impurity, showing the finite pin-
ning frequency of its spectrum. In sharp contrast, the phason in
spiral magnet remains gapless even with the disorder as long as
the spin rotational symmetry of the Hamiltonian is intact. Both
the impurity/commensurability and the spin–orbit are needed
to gap the phason spectrum there.

As a microscopic model of electrons coupled to a spiral spin
order, we have considered

H ¼
Z

dk
2π

"
cyk

k2

2me
� EF � JmzðtÞσz

� �
ck � eAðtÞcykvkck

� J mQðtÞ � cykþQ
2

σck�Q
2
þm�

QðtÞ � cyk�Q
2

σckþQ
2

� �#
;

ð4Þ

where ck is a Fermion annihilation operator with momentum k,
EF ¼ Q2

8me
is the Fermi energy, me is an effective electron mass, J is
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an exchange constant, σ is the Pauli matrix vector corresponding
electron’s spin operators, vk is a group velocity operator, A(t)
is an electromagnetic vector potential, mQðtÞ ¼ x̂þiŷ

2 e�iψðtÞ �
x̂þiŷ
2 1� iψðtÞ� 	

characterizes the spiral magnetic order whose
wave vector is magnitude of Q= 2kF and a spin rotation plane is
sx− sy plane, ψ(t) is a dynamical phase degrees of freedom,
namely phason, and mz(t) is a uniform moment. Note that we
have considered one-dimensional free electrons just for simpli-
city; however, our analysis is general and applicable for higher
dimensions (please see the Supplementary Note 1 for the detail)
and systems with spin–orbit coupling. By introducing the spinor,
Ψk ¼ ½ckþQ

2;"; ck�Q
2;#�

T , the Hamiltonian is simplified as

H ¼
Z

dk
2π

Ψy
k ĥ0ðkÞ þ ĵkAðtÞ þ ŜψψðtÞ þ ŜzmzðtÞ
h i

Ψk ð5Þ

where ĥ0ðkÞ ¼ k2

2me
τ0 þ Qk

2me
τz � Jτx is the unperturbed mean field

Hamiltonian, ĵk ¼ �e k
me
τ0 þ Q

2me
τz

� �
is a current operator, Ŝψ ¼

Jτy and Ŝz ¼ �Jτz are spin operators coupled to phason and
uniform magnetization, respectively, and τ is a vector of the Pauli
matrix. The eigenvalues of ĥ0ðkÞ are given by ξk;± ¼ k2

2me
±ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Qk
2me

� �2
þ J2

r
: The band structure is shown in Fig. 1. As

mentioned, the dispersion retains the metallic Fermi surfaces
in addition to the gap of Δ= 2J at k= 0 due to the nesting
of the Fermi surface. With a basis diagonalizing the mean
field Hamiltonian ĥ0ðkÞ, the current and the spin operators are
expressed as

~jk ¼ � e
me

k� Q2k
4meζ

� JQ
2ζ

� JQ
2ζ kþ Q2k

4meζ

2
4

3
5; ~Sz ¼ J

ζ

Qk
2me

J

J � Qk
2me

2
4

3
5; ~Sψ ¼ J

0 �i

i 0

� �
;

ð6Þ

where ζ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Qk
2me

� �2
þ J2

r
.

As a model describing the magnetic excitations, we consider the
following Lagrangian for the uniform moment and the phason,

LM ¼�mzðtÞ _ψðtÞ �
Kz

2
m2

zðtÞ �
Kψ

2
ψ2ðtÞ

� lahSziðtÞmzðtÞ � lahSψiðtÞψðtÞ;
ð7Þ

where the first term is the Berry phase term representing
the canonical conjugate relation between the phason ψ(t) and the
uniform magnetization mz(t), the second and the third terms are
mass terms of excitations with a gap size of Kψ and Kz, and la is a
lattice constant. Each excitation gap, Kz and Kψ, corresponds to the

intrinsic and the extrinsic pinning frequency of the spiral,
respectively. Note that the excitation gap of phason Kψ is originally
zero as the phason is a Goldstone mode associated with the
spontaneous breaking of translational and spin rotation symmetries.
Therefore, the excitation gap of phason becomes finite when
magnetic impurities or nonmagnetic impurities with spin-orbit
interaction are present. The last two terms describe coupling to
itinerant electron’s spin density. In addition, the Rayleigh
dissipation function, Rd ¼ α

2 _m2
zðtÞ þ _ψ2ðtÞ� 	

, introduces the dis-
sipation to magnetic excitations where α is the Gilbert damping
constant.

