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Emergent PT -symmetry breaking of collective
modes with topological critical phenomena
Jian-Song Pan1✉, Wei Yi 2,3✉ & Jiangbin Gong 1✉

The spontaneous breaking of parity-time (PT ) symmetry yields rich critical behavior in non-

Hermitian systems, and has stimulated much interest, albeit most previous studies were

performed within the single-particle or mean-field framework. Here, by studying the collec-

tive excitations of a Fermi superfluid with PT -symmetric spin-orbit coupling, we uncover an

emergent PT -symmetry breaking in the Anderson-Bogoliubov (AB) collective modes, even

as the superfluid ground state retains an unbroken PT symmetry. The critical point of the

transition is marked by a non-analytic kink in the speed of sound, which derives from the

coalescence and annihilation of the AB mode and its hole partner, reminiscent of the particle-

antiparticle annihilation. The system consequently becomes immune to low-frequency

external perturbations at the critical point, a phenomenon associated with the spectral

topology of the complex quasiparticle dispersion. This critical phenomenon offers a fasci-

nating route toward perturbation-free quantum states.
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The eigenspectrum of a parity-time (PT )-symmetric
Hamiltonian is either completely real, or formed by com-
plex conjugate pairs, depending on the symmetry of its

eigenstates1–3. By tuning system parameters, the PT symmetry of
eigenstates can be spontaneously broken across critical (or
exceptional) points4, where coalescing eigenstates and eigen-
energies give rise to intriguing critical phenomena. PT -symmetry
breaking and the critical phenomena thereof have been exten-
sively studied in the past decades, over a plethora of physical
systems ranging from photonics5–17, acoustics and phononics18,
to single spins19,20, quantum gases21 and superconducting
wires22,23. Most of these prior studies relied on single-particle or
mean-field descriptions. Moving forward, the interplay of
PT -symmetry breaking and many-body correlations, which lies
at the cutting edge of the current research, is expected to yield
rich and exotic critical behavior24–29.

In previous studies, critical behavior at an exceptional point
largely emerges in some exotic dynamics such as the enhanced
spectral response30,31 and the robust energy transfer32–34. In a
many-body setting, experimentally relevant dynamic processes
are generally dominated by low-energy excitations. Investigating
the low-energy collective excitations in a PT -symmetric many-
body system is therefore a crucial first step toward a deeper
understanding of the many-body criticality therein.

In this work, we theoretically demonstrate an emergent
PT -symmetry breaking in the collective modes of a Fermi super-
fluid, and investigate in detail the rich many-body critical phenomena
therein. Specifically, we study the pairing superfluid and collective
excitations of a two-component Fermi gas under a non-Hermitian,
PT -symmetric spin-orbit coupling (SOC). Characterized by a non-
Hermitian extension of the Bardeen-Cooper-Schrieffer (BCS) theory,
the ground state of the system is a PT -symmetry-preserving
superfluid with real energy. Intriguingly though, the Bogoliubov
quasiparticle excitations above the BCS state feature complex dis-
persions, forming closed spectral loops on the complex plane. The
ground state can therefore be regarded as a point-gap topological
superfluid, insofar as it possesses both the pairing order and a spectral
winding topology35–39 regarding its quasiparticle excitations.

Remarkably, the Anderson-Bogoliubov collective modes of the
superfluid undergo a PT -symmetry transition as the SOC strength
is tuned, while the superfluid ground state remains PT -symmetry
unbroken. In particular, a critical SOC strength exists, separating
PT -symmetry unbroken and broken phases of the Anderson-
Bogoliubov (AB) modes that have purely real or imaginary spectra,
respectively. At this emergent PT transition, the AB mode and its
hole partner coalesce and annihilate each other, leading to the
complete disappearance of low-frequency excitations, as the speed
of sound vanishes in a kink at the transition. This is in sharp
contrast to the case with a single-particle PT -symmetric system,
where eigenmodes merely merge at the critical point. Such a many-
body critical behavior is associated with the point-gap topology of
the quasiparticle dispersion, which suggests a topologically robust
critical state that is immune to low-frequency perturbations.

