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Universality of noise-induced resilience restoration
in spatially-extended ecological systems
Cheng Ma 1,2, Gyorgy Korniss1,2, Boleslaw K. Szymanski 1,2,3 & Jianxi Gao 2,3✉

Many systems may switch to an undesired state due to internal failures or external pertur-

bations, of which critical transitions toward degraded ecosystem states are prominent

examples. Resilience restoration focuses on the ability of spatially-extended systems and the

required time to recover to their desired states under stochastic environmental conditions.

The difficulty is rooted in the lack of mathematical tools to analyze systems with high

dimensionality, nonlinearity, and stochastic effects. Here we show that nucleation theory can

be employed to advance resilience restoration in spatially-embedded ecological systems.

We find that systems may exhibit single-cluster or multi-cluster phases depending on their

sizes and noise strengths. We also discover a scaling law governing the restoration time for

arbitrary system sizes and noise strengths in two-dimensional systems. This approach is not

limited to ecosystems and has applications in various dynamical systems, from biology to

infrastructural systems.
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Resilience, a system’s ability to retain its basic functionality
when errors and failures occur, is a defining property of
many complex systems1–3. Theoretical models of resilience

loss and transitions between alternative states are used to study
unanticipated and drastic changes. In real-world systems, many
critical transitions are observed, including catastrophic shifts in
ecological systems4,5, blackouts in power grids6, financial crises7,
climate changes8, human depression9. These abrupt shifts may
arise in the presence of alternative stable states. They can be
modeled as critical transitions causing the resilience loss of the
desired state, after which the systems switch from a functional to
dysfunctional state10–12. Ecologists are particularly concerned
about sudden critical switches between alternative stable states4,5.
As the system approaches the tipping point, its behavior becomes
barely predictable when the gradual change of some environ-
mental factors leads to the drastic change of the system state.
Once a system loses its resilience and becomes dysfunctional,
restoring the environmental conditions only to those existing
before the collapse is often insufficient. Instead, environmental
conditions should be recovered to the critical point where the
undesired state is destabilized and then resilience restoration
would occur. Even though various restoration methods targeted
at specific systems have been proposed, stochastic perturbations
receive little attention for the recovery of multi-variable
systems13–18. On the other hand, stability and resilience of sto-
chastic dynamical systems containing only one variable has been
extensively explored. In particular, it has been shown that noise
can induce transitions between alternative stable states and
the required time to transition has been established by computing
the mean first passage time (MFPT)2,19–21. Those studies indicate
that single-variable systems can switch between alternative stable
states in the presence of noise.

Despite advances in understanding the macroscopic char-
acteristics of resilience restoration, previous research has mostly
focused on single-variable or low-dimensional systems, which do
not account for an exceptionally large number of variables that in
reality are needed to control the state of a complex system.
Indeed, many real-world systems consist of numerous compo-
nents connected via a complex set of weighted, often directed,
interactions22. The complicated interactions may lead to phe-
nomena not arising in single-variable systems. For example, in
the ecosystems, the recovery (or extinction) of a species in one
location can impact the states of this species in the neighboring
locations, leading to a recovery (or extinction) over the entire
system23. Accordingly, a full understanding of the system evo-
lution, stability, and resilience cannot be gained without con-
sidering interactions among a sufficiently large amount of
components. However, hindered by the high-dimensionality of
interaction topology and the nonlinear evolution dynamics, few
analyses of critical transitions and resilience restoration had been
done directly on high-dimensional systems consisting of a great
number of participants until the effective reduction theory was
recently developed by Gao et al.3. This mean-field theory can be
used to effectively reduce a multi-dimensional complex system to
a one-dimensional system by capturing the average activities of
the original system. Furthermore, Liang et al.24 designed a uni-
versal indicator for critical transitions in complex networks and
concluded that noise compensates for the structural defects of
complex networks, indicating that noise may alter the critical
threshold. Jiang et al.25 studied mutualistic networks through
dimensional reduction and claimed that the tipping point can be
predicted accurately even in the presence of noise. Tu et al.26

developed an analytical framework for collapsing complex N-
dimensional networked systems into an M+ 1-dimensional
manifold as a function of M effective control parameters with
M≪N. While mean-field approaches may guide recovery