Emergent inductance and its ω-dependence. The physical pro-
cess is described by the Feynman diagram in Fig. 244,45. The right
bubble corresponds to the spin accumulation induced by the
external electric fields, including the spin-transfer torque effect.
The left bubble corresponds to the emergent electric field, i.e., the
collective modes affect the motion of the conduction electrons.
The combination of these two processes contributes to the con-
ductivity of the total system, and below, we discuss each of them
separately. See Eq. (23) below. Within the linear response theory,
a current density induced by magnetic excitations are given as

hjiðΩÞ ¼ σmz
ðΩÞmzðΩÞ þ σψðΩÞψðΩÞ; ð8Þ

where Ω is an external frequency, and σmz
ðΩÞ and σψ(Ω) are

conductivities related to ferromagnetic and phason excitations,
respectively. Each conductivity is evaluated as

σmz
ðΩÞ ¼ � 1

2πβ

Z
dk∑

ωn

Tr ĵkĜkðωn þ ΩmÞŜzĜkðωnÞ
� 	

iΩm!Ωþi0

� � iτeΩ
2π

∑
i¼±

Z
dk ~jk
� �

ii
~Sz
� �

iif
0ðξk;iÞ ¼ �iΩCmz

ðQÞ;
ð9Þ

σψðΩÞ ¼ � 1
2πβ

Z
dk∑

ωn

Tr ĵkĜkðωn þΩmÞŜψĜkðωnÞ
h i

iΩm!Ωþi0

� Ω∑
i≠j

Z
dk
2π

~jk
� �

ij
~Sψ
� �

ji
� ~Sψ
� �

ij
~jk
� �

ji

ðξk;i � ξk;jÞ2
f ðξk;iÞ ¼ �iΩCψðQÞ;

ð10Þ

where ĜkðωnÞ ¼ iωn � ĥ0ðkÞ
h i�1

is a bare Green’s function of ĥ0,

τe is a scattering lifetime, f(x) is the Fermi–Dirac distribution
function, and Cmz

ðQÞ and Cψ(Q) are coefficients characterizing
uniform moment and phason conductivities, respectively. The

analytical expressions of the coefficients are given by Cmz
ðQÞ ¼

eQτe
4πζ 0

ffiffiffiffi
me

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ 0 � Q2

2me

q
ζ 0 þ Q2

2me

� �
and CψðQÞ ¼ eQ

2π
ffiffiffiffi
me

p
ffiffiffiffiffiffiffiffiffiffi
ζ 0þ Q2

2me

q where

ζ 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2

2me

� �2
þ 4J2

r
: When Q2

2me
<< 2jJj corresponding to long

pitch spirals or the adiabatic limit, the coefficients are simplified
as Cmz

¼ eQτeJ

π
ffiffiffiffiffiffiffi
8Jme

p and Cψ ¼ eQ
π
ffiffiffiffiffiffiffi
8Jme

p , which is linear in Q. On the

other hand, for short pitch spirals or the nonadiabatic limit where
Q2

2me
>> 2jJj is satisfied, the coefficients are given as Cmz

¼ eτeJ
π and

Cψ ¼ e
2π, which is independent of Q. Note, however, that our

analysis is basically the random phase approximation, which is
justified in the weak coupling limit, i.e., Q2

2me
>> 2jJj. Also, since

our primary interests are in the nonadiabatic limits, we focus on
Q→∞ limits in the rest of the manuscript. In Eqs. (9) and (10),
we have performed the analytical continuation, iΩm→Ω+ i0.