Results
Non-Hermitian Fermi gases with PT -symmetric SOC. We
consider a two-component, attractively interacting Fermi gas in
three dimensions. The Fermi gas is loaded in an optical lattice and
subject to a one-dimensional, imaginary SOC, with the Hamiltonian

H ¼ �∑
k
Cy
k ∑

ζ¼x;y;z
ts;ζ cos kζ þ itsoσz sin kx

 !
Ck

� U
V

∑
k;k0;q

cyqþk"c
y
q�k#c�q�k0#c�qþk0";

ð1Þ

where Ck ¼ ð ck" ck# ÞT , with cykσ¼";# (ckσ) the creation (annihi-
lation) operator of a spin-σ fermion with quasimomentum
k= (kx, ky, kz). ts,ζ is the hopping rate in the ζ spatial direction, tso is
the SOC strength, σz is the Pauli matrix, and U is the interaction
strength with the quantization volume given by V. Here the ima-
ginary SOC may be implemented using spin-dependent
dissipation21, non-reciprocal hopping40, or dissipative Raman
processes41.

Hamiltonian (1) is invariant under the combined transforma-
tion of the parity operator P : ckσ ! c�kσ , and the time-reversal
operator T : ckσ ! ½iσy�σσ 0c�kσ 0 and i→− i (or equivalently,
iKσy with the complex conjugation operator K and Pauli matrix
σy in the first quantization), but possesses neither P nor T
symmetry separately. Notably, although the single-particle spectra
of Hamiltonian (1) are typically complex, the eigenenergies come
in conjugate pairs, such that a non-interacting Fermi sea features
a real Fermi energy.

Non-Hermitian BCS formalism. Pairing superfluidity has been
investigated in open systems using non-Hermitian variations of
the BCS formalism42–47. In the spirit of these studies, we define
the s-wave pairing order parameters Δ=− (U/V)∑k〈c−k↓ck↑〉 and
�Δ ¼ �ðU=VÞ∑khcyk"cy�k#i. Note that �Δ≠Δ� for general non-
Hermitian systems44,47. The non-Hermitian BCS mean-field
Hamiltonian is given by

ĤBCS ¼ ∑
k
Cy
khkCk þ∑

k
Δcyk"c

y
�k# þ �Δc�k#ck"

� �
; ð2Þ

where a constant energy shift VΔ�Δ=U is dropped. The BCS
Hamiltonian can be diagonalized as ĤBCS � μN̂ ¼
∑kσEkσα

y
kσβkσ (with the chemical potential μ and the total particle

number operator N̂ ¼ ∑kσc
y
kσckσ) through the Bogoliubov

transformations

βk"
βk#

 !
¼ Uk

ck"

cy�k#

 !
;

αyk"

αyk#

 !
¼ ðU�1

k ÞT cyk"
c�k#

 !
: ð3Þ

Here Uk¼
uk υk
��υk uk

� �
, with uk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ð1þ

ξk
Ek
Þ

q
, υk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ
2�Δ ð1�

ξk
Ek
Þ

q
,

�υk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Δ
2Δ ð1�

ξk
Ek
Þ

q
, ξk ¼ �∑ζ¼x;y;zðts;ζ cos kζ þ itso sin kxÞ � μ,

and Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ΔΔþ ξ2k

q
. Under the convention

ffiffiffi
z

p
≥ 0 for z 2 C,

Ekσ= ± Ek are respectively identified as the quasiparticle (positive)
and quasihole (negative) dispersions, with the corresponding field
operators satisfying fαykσ ; βk0σ 0 g ¼ δσσ 0δkk0 and fαkσ ; βk0σ 0 g ¼ 0.

The ground BCS state of the system is then constructed by
filling the quasihole band Ek↓, and is captured by the density
matrix ρBCS ¼ ΨBCS

�� �
~ΨBCS
	 ��, with ΨBCS

�� � / Qkðuk �
υkc

y
k"c

y
�k#Þ vacj i and ~ΨBCS

�� � /Qkðu�k � �υ�kc
y
k"c

y
�k#Þ vacj i. Such

a treatment is equivalent to the zero-temperature limit of the
Gibbs-state assumption ρG ¼ exp½�βðĤBCS � μN̂Þ� in ref. 47.