strategies by indicating the conditions needed to destabilize
undesired states, these approaches cannot accurately capture the
transition pattern toward the desired state of spatially extended
systems in stochastic environments. A recent study by Michaels
et al.27 combined nucleation theory with local-scale positive
feedback to understand transitions and resilience in ecological
systems. The classical approach to homogeneous nucleation
theory was originally developed to describe phase transformation
in materials28–32, in particular in ferromagnetic33,34 and ferro-
electric systems35,36. It was also applied to invasion phenomena
in spatial ecological systems37–40. Korniss et al.38 and O’Malley
et al.39 studied ecological invasion in spatially extended systems
with competition. They discriminate between two fundamental
modes of nucleating invasive clusters (single-cluster vs. multi-
cluster) and their time-evolution and stochastic features.

In this work, we study the resilience restoration in spatially
extended ecosystems, which focuses on a system’s ability and
required time to recover to its desired state from the undesired
one. As noise can induce transitions in single-variable systems,
and environmental stochasticity is an inherent property of real-
world ecosystems, we investigate resilience restoration by intro-
ducing stochastic perturbations into multi-variable systems,
providing a theoretical understanding of critical transitions in
spatially extended systems subject to environmental stochasticity.
Here, we show that nucleation theory builds an elegant bridge
between the noise-induced transition and the spread of such
transition over the entire system. Our study reveals the crucial
effects of noise strength and system size on transition features.
Generally, the stronger noise triggers the transition faster, and the
larger system takes less time to recover than the smaller system
under the same intensity of noise. For large systems or under
intense noise, there are multiple clusters nucleated almost
simultaneously in the beginning, and these clusters spread out to
their neighbors and finally to the entire system. Only one cluster
arises for small systems or under weak noise, which expands until
the whole system finishes transitions. Another substantial quan-
tity is the time required to recover a degraded system, and it is
determined by many factors, including system sizes, noise
strengths, and dynamical functions. Our numerical simulations
reveal that the transition times are narrowly centered at an
average value for the multi-cluster mode, signaling a deterministic
feature. While for the single-cluster mode, they vary stochastically
for different noise realizations and universally follow an expo-
nential distribution. Also, our study discovers that noise even-
tually eliminates the deterministic critical threshold, and the
recovery of the entire system from the dysfunctional state is
possible in the presence of perturbations as long as noise can
trigger the transition for just one component. This scenario is
likely to occur when the system is close to the deterministic
threshold where the undesired state loses stability. The farther
away the system is from this point, the more difficult it is for
noise to induce the transition.

Results
Transition in single-variable systems and the average lifetime.
The current analytical framework for noise-induced transitions is
specifically targeted at the low-dimensional system consisting of
only a few interacting components (or only one variable)12,19,41–43.
It would be highly challenging to directly analyze the system con-
sisting of many interacting components (for example, the square
lattice). Before the investigation of multi-variable systems, it is
helpful to understand the role of noise in single-variable systems
and the possibility of transitions between alternative stable states.

dx
dt

¼ f ðx; βÞ þ ηðtÞ: ð1Þ

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00758-2

2 COMMUNICATIONS PHYSICS |           (2021) 4:262 | https://doi.org/10.1038/s42005-021-00758-2 | www.nature.com/commsphys

www.nature.com/commsphys


For a single-dimensional system, the dynamics may follow the
general form as Eq. (1), where f(x, β) governs the deterministic
dynamics as the tunable parameter β captures the changing con-
ditions, and η(t) is delta-correlated noise with zero mean and var-
iance hηðtÞηðt0Þi ¼ σ2δðt � t0Þ, where σ is the standard deviation of
the noise, which is referred to as noise strength. If the system has a
fixed point, x0, it satisfies f(x0, β)= 0. This fixed point is stable if
∂f ðx;βÞ
∂x