Fig. 1 Band dispersion of one-dimensional spiral magnets. The electron
mass is me= 1, the exchange coupling constant is J= 1, and the amplitude
of the propagation vector is Q= 3.
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We have also expanded the response functions with respect to the
external frequency Ω up to the first order; however, the zeroth-
order in Ω vanishes. Because ~jk and ~Sz are symmetric matrices,
the conductivity related to ferromagnetic excitation, σmz

, is given

by diagonal elements of ~jk
� �

ij
~Sz
� �

ji; only states near the Fermi

surface contribute to σmz
. Contrary, the phason spin operator ~Sψ

only consists of off-diagonal elements; namely, only inter-band
transitions contribute to the phason conductivity. This difference
is reflected in the lifetime dependence of the conductivities; σmz

is
proportional to the lifetime τe which is a typical characteristic of
the Fermi surface contribution, whereas σψ is independent of τe,
indicating that the phason contribution originates from all
occupied states. Let us note that the vertex correction does not
give the leading order contribution to the conductivities in the
clean limit, τe→∞. For more details on the effect of the vertex
correction, please see the Supplementary Note 2. Finally, the
current density induced by magnetic excitations is summarized as

hjiðΩÞ ¼ �iΩCmz
mzðΩÞ � iΩCψψðΩÞ ¼ �iΩ

eJτe
π

mzðΩÞ � iΩ
e
2π

ψðΩÞ:
ð11Þ

Then, let us consider the spin densities induced by applied
electric fields,

hSψiðΩÞ ¼ χψðΩÞAðΩÞ; ð12Þ

hSziðΩÞ ¼ χmz
ðΩÞAðΩÞ; ð13Þ

where χmz
and χψ are electromagnetic susceptibilities, and 〈Sψ〉

and 〈Sz〉 are spin densities coupled to phason and uniform
magnetization, respectively. The susceptibilities are evaluated as

χψðΩÞ ¼ � 1
2πβ

Z
dk∑

ωn

Tr ŜψĜkðωn þΩm Þ̂jkĜkðωnÞ
h i

¼ �σψðΩÞ;

ð14Þ

χmz
ðΩÞ ¼ � 1

2πβ

Z
dk∑

ωn

Tr ŜzĜkðωn þΩm Þ̂jkĜkðωnÞ
� 	 ¼ σmz

ðΩÞ:

ð15Þ
Similar to the relation between the spin-transfer torque and the
spin motive force46, the spin densities induced by applied electric
fields are related to the current response driven by magnetic
excitations. It is worth mentioning that the phason contribution
has an opposite sign with conductivity, whereas the contribution
from uniform magnetization has the same sign. The difference
attributes to the fact that the phason response comes from an
inter-band contribution while the uniform moment excitation
comes from the intra-band contribution. In other words, the
uniform moment contribution, Cmz

ðQÞ, is a transport-like
contribution, and the phason contribution, Cψ(Q), is a geometric
contribution. Finally, the spin densities induced by an applied
electric field is obtained as

hSψiðΩÞ ¼ iΩCψAðΩÞ ¼ � e
2π

EðΩÞ; ð16Þ

hSziðΩÞ ¼ �iΩCmz
AðΩÞ ¼ eJτe

π
EðΩÞ; ð17Þ

where E(Ω)=−iΩA(Ω) is the applied electric field.
As current and magnetic responses in itinerant electrons have

been evaluated, the magnetic dynamics under an applied electric
field are considered in the following. Applying the Euler-Lagrange
equation, δLM

δq � d
dt

δLM
δ _q � δRd

δ _q ¼ 0, to the Lagrangian, Eq. (7), and
the Rayleigh dissipation function, we obtain the equations of
motions for mz and ψ as

_mzðtÞ � KψψðtÞ � α _ψðtÞ � lahSψiðtÞ ¼ 0; ð18Þ

� _ψðtÞ � KzmzðtÞ � α _mzðtÞ � lahSziðtÞ ¼ 0: ð19Þ
A solution of the equations are obtained as

ψðωÞ
mzðωÞ

� �
¼ laD̂ðωÞ

hSψiðωÞ
hSziðωÞ

� �
; ð20Þ

D̂ðωÞ ¼ �Kψ þ iαω �iω

iω �Kz þ iαω

� ��1

; ð21Þ

where we have shifted to a frequency representation and D̂ðωÞ is a
Green’s function for magnetic excitations.