By substituting the BCS density matrix ρBCS into the definitions
of Δ=−(U/V)∑kTr(ρBCSc−k↓ck↑) and the total particle number
Na ¼ TrðρBCSN̂Þ, the self-consistent gap (top row) and number
(lower row) equations are

1

ν

� �
¼ 1

2V
∑
k

U=Ek

1� ξk=Ek

� �
; ð4Þ

where the density ν=Na/(2V). Using ξk ¼ ξ��k under the PT
symmetry, an inspection of the summation in Eq. (4) reveals that
the product Δ�Δ must be real for this equation to hold. Without
loss of generality, we denote Δ= ∣Δ∣eiθ and �Δ ¼ j�Δje�iðθþnπÞ,
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where θ is an arbitrary phase and n 2 Z. Interestingly, under the
U(1) gauge transformation ckσ→ eiθ/2ckσ, Δ and �Δ both become
real numbers, which leads to PT ΨBCS

�� � ¼ ΨBCS
�� �

,
PT ~ΨBCS
�� � ¼ ~ΨBCS

�� �
, and PT ρBCSðPT Þ�1 ¼ ρBCS. The

BCS ground state thus preserves the PT symmetry up to a
U(1) gauge transformation, which suggests that the BCS ground-
state energy is necessarily real.

Furthermore, we find that the BCS ground state always lies
within the sector Δ�Δ> 0. Considering the fact that the gap and
number equations are only dependent on the product Δ and �Δ,
rather than their relative ratio, we take Δ� ¼ �Δ, which does not
affect the physical conclusions of our work. For numerical
calculations, we focus on a quasi-one-dimensional configuration,
where the Fermi gas is tightly confined in the spatial directions
perpendicular to that of the SOC, such that ts,y,z≪ ts,x. Integrating
out the transverse degrees of freedom and replacing V−1∑k with
L�1
x ∑kx

(Lx being the lattice size long the x direction) in Eq. (4),
we self-consistently solve the gap and number equations for
{Δ, μ}, from which the BCS ground state, as well as Bogoliubov
quasiparticle spectra, are constructed. For convenience, we drop
the label x in the following discussions. Note that the residue
degrees of freedom in the transverse direction differentiate our
quasi-one-dimensional Fermi gas with an exact one-dimensional
system where strong quantum fluctuations would render the
mean-field treatment unreliable.

Point-gap topological superfluid. In Fig. 1a, we show the
numerically calculated ground-state phase diagram (see addi-
tional discussions in Supplementary Note 2). Unlike the con-
ventional Hermitian case, where the superfluid phase transition is
continuous, our model possesses a first-order phase boundary
between the superfluid (SF) and the normal (N) phase, as evi-
denced by the plotted discontinuous color changes across the
phase boundary. Such a behavior originates from the competition
between the pairing interaction and an imaginary gap introduced
by the non-Hermitian SOC [see Fig. 1b and c]. Note that the
phase transition becomes continuous in the vacuum limit with
the particle density ν=Na/L→ 0.

In the superfluid phase, quasiparticle dispersions Ekσ form
closed spectral loops on the complex plane, reminiscent of the
eigenspectral point-gap topology associated with the seminal
non-Hermitian skin effects35–39,48. The spectral winding number

characterizing the ground-state point-gap topology is given by

WðΩÞ ¼ 1
2π i

Z
dk

∂

∂k
arg½Ek#ðkÞ �Ω�; ð5Þ

where Ω is the reference energy. In contrast to the normal phase,
where the excitation spectra are gapless and W is ill-defined, W
takes quantized values in the superfluid phase. As illustrated in
Fig. 1c, W(Ω) can take quantized values of 0, 1, or 2, when Ω is
chosen within different regimes. The absolute value of W
indicates the degeneracy of edge modes with eigenenergy Ω,
under a semi-infinite boundary condition 38,39(also see Supple-
mentary Note 1). This implies that the BCS state possesses not
only pairing order parameter but also nontrivial point-gap
topology, and thus represents a point-gap topological superfluid
state. Whereas it is naturally expected that quasiparticle
excitations of the superfluid would similarly be localized at the
boundaries under an open boundary condition36,37,49–60, we
instead focus here on the physics of collective modes, where the
point-gap topological nature of the superfluid has a dramatic
impact.