���
x0
< 0, defined by the linear stability condition. These two

equations enable us to derive the resilience function x(β), which
represents all the possible steady states of the system as a function of
β, as shown in Fig. 1a. This resilience function demonstrates that
when the control parameter, β, is >βc2 , the system only has one
stable fixed point, denoted as xH, indicating a resilient state. The
system will always recover to the fixed point, xH, for any state
perturbations. When the parameter is <βc1 , the system also has a
single fixed point, xL, indicating a collapse of the system. The system
is not restorable, unless we change the parameter β. In this work, we
particularly focus on the parameter space where β is between βc1
and βc2 and close to one of the bifurcation points, such that the
system has one unstable fixed point (the dashed line) and two stable
fixed points, each with very different sizes of basin of attraction. In
the absence of noise, to shift from xL to xH, the environmental
conditions would need to be restored all the way to βc2 , to allow for
a transition back to xH. However, noise of the appropriate intensity
can trigger the transition without restoring the condition to βc2 . For
example, for a system with β1 and the system is in the low state, this
system can recover to the high state if the noise has a chance to
push the system across the unstable fixed point. Furthermore, for
two systems (the system 1 and the system 2) with parameters, β1
and β2 (β2 > β1), respectively, it is easier to restore the system 2,
because the undesired state of the system 2 is closer to the unstable

fixed point. Here, we introduce a normalized variable ρ(t) in Eq. (2)
to describe the state behavior during the restoration process. Thus,
the normalized stable fixed points are ρL= 0, ρH= 1 and the nor-
malized unstable fixed point is ρu (ρu∈ [0, 1]).

ρðtÞ ¼ xðtÞ � xL
xH � xL

ð2Þ

In the following analysis, we focus on the case when the desired
state ρH has a much larger basin of attraction than the undesired
state ρL, suitable to examine the “one-way recovery” from ρL to
ρH. Because of symmetry, the conclusions drawn from this study
should be applicable to the transition from ρH to ρL when ρL has a
larger basin of attraction. (see Supplementary Note 1 for the
detailed comparisons of one-way transitions and stochastic
switching between stable states). For the case that we consider
throughout the manuscript, the value of the unstable state ρu is
very close to ρL, increasing the chance for perturbations to push
the system from the state ρL over the unstable fixed point ρu until
the system gets attracted to the state ρH. It is noteworthy that the
backward transition is highly improbable by the same level of
perturbations because of the much stronger attraction of the state
ρH. To quantify the time needed for the transition from ρL to ρH,
the half lifetime, τ (mathematically, τ= {t∣ρ(t)= 0.5}), can be
safely used as an indicator of the degree of inertia associated with
the transition from the undesired state to the desired one. One
can choose any value as the cutoff as long as it is sufficiently
larger than the unstable state ρu38,44. The lifetime τ is determined
by the noise strength σ and the relative stability of alternative
stable states controlled by β. Intuitively, larger noise strength
indicates stronger fluctuations, which increases the chances of
transition, making τ smaller (Fig. 1c). On the other hand, as β
increases, the basin of attraction of the stable state ρH gets larger,

Fig. 1 The transition in the single-variable system. a The resilience function of a general bistable system. For the bifurcation parameter β 2 ðβc1 ; βc2 Þ, there
are two stable states (xL, xH) and one unstable state (xu). The initial stable state (xL) evolves to the unstable state (xu) by the aid of noise and is then
naturally attracted to the other stable state (xH) by its deterministic dynamics. b and c display the evolution of the rescaled state ρ in the presence of noise.
The time to transition (measured by the lifetime of the initial state), τ, changes with the system parameter β and noise strength σ (defined by the standard
deviation of Gaussian noise). b As β2 is closer to the critical value βc2 than β1, the unstable state ρu2 is lower, making the barrier in the landscape easier to
cross in the presence of the same strength of fluctuations, and the lifetime τ2 is thus smaller than τ1. c The parameter β is the same, leading to the same
landscape. In the presence of stronger noise σ2, it is easier to drive the system to get over the barrier, causing τ2 to be smaller than τ1. d shows the
simulation results of the average lifetime 〈τ〉 under different values of β and different noise strengths. The dashed line is fitted based on Eq. (4).
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making the transition from ρL to ρH easier so that τ typically
decreases (Fig. 1b). To better illustrate the transition process, the
underlying landscape picture45 is introduced, and the effective
potential energy is provided by Eq. (3) with zero potential energy
at x= 0. In the landscape representation, stable states are
traditionally treated as valleys, and unstable states are pictured
as hills4,46,47. The transition between stable states can be viewed
as the transition from one shallow valley to a deeper valley by
crossing the barrier.