By equating Eqs. (11), (16), (17), and (20), the current density
is evaluated as 〈j〉(ω)= Σ(ω)E(ω) where a complex conduc-
tivity is given by

ΣðωÞ ¼ σT
mðωÞD̂ðωÞχmðωÞ=la ð22Þ

where σm ¼ ½σψ ; σmz
�T and χm ¼ ½χψ ; χmz

�T . Here, we have
converted the one-dimensional current density to the three-
dimensional current by hj3Di ¼ hj1Di=l2a . The impedance Z(ω) is

determined as an inverse of the complex conductivity, ZðωÞ ¼
ls
A σdc þ ΣðωÞ� 	�1

where σdc ¼ e2Qτe
2πmel

2
a
is the DC conductivity which

is irrelevant to the magnetic excitations, A is a cross section of the
system, and ls is a length between electrodes. Then the complex
inductance is defined as L(ω)= Z(ω)/(−iω). In the absence of
impurity pinning where the phason excitation is gapless, Kψ= 0,
a real part of the inductance, as shown in Fig. 3a, takes positive
value when ω < < ωint where ωint= αKz is a intrinsic pinning
frequency corresponding to the excitation of uniform moments,
while rapidly decreases above ωint. At the same time, the
imaginary part of the inductance peaks at ωint, showing the
characteristic behavior of the Debye-type relaxation. In contrast,
when impurity pinning are present, an additional peak structure
at ω= ωext where ωext �

ffiffiffiffiffiffiffiffiffiffiffiffi
KψKz

p
associated with the phason

excitation appears on the imaginary part of inductance as shown
in Fig. 3b. The real part of the inductance is negative with the
typical parameters when ω < ωext while showing the sign change
above ωext.

Fig. 2 The Feynman diagram describing the conductivity mediated by magnetic excitations, Σ(ω). The left electron bubble corresponds to the
conductivity induced by the magnetic excitations, σm, while the right electron bubble is the electromagnetic susceptibility, χm. The solid (wave) line is
propagators of itinerant electrons (magnetic excitations ^DðωÞ).
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In the low-frequency limit, the impedance can be expanded as
ZðωÞ � ls

σdcþRe½ΣðωÞ� � iωls
Im½ΣðωÞ=ω�

σdcþRe½ΣðωÞ�ð Þ2. Compering with the con-

ventional expression, Z(ω)= R− iωL, where R is a resistance and
L is an inductance, one can regard the imaginary part of the
complex conductivity as the inductance of spiral;

L ¼ ls
Im½ΣðωÞ=ω�

σdc þ Re½ΣðωÞ�� �2

ω!0

: ð23Þ

Note that the equivalence of the imaginary part of the
conductivity and the inductance is valid when the real part of
the conductivity is larger than the its imaginary part, namely
σdc þ Re½ΣðωÞ�>> Im½ΣðωÞ�.

In the following, we will discuss what determines the sign of
the inductance. Let us first consider the case for the gapless
phason excitation. The complex conductivity Σ(ω) and the
inductance L for the gapless phason are obtained as

ΣðωÞ ¼
C2
ψ

laα
þ iω

Cψ þ αCmz

� �2
laα2Kz

¼ e2

4π2laα
þ iω

e2

4π2
1þ 2ατeJ
� �2

laα2Kz
;

ð24Þ

L ¼ lse
2

4π2laA σdc þ e2
4π2 laα

� �2 ð1þ 2ατeJÞ2
α2Kz

: ð25Þ

The expression suggests that both the real and imaginary parts of
the complex conductivity is always positive. As a result, the sign
of the inductance is also positive when the phason excitation is
gapless. On the other hand, in the gapped phason regime, the
conductivity and the inductance mediated by magnetic excita-
tions are obtained as