Spontaneous PT -symmetry breaking of AB modes. The
spontaneous breaking of U(1) gauge symmetry by the pairing
order generally leads to the emergence of gapless AB collective
modes, which manifest themselves as the divergence in the linear
response. We extend the conventional dynamic BCS theory61,62

into the non-Hermitian regime, and derive the density response
function

χðq;ωÞ ¼ 1
4π

I
00 � Δj j2 I

2I11 þ ω2I
02I22 � 2ω2I12I

0I
I11I22 � ω2I212

� �
; ð6Þ

where the response function χ(q, ω) characterizes the density
fluctuation of the superfluid to a small external perturbation of
frequency ω and momentum q, with the definitions of integrals
fI; I0; I 00 ; I11; I12; I22g as functions of ω and q (see the details in
Methods and the Supplementary Note 3). To unravel the com-
plete response feature of our model, we extend the definition of χ
into the complex-frequency regime63,64, which corresponds to the
linear response of damped/amplified perturbations, when the
frequency deviates from the real axis. Similar to the Hermitian
case, the first term on the right hand side of Eq. (6) represents the
linear-response results from the standard BCS theory, and the
second term, being proportional to ∣Δ∣2, represents contributions

−1 0 1

k/π

U
/ε

�

Im(E)b cIm(E)

Re(E) Re(E)

Fermi surface

0 1 1.50.5|Δ|/ε

0 0.5 1
0

2

4
a

SF
W=0   1    2

N

Fig. 1 Pairing in a non-Hermitian superfluid. a Phase diagram on the occupation fraction and interaction coefficient (ν−U) plane, where the background
colors indicate the order parameter Δ. The self-consistent ground state of the system undergoes a first-order phase transition from the normal phase (N)
to the superfluid phase (SF) when increasing U. b, c Bogoliubov quasiparticle spectra in the limit Δ= 0 (the normal phase) (b) and SF phase (c) in the
complex plane. As shown in (b), fermions in a potential Cooper pair are separated by a finite imaginary energy gap (vertical distance) on the Fermi surface,
which underlies the first-order phase transition. The quasiparticle spectra are gapped in the SF phase (see c), which implies the emergence of quantized
spectral winding number W for the occupied bands. Different shades of gray in (c) mark regions for different choice of reference energy. Here we take the
hopping strength ts/ε= 1 and the SOC strength tso/ε= 0.5 with the unit of energy as the recoil energy ε= _2a−2/(2m), where _ is the Plank constant, a is
the lattice constant (unit of length) and m is the mass of fermions.
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from quantum fluctuations of the pairing field that are respon-
sible for the AB collective modes.

In general, χ has two types of poles: poles of I″ which arise from
the breaking of Cooper pairs into Bogoliubov quasiparticles; and
poles of the second term in Eq. (6), which satisfy I11I22 ¼ ω2I212,
and originate from the AB collective modes61. In fact, poles of the
first type generally exist in the integrands of fI; I0; I 00 ; I11; I12; I22g
which appear to be singular at ω= Ek+q/2+ Ek−q/2 (see
Supplementary Note 3). In a Hermitian BCS state, most of these
poles are removable singularities of the integral, with the only
irremovable ones located at the extremal frequencies, i.e., when
ω=max(Ek+q/2+ Ek−q/2) or ω=min(Ek+q/2+ Ek−q/2) with
k∈ [−π, π). These irremovable singularities mark the thresholds
for the pair-breaking process. By contrast, in our non-Hermitian
BCS state, since the frequency ω is extended to the complex
regime, the spectral winding of quasiparticles in general
guarantees that the extremal conditions of the real and complex
components of ω= Ek+q/2+ Ek−q/2 should not be satisfied
simultaneously. This implies that the extremal conditions can
never be met, and the singularities are all removable. For example,
the integrals around the singular points with minimal real
frequencies can be approximately rewritten asR δ
�δ dkðk2 þ ickÞ�1 ¼ ðicÞ�1 R δ

�δ dk½k�1 � ðkþ icÞ�1� � 2δ=c2,
which implies that the integrals are not divergent. It follows that
poles of the first type completely disappear in our non-Hermitian
setting.