Veff ðxÞ ¼ �
Z x

0
f ðx0Þ� �

dx0 ð3Þ

The transition time from one stable state to the other is a
random variable because of the stochastic fluctuations, but the
average quantity, 〈τ〉, follows a certain law. Based on the
derivations of the Kramers formula for the escape rate over a
potential barrier by particles of Brownian motion48,49, the average
transition time 〈τ〉 can be obtained through the analysis of the
MFPT, which is given by Eq. (4). From the quantitative
calculation, one can notice that 〈τ〉 increases exponentially
with the potential energy difference ΔV= V(xu)−V(xL) between
the low stable state and the unstable state (also interpreted as the
barrier height) and decreases with noise intensity σ2, which is
numerically verified in Fig. 1d. The analysis of single-variable
systems provides theoretical support for our intuitive assumption
that the low barrier height and strong noise facilitate transitions,
leading to resilience restoration (see refs. 42,48 for derivation).

hτi ¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 00ðxLÞjV 00ðxuÞj

p e2½VðxuÞ�VðxLÞ�=σ2 ð4Þ

With the knowledge of the average lifetime 〈τ〉 for single-
variable systems available, we are ready to investigate transitions
in multi-variable (spatially extended) systems. Nucleation theory
is utilized to analyze the generation and spread of the transition
in multi-variable systems under external fluctuations.

Spatially extended system and nucleation theory. Generally, the
evolution of a system that consists of N coupled components
under external perturbations is described by Eq. (5). This study
focuses on the spatially extended ecosystem, where one type of
species is considered, and its density varies in two-dimensional
space and is discretized according to the square lattice topology
with periodic boundaries. The deterministic dynamics of each
node follows the same self-dynamics F(xi) and the interaction
G(xi, xj), and parameters of these functions are also set uniformly
for all components. The element of the adjacency matrix A is
either 0 or a positive value R, which decides the coupling strength
between interacting elements. Additionally, to model the external
fluctuations acting on the node i, delta-correlated Gaussian noise
ηi(t) with zero mean and variance hηiðtÞηjðt0Þi ¼ σ2δijδðt � t0Þ is
introduced, which is the same as the noise applied to the single-
variable systems. This general framework can be used to describe
a wide range of coupling systems under external perturbations.

dxi
dt

¼ FðxiÞ þ ∑
N

j¼1
AijGðxi; xjÞ þ ηiðtÞ ð5Þ

dxeff
dt

¼ Fðxeff Þ þ βeffGðxeff ; xeff Þ ð6Þ

Utilizing the dimensional reduction theory3, the deterministic
evolution of multi-variable systems can be reduced to Eq. (6),
containing only one variable, xeff. In the lattice, the fixed states
and their stability for each component are proved to be the same
as in the reduced one-dimensional system50,51. Hence, according
to the analysis of single-variable systems, for the specific values of

effective interaction strength (β 2 ðβc1 ; βc2 Þ), each component in
this system has two stable states and one unstable state. In the
presence of noise, the transition from the low state xL to the high
state xH is possible for every component. Once the first transition
occurs to the node i, its neighbors will also recover through the
interaction with it. To show the overall evolution properties of the
entire system, the global state ρ(t) is defined in Eq. (7) by taking
the average of the individual state value

ρðtÞ ¼ hρiðtÞiN ¼ 1
N

∑
N

i¼1
ρiðtÞ: ð7Þ

The spread of such transition can be well described by the
theory of homogeneous nucleation and growth in finite
systems33,38,39, and this theory can also predict the spatial-
clustering pattern formed during the spreading process. The
transition from ρL to ρH occurs to some node at first, nucleating a
cluster, and this cluster continues to expand until it fills the entire
space, or the cluster’s edge reaches the edge(s) of other clusters
that have already nucleated in the system. Homogeneous
nucleation makes two assumptions38: nucleation occurs in a
Poisson process with a constant rate I both temporally and
spatially; once a cluster nucleates, it grows homogeneously with a
constant radial velocity v. Since the interaction environments for
all components are identical, and the perturbations they receive
come from the same distribution, each node has the same chance
to nucleate a cluster, which satisfies the assumptions of
homogeneous nucleation.