ΣðωÞ ¼ iω
la

C2
mz

Kz
�

C2
ψ

Kψ

 !
¼ iω

la

e2

4π2
4τ2e J

2

Kz
� 1

Kψ

 !
; ð26Þ

L ¼ lse
2

4π2laAσ
2
dc

4τ2e J
2

Kz
� 1

Kψ

 !
: ð27Þ

The result shows that the imaginary part of the conductivity can
take both the positive and negative signs when the magnetic
excitation is gapped. Equation (26) consists of two terms; the first
term is described by the response function and the characteristic
frequency of uniform moment excitations, while those of phason
excitation give the second term. Although mz and ψ are not
independent excitations, the result can be seen as the uniform
moment and phason contributions compete to determine the

overall sign of the inductance. Let us refer to these two
contributions to a mz-contribution and a ψ-contribution in the
rest of the manuscript. The result in Eq. (27) has some similarity
to the result previously reported40, although an approach is
different; their analysis is based on spin-transfer torques and spin
motive force while we have evaluated the complex conductivity
based on a microscopic linear response theory. Note that the
negative inductance does not correspond to the instability of the
system as it is not related to the magnetic energy. Instead, in our
approach evaluating the current–current correlation, the negative
inductance means that the imaginary part of the complex
conductivity is negative. A detailed discussion on the stability
of the system is presented in “Discussion” section.

Depinning transition and nonlinear effects. Now we consider
the effect of the depinning of phason on the conductance. It is
known that there is a threshold field strength47 to drive magnetic
spirals. The dynamics of the texture is confined around pining
centers under the threshold field; the inductance for the pinned
magnetic spiral, Eq. (27), is expected. On the other hand, above the
threshold field strength, the phason starts freely moving, and pin-
ning potential becomes negligible. In this strong field regime, the
inductance for gapless phason, Eq. (25), is expected. By substituting
the magnetic potentials in Eq. (7) with periodic potentials as
Kz
2 m2

z ! Kz
4 ð1� cos 2mzÞ and

K2
ψ

2 ! Kψð1� cosψÞ. The sub-
stitutions introduce the finite potential depth so that the depinning
transition can be discussed. We have numerically solved the
equations of motion, Eqs. (18) and (19), with the nonlinear
potentials and perform the Fourier transformation to obtain ψ(ω)
and mz(ω), then evaluated current density by Eq. (11). The applied
electric field amplitude (E0) dependence of the emergent inductance
is shown in Fig. 4a. In the weak-field regime, the sign of the
inductance is negative as shown in Fig. 4 corresponding to pinned
magnetic excitations. By increasing the field strength, the emergent
inductance decreases quadratically to the field strength; L ¼ c0 þ
c2E

2
0 where c0 and c2 are coefficients. Within the weak-field regime,

the dynamics of the phason is confined in a potential valley around
ψ= 0. Further increasing the field strength, the inductance shows a
discontinuous jump and changes its sign, corresponding to the
depinning transition. Just above the thresholds, the phason
dynamics covers two valleys under the oscillating field. Multiple
discontinuities in the higher field follow a change in the number of
valleys that the phason moves across. Above the thresholds, the
inductance shows several sign changes due to nonlinearity in the
potentials. The frequency and field dependence of the emergent
inductance is shown in Fig. 4b. With typical material parameters,

Fig. 3 Frequency dependence of the emergent inductance L(ω). a The inductance for the gapless phason (Kψ= 0) is plotted as a function of frequency ω.
b The inductance for the gapped phason (Kψ= 104 Hz) is plotted as a function of frequency ω. The red (blue) line shows the real- (imaginary-) part of the
inductance. Other parameters are the pinning potential for the uniform moment Kz= 106 Hz, the exchange coupling constant J= 200meV, the scattering
lifetime of electrons τe= 10 fs, the cross section of the system A= 10 μm2, the lattice constant la= 4 Å, the distance between electrodes ls= 10 μm, the
Gilbert damping constant α= 0.5, and the propagation vector of spiral Q= 2.24 nm−1.
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the threshold field strength is roughly Ec ~ 0.1V/m, although the
threshold field increases as frequency. Although there are oscilla-
tions attributing to nonlinearity in potentials, the emergent induc-
tance is generally positive above Ec. These results suggest that the
sign of the emergent inductance can be controlled by the external
electric field. As suggested in Eq. (27), the sign of the inductance is
determined by the competition between two contributions; how-
ever, these contributions are material dependent. Utilizing the
nonlinearity provides an additional means to manipulate the sign of
the inductance.