In Fig. 2a, we show the typical landscape of χ on the complex
frequency plane. Two separate poles (both of the second type) can
be identified, one in the low-frequency regime, located on either
the real of imaginary axis; the other in the high-frequency regime,
lying within the spectral loop ω= Ek+q/2+ Ek−q/2. Note that these
are contrasted with the poles of I″, which only appear on the
spectral loop ω= Ek+q/2+ Ek−q/2, not within. Both poles are
characterized by I11I22 ¼ ω2I212, and therefore contribute toward
the AB collective modes. Given the location of the high-frequency
pole, the high-frequency AB modes are then always gapped. To
understand the gapless phonon excitations, we thus focus on the
low-frequency regime [see the lower branch in Fig. 2b].

In Fig. 3, we show the response function in the low-frequency
regime, with either small (aI, aII, and aIII) or large (bI, bII, and
bIII) SOC strength. The location of sharp peaks satisfy I11I22 ¼

ω2I212 (at the obvious pole of the response function), from which
we solve for the dispersion of AB modes ωAB(q) for different SOC
strengths [see Fig. 3c, d]. Note that the resultant dispersions of
AB modes change from purely real for tso < ts, to purely imaginary
for tso > ts, thus indicating an intriguing transition point. This is
in contrast to the BCS ground state that always features a real
energy. Note that the spectra of the higher branch of the collective
modes [see Fig. 2b] obtained from the sharp peaks plotted in
Fig. 2a], are also real, regardless of the value of tso. Thus, an
emergent PT -symmetry breaking occurs in the lower branch of
the collective modes, at the critical point tso= ts. Close to the
critical point, the speed of sound υp ¼ ∂ωAB=∂qjq¼0, which
characterizes the speed of propagation for phonon modes, rapidly
vanishes toward a non-analytic kink at the transition point [see
inset of Fig. 3c], confirming the existence of a quantum phase
transition65. Furthermore, under a low-frequency, small-
momentum expansion, the equation I11I22 ¼ ω2I212 is reduced
to ω= ±υp, with υ2p > 0 (υ2p < 0) in the PT unbroken (broken)
phase (see the “Methods” for more information). Numerical
calculations then reveal that, at the critical point, υp vanishes with
a critical exponent 1/2, consistent with a direct numerical fit in
Fig. 4.

The softening of phonon mode derives from the coalescence of
the AB mode and its hole partner [see Fig. 3c, d]. In contrast to
the mere merging of eigenmodes in single-particle PT -symmetric
systems, the particle and hole modes annihilate each other at the
critical point. This is also in contrast to previous studies on the
coalescence of the Bogoliubov modes at the critical exceptional
point of a two-component Bose–Einstein condensate25,27,29,
where phonon modes with linear dispersion persist at the critical
point. Indeed, a direct consequence of the annihilation of AB
modes here is the complete absence of response to low-frequency
perturbations, which, as we show below, is associated with the
spectral point-gap topology.

Critical phase. Here we focus on system’s behavior precisely at
the critical point tso= ts. The real-to-complex transition at this
point indicates that the low-frequency branch of the response
function vanishes there, such that collective modes of the
system are entirely determined by the high-frequency branch
[see Fig. 4a]. We then have access to a peculiar scenario. As
illustrated in the inset of Fig. 4a, the total response function χ
completely vanishes outside the spectral loop ω= Ek+q/2+ Ek
−q/2, whose shapes are shown in Fig. 4b, even though con-
tributions from the BCS theory (blue) and order-parameter
fluctuations (black) remain finite (see the shaded region).
Physically, such a behavior suggests a critical phase that is
immune to low-frequency perturbations. Remarkably, the total
absence of linear response at the critical point can be analy-
tically proven by changing the integrals in Eq. (6) into contour
integrals on the complex plane, with the transformation z= eik.
Given the spectral-loop structures of the Bogoliubov quasi-
particles, all the integrals can be performed analytically
through the Cauchy’s theorem (see Supplementary Note 4 for
the calculations). As such, the robustness of the critical phase is
linked to the spectral point-gap topology of the Fermi
quasiparticles.