Quality factor:Q(ω). Finally, let us discuss the quality factor. The
quality factor Q(ω) which is often used to evaluate the perfor-
mance of an inductance, is defined by the ratio of the imaginary
part and the real part of a complex impedance, Q(ω)=−
Im[Z(ω)]/Re[Z(ω)] ≈ ωL/R. The frequency dependence of the
quality factor is presented in Fig. 5a, showing the sign change in
Q(ω) at the characteristic frequency of magnetic excitations.
When the extrinsic pinning frequency is smaller than the intrinsic
pinning, ωext < ωint, the quality factor is negative below the
extrinsic pinning frequency while changes to positive above it. On
the other hand, when the extrinsic pinning frequency exceeds the

intrinsic pinning frequency, the quality factor takes a positive
value associated with the extrinsic pinning, then changes to
negative. The frequency and the extrinsic pinning frequency
dependence of the quality factor is depicted in Fig. 5b, showing
that the quality factor becomes larger when ωext > ωint. This
suggests that the quality factor is improved by intentionally
introducing impurities to increase the extrinsic pinning fre-
quency. The quality factor is usually the order of Q ~ 10−1 with
the typical parameters in spiral magnets, whereas current com-
mercial inductors have the order of magnitude larger quality
factor, Q= 101 ~ 102. However, as it is inversely proportional to
the resistance, a higher quality factor is expected for metals with
higher mobility.

Discussion
Experimentally, negative inductance has been observed in a short-
period helimagnet Gd3Ru4Al12. Our result given in Eq. (27)
suggests that magnetic excitations in Gd3Ru4Al12 are gapped, and
the phason contribution is considered to be dominant comparing
to contributions from uniform moments. The Debye-type
relaxation behavior shown in Fig. 3 is also observed in
Gd3Ru4Al12. Regarding the nonlinearity, our result given in Fig. 4

Fig. 4 The emergent inductance with nonlinear pinning potentials. a The emergent inductance L(ω) at ω= 3 kHz is plotted as a function of the applied
electric field E0. The inset shows the magnified behavior at the low field region. The red (blue) line shows the inductance with the phason gap Kψ= 104 Hz
(107Hz). b The emergent inductance is plotted as a function of frequency ω and the applied field E0. Other parameters are the pinning potential for the
uniform moment Kz= 106 Hz, the exchange coupling constant J= 200meV, the scattering lifetime of electrons τe= 10 fs, the cross section of the system
A= 10 μm2, the lattice constant la= 4 Å, the distance between electrodes ls= 10 μm, the Gilbert damping constant α= 0.5, and the propagation vector of
spiral Q= 2.24 nm−1.

Fig. 5 The quality factor of the emergent inductance. a The quality factor with the phason gap Kψ= 104 Hz and 107 Hz is plotted as a function of the
frequency ω. The inset shows a magnified behavior at the low-frequency regime. b The quality factor is plotted as a function of the frequency ω and the
phason excitation gap Kψ. Other parameters are the pinning potential for the uniform moment Kz= 106 Hz, the exchange coupling constant J= 200meV,
the scattering lifetime of electrons τe= 10 fs, the cross section of the system A= 10 μm2, the lattice constant la= 4 Å, the distance between electrodes
ls= 10 μm, the Gilbert damping constant α= 0.5, and the propagation vector of spiral Q= 2.24 nm−1.
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shows quadratic dependence to an applied field, L ¼ c0 þ c2E
2
0;

the same behavior was experimentally reported41. Recently,
another short-pitch metallic helimagnet YMn6Sn6 is reported to
show considerably large emergent inductance above the room
temperature48. In this compound, the inductance changes nega-
tive to positive as increasing temperature towards the phase
transition temperature to the forced-ferromagnetic states. This
behavior can be explained by the softening of the phason modes;
in the low-temperature regime, the phason is pinned by impu-
rities, whereas the phason is thermally excited and depinned in
the high temperature near the transition. The sign change of the
inductance from negative to positive by increasing applied cur-
rent density is also reported. Our result shown in Fig. 4 suggests
that the sign change is attributed to the depinning transition of
the phason.