Physically, the disappearance of linear response at the critical
point can be understood through the exotic behavior of the BCS
theory at the critical point. Explicitly, at the critical point, the

quasiparticle spectrum is given by EðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔj2 þ ðtsz þ μÞ2

q
,

with z= eik and k∈ [0, 2π), which is analytic on the complex
plane of z. The gap and number equations are therefore only
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Re(ω)/ε
Im(ω)/ε
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e(

ω
)/ε
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a b

Fig. 2 Response function and collective modes. a Typical distribution of
response function χ(q,ω) on the complex frequency plane with a fixed
perturbation momentum q/π= 0.5. The sharp peaks reflect the presence of
collective modes. The surface colors are only employed to increase
visibility. b Dispersions of collective modes, obtained from the divergent
sharp peaks plotted in (a). Note that the imaginary parts of the spectra are
zero here, as we set the spin-orbit coupling (SOC) strength tso smaller than
the hopping coefficient ts. The red lower (blue higher) branch locates
outside (inside) the spectral loop ω= Ek+q/2+ Ek−q/2 with quasi-energy Ek,
which is marked by the dash-dotted curve in (a). Here we take the
parameters: hopping coefficient ts/ε= 1, SOC strength tso/ε= 0.5,
occupation fraction ν= 1/4 and interaction coefficient U/ε= 4 with the
recoil energy ε, in our calculations.
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determined by the residue near z= 0, and can be reduced to

1
U

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔj2 þ μ2

p ; ν ¼ 1
2

1þ μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔj2 þ μ2

p
 !

: ð7Þ

The above equations can be analytically solved, with the solutions
μ ¼ Uðν � 1

2Þ and jΔj ¼ U
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νð1� νÞ

p
. More importantly, since

the BCS theory at the critical point is dispersionless, for
perturbations with frequencies outside the spectral loop ω=
Ek+q/2+ Ek−q/2 in the complex plane, their impact on the system
would be the same as that of a zero-momentum perturbation,
which cannot lead to any fluctuations. The critical phase is only
responsive to perturbations with frequencies lying within the
spectral loop ω= Ek+q/2+ Ek−q/2.

The complete suppression of the response function here is to
be contrasted with the partial suppression in gapped systems.
Therein, the response to an external perturbation at a frequency

inside the gap is generally suppressed but does not completely
vanish. Indeed, the coupling with bulk modes contributes
perturbatively to the response function which, to leading order,
becomes inversely proportional to the detuning of the perturba-
tion frequency with respect to the bulk spectra. A vanishing
response function outside the spectral loop is therefore entirely
nontrivial.

Conclusion. We have uncovered an emergent PT -symmetry
breaking in the collective AB modes of a Fermi superfluid, and
characterized in detail the exotic many-body critical phenomena
at the transition point. Despite the complex quasiparticle spectra,
the superfluid state is generally stabilized by the finite pairing gap.
However, in the PT -broken regime where the low-energy AB
modes become purely imaginary, the superfluid may become
dynamically unstable, and give way to more exotic dynamic
phenomena. In previous studies, PT -symmetry breaking in the
superconductivity fluctuations has been reported in super-
conducting wires22,23. Their starting point, however, is the phe-
nomenological Ginsburg-Landau field theory, and the dominant
fluctuations therein originate from Cooper-pair breaking, rather
than the AB modes discussed here. The topologically robust
critical phase discussed in this work opens up a new avenue
toward the preparation of perturbation-free quantum states under
PT symmetry. Further, while we focus on a quasi-one-
dimensional configuration, emergent PT -symmetry breaking
should also occur in higher dimensions, where the impact of
dimensionality on the many-body critical phenomena would be
an interesting open question for future studies.

Methods
Linear response function under the dynamic BCS theory. The linear response
function χ(q, ω), which characterizes the dynamics of superfluid state in the pre-
sence of small external perturbations, is derived under the dynamic BCS
theory61,62. In the Hermitian limit, the dynamic BCS theory yields the same
response function with that from the diagrammatical approach, but the former has
a more straightforward physical picture61.

Our starting point is the non-Hermitian BCS Hamiltonian

Ĥ0 ¼ ĤBCS � μN̂ ¼ ∑
k
ð cyk" c�k# Þ

ξk Δ
�Δ �ξk

� � ck"

cy�k#

 !

¼ ∑
k
ð cyk1 cyk2 Þϵ̂

0;T
k

ck1
ck2

� �
;

ð8Þ
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where ck1= ck↑, ck2 ¼ cy�k#, and ϵ̂0k ¼
ξk �Δ
Δ �ξk

� �
. To show that the response

function is only dependent on �ΔΔ, as we claimed in the main text (which is not
apparent here), we regard Δ* and �Δ as different quantities throughout the
derivation here. Assuming the density fluctuations are coupled with external
perturbations of frequency ω and momentum q, the perturbation-fluctuation
Hamiltonian is given by

δH ¼ ∑
kλλ0

cykþq=2λðδϵ̂T Þλλ0 ck�q=2λ0 þ h:c:; ð9Þ

with δϵ̂ ¼ δF δ�Δ
δΔ �δF

� �
, where δF and δΔ, respectively denote the external

perturbations and the fluctuations of pairing field. Then the dynamic BCS
Hamiltonian is given by

Ĥtot ¼ Ĥ0 þ δĤ; ð10Þ

which also satisfies the parity symmetry PĤtotP�1 ¼ Ĥ
y
tot . The density response

function is defined as

χ q;ω

 � ¼ δn=δF; δn ¼ L�1 ∑

k
δnk

 �

11; ð11Þ

where ðδn̂kÞλλ0¼1;2 ¼ hcyk�q=2;λckþq=2;λ0 i.
Considering the time evolution of ΨBCS

�� �
under Ĥtot in the Schrödinger

picture, along with ρBCS ¼ ΨBCS
�� �

ΨBCS
	 ��P (P being the parity operator), we

write down the Heisenberg equation i∂hδn̂ki=∂t ¼ hδn̂kĤt � P�1Ĥ
y
tPδn̂ki, which

can be simplified as

ωδn̂k � δn̂k ϵ̂
0
kþq=2 � ϵ̂0k�q=2δn̂k þ n̂0k�q=2δϵ̂k � δϵ̂kn̂

0
kþq=2: ð12Þ

Here we follow the spirit of linear response and write δn̂kðtÞ � eiωtδn̂kð0Þ, where
the matrix elements of the density operator n̂0m is given by ðn̂0kÞλλ0 ¼ hcykλckλ0 i.

Equation (12) is the kinetic equation that characterizes the fluctuation
dynamics, formally the same as that in the Hermitian case61. Such a formal

invariance is due to the presence of an η-pseudo-Hermiticity Ĥ
y
tot ¼ ηĤtotη

�1

with η ¼ P in our model. Hence, by writing the density matrix as
ρBCS ¼ ΨBCS

�� �
ΨBCS
	 ��P, the expectation value of an operator Â is given by

ΨBCS
	 ��ηÂ ΨBCS

�� �
. The formal invariance of the dynamic equation is therefore

guaranteed by that of the pseudo-Hermitian quantum mechanics66–70.
To unravel the complete response feature of our model, we discuss the response

dynamics in the whole the complex-frequency regime63,64, which corresponds to
the linear response of damped/amplified perturbations when the frequency deviates
from the real axis. The kinetic equation can be consistently solved with the
dynamic extension of gap equation,

∑
k

δn̂k

 �

12 þ
δ�Δ

2Ek

� 
¼ 0; ∑

k
δn̂k

 �

21 þ
δΔ

2Ek

� 
¼ 0; ð13Þ

which gives the expression of linear response function χðq;ωÞ ¼ δn̂11=δϵ̂11. As
shown in Supplementary Note 3, the derivation process of χ(q, ω) is lengthy but is
straightforward.