Let us discuss the Q-dependence of the inductance. In the
previous studies based on the adiabatic approach: the spin-
transfer torque and the emergent electromagnetic field39,40, the
inductance is predicted to be proportional to Q. Contrary, our
results shown in Eqs. (25) and (27) are independent of Q when
Q2

2me
>> 2J . This discrepancy arises from differences in considered

limits; the previous studies focus on the long pitch spiral or the
adiabatic limit, whereas our focus is on the short pitch spiral or
the nonadiabatic limit. Thus, our study and the previous studies
are complementary. These results suggest that there is a crossover
around Q2

2me
� 2J between the adiabatic and nonadiabatic trans-

port, and the inductance saturates and becomes independent of
the pitch of the spiral as Q increases.

Lastly, we discuss the stability of the system. The negative L
does not mean the negative energy for the magnetic field in the
present case. Instead, it is related to the electric field with
momentum q= 0. The stability of the system is ensured by the
analyticity of conductance or conductivity in the upper half of the
complex frequency plane, i.e., the causality condition is satisfied.
For example, in classical electromagnetism, a resistor-inductor
circuit (RL circuit) with negative inductance is known to be
unstable as its transient solution is given by I(t)∝ e−Rt/L where
I(t) is a current. The conductance in this system is given by
G(ω)= 1/(R− iωL) whose pole is located at ωp=− iR/L. When
both R and L are positive, the conductance is analytical in the
upper half of the complex plane, ensuring stability, whereas when
the L < 0, the conductance is no longer analytical, and the system
becomes unstable. To apply the same argument to spiral magnets,
the pole of the complex conductivity, Eq. (22), are found at

ωp ¼
±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4KzKψ�α2 Kz�Kψð Þ2

p
2ð1þα2Þ � i

αðKzþKψÞ
2ð1þα2Þ

α2

4 <
KzKψ

ðKz�KψÞ2

� �

�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2ðKz�Kψ Þ2�4KzKψ

p
± αðKzþKψ Þ

2ð1þα2Þ
α2

4 >
KzKψ

ðKz�Kψ Þ2

� �
;

8>>><
>>>:

ð28Þ
where all the poles are located in the lower half of the complex
plane ensuring analyticity of the conductivity in the upper half of
complex plane. Namely, the stability of the system is retained
even with a negative inductance in spiral magnets.

In conclusion, we have microscopically derived the analytical
expressions of an emergent inductance in spiral magnets based
on the linear response theory of conductivity and identified the
role of the phason collective modes in the emergent inductance.
We revealed that the sign of inductance is positive when the
phason excitation is gapless in the absence of impurity pining,
while it can be both negative and positive in the presence of
pinning. For the pinned case, the sign of inductance is deter-
mined by a competition between contributions from phason
and uniform magnetization excitations; phason excitation

contributes to negative inductance, and uniform moment
excitation contributes to positive inductance. We further
investigate the nonlinearity in emergent inductance and found
that the depinning transition of the magnetic spiral can cause
the sign change of inductance. This nonlinearity and depinning
processes provide a way to control the sign of inductance by
external electric fields. Finally, we have evaluated the quality
factor and its dependence on extrinsic pinning. As a result, we
found that the quality factor becomes larger when the extrinsic
pinning potential exceeds the intrinsic pinning potential. We
believe that our results would provide the microscopic under-
standing and essential knowledge for devise applications of the
emergent inductance.

Methods
We use the fourth-order Runge–Kutta method to solve the equations of motion
with the nonlinear potentials. We examine the real-time dynamics of the magnetic
excitations under the oscillating field, EðtÞ ¼ E0 cosðωtÞ, and perform the Fourier
transformation to extract the first-harmonic components, ψ(ω) and mz(ω).

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper.
Additional data related to this paper may be requested from the author.
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