Low-frequency expansion of the collective modes. The dispersion of collective
modes is determined by the equation I11I22 ¼ ω2I212, and can be analytically
expanded in the low-frequency, small-momentum limit following Ref. 61. We start
by rewriting the integral I11 as

I11 ¼
1
2

Z
dk

Eþ þ E�
EþE�

ω2 � ðξþ � ξ�Þ2
ðEþ þ E�Þ2 � ω2

: ð14Þ

In the low-frequency, small-momentum limit, ξ± ≈ ξk ± ηkq, with

ηk ¼ ts sinðkÞ � itso cosðkÞ. Therefore,

I11 �
Ja
4
ω2 � Jbq

2; ð15Þ

where Ja ¼
R
dk 1=E3

k and Jb ¼
R
dk η2k=E

3
k . Similarly, we also have I22 ≈ I11−

Ja∣Δ∣2, and I12= Jc/2 with Jc ¼
R
dkξk=E

3
k . The equation I11I22 ¼ ω2I212 then leads

to

ω ¼ υpq; υp ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JaJbjΔj2

J2c þ J2ajΔj2

s
: ð16Þ

In Fig. 5a, we plot the numerically calculated expansion coefficients Ja,b,c, which are
all real numbers since ξ�k ¼ ξ�k and η�k ¼ �η�k .

We now study the collective spectra at the critical point, with tso= ts,
ξk=− tsz− μ, and ηk=−itsz, where z≔ eik. From the residue theorem, we have

Ja ¼ � i
Z
jzj¼1

dz 1

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔj2þðtszþμÞ2

p� �3 ¼ 2πffiffiffiffiffiffiffiffiffiffiffiffi
jΔj2þμ2

p� �3;
Jb ¼ � i

Z
jzj¼1

dz ð�itszÞ
2

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔj2þðtszþμÞ2

p� �3 ¼ 0;

Jc ¼ � i
Z
jzj¼1

dz �μ�tsz

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔj2þðtszþμÞ2

p� �3 ¼ �2μπffiffiffiffiffiffiffiffiffiffiffiffi
jΔj2þμ2

p� �3:
ð17Þ

Note that we have used the fact that Ek is gapped above the BCS ground state. This
means Ja and Jc are finite and positive at the critical point (note that μ < 0), while Jb
vanishes. Further, we calculate the derivative of Jb at the critical point tso= ts

∂Jb
∂tso

¼
Z

dk
2ηk
E3
k

∂ηk
∂tso

þ
Z

dk
�3ηk
E4
k

∂Ek

∂tso

¼ � i
Z
jzj¼1

dz
2ηðzÞ
zE3ðzÞ � i

2
ðz þ z�1Þ

� 

þ i
Z
jzj¼1

dz
3η2ðzÞ
zE4ðzÞ

1
EðzÞ jΔj ∂jΔj

∂tso

�

� ∂μ

∂tso
þ z þ z�1

2

� �
ξðzÞ



¼ �2πts

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ jΔj2

p
Þ3
<0:

ð18Þ

This implies Jb changes its sign from positive to negative at the critical point, which,
according to Eq. (16), is responsible for the transition of υp from real to imaginary
values at the critical point.

We show the numerically calculated υp in Fig. 5b. Clearly, υp softens to zero at
the critical point tso= ts, as discussed in the main text, and becomes imaginary in
the PT -broken regime. Since Jb is linear in ∣t− tso∣ close to the critical point, νp
indeed scales as jt � tsoj

1
2, consistent with numerical fits in the inset of Fig. 3c. Note

that we only show the positive branches of υp in Fig. 5b. The negative branches,
being the hole partners of AB modes, are symmetric to the positive branches.
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