As predicted by homogeneous nucleation theory, the restora-
tion process exhibits different patterns for small systems and large
systems when the nucleation rate I is fixed. Small systems exhibit
the single-cluster pattern because the number of candidates is so
limited that the first cluster nucleates and spreads out to the rest
of the system before the second possible cluster emerges. Since
the nucleation for a specific individual follows a Poisson process,
the global state ρ is expected to evolve distinctly for different
noise realizations. Also, the time to nucleate the first cluster, tn,
and the lifetime, τ, are inherently random. We introduce the
waiting time to quantify the time to the system recovery. Because
the underlying process is modeled as a random Poisson process,
the complementary cumulative probability distribution of waiting
time Pnot is derived as an exponential function, which represents
the probability that the global state ρ has not exceeded 0.5 by time
t. (Note that our chosen conventional cut-off value 0.5 does not
affect the findings.) The distribution of waiting time Pnot is
expressed as

PnotðtÞ ¼
1; t ≤ tg

e�ðt�tgÞ=htni; t > tg

(
; ð8Þ

where 〈tn〉 is the average time elapsing until the first cluster
nucleates (i.e., the first transition occurs); tg represents the time
required for the global state ρ to reach 0.5 after the first cluster
emerges, and this time depends on the linear size of the system,
tg ~N1/2/v, where v is the constant radial velocity. Also,
〈tn〉 ~ (IN)−1, where I is the nucleation rate per unit area.
The average transition time from the initial undesired state to the
desired state or the average lifetime of the initial state is expressed
as 〈τ〉=〈tn〉+ tg. For small system sizes or in the weak-
noise limit, the dominant term in the lifetime is the nucleation
time, hence 〈τ〉 ~ (IN)−1 (see Supplementary Note 3 for
details).

In contrast, for large systems, more than one independent
cluster nucleates and expands separately, leading to the multi-
cluster mode. Spatial self-averaging reduces randomness of the
global state ρ, making each individual τ closer to the average value
and pushing Pnot closer to a step function. In the large system-size
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limit, the lifetime distribution is narrowly centered about the
average. Based on Avrami’s Law, for sufficiently large
systems28–31,35,36, the evolution of ρ can be expressed in a

deterministic form as ρ ¼ 1� e�
πv2 I
3 t3 . By setting ρ= 0.5 (without

loss of generality), the average lifetime for the multi-cluster mode

can be obtained as hτi ¼ 3ln 2
πv2I

� �1=3
. Then the evolution of ρ can be

described by

ρ ¼ 1� e�
t
hτi

� �3
ln 2: ð9Þ

Resilience restoration of mutualistic systems. To verify the
predictions by nucleation theory about noise-induced transition
patterns in systems with alternative stable states, we first study
resilience restoration of the mutualistic system.

We use Eq. (10) as the deterministic dynamics to track the
abundance of one species distributed among a square lattice in
the mutualistic system52,53. The self-dynamics F(xi) describes that
the growth of the species in each location follows the logistic law
with the Allee effect, and the dynamics G(xi, xj) accounts for the
mutualistic interaction between the species in two neighboring
locations i and j through the interaction strength Aij defined in
Eq. (5).

FðxiÞ ¼ Bi þ xi 1� xi
Ki

� 	
xi
Ci
� 1

� 	
Gðxi; xjÞ ¼

xixj
DiþEixiþHjxj

:
ð10Þ

Note that we use the same parameters as Ref. 3. The parameters
are node-uniform and set as Bi= B= 0.1, Ci= C= 1, Di=D= 5,
Ei= E= 0.9, Hj=H= 0.1, Ki= K= 5, and the interaction
strength R= 1 (leading to the effective interaction strength
βeff= 4). At some moment, if the species in all locations are
trapped in the low stable state xL, they will stay at this state
forever if there is no action or perturbation. It is, for sure, not
desired from the ecological viewpoint. If one would like to keep
the system always in the high stable state xH, a straightforward
approach is to increase the interaction strength to ensure that βeff
is larger than the critical bifurcation value βc2 . In this case, the
system will be attracted to the high state no matter where it starts.
Alternatively, noise has shown the ability to induce the transition
between two stable states from the study of one-variable systems.
We are particularly interested in how noise assists the resilience
restoration (i.e., transferring the system from the undesirable state
xL to the desired state xH).

Let us consider the case when all nodes in the system start from
the low state xL, indicating a collapsed state. Observed from
simulations, the proper noise can excite some node to xH, and
such transition spreads out to its neighbors via interaction until
the rest of the system completes transitions. According to
homogeneous nucleation theory, for different system sizes and
nucleation rates, two possible transition patterns are present. We
successfully show the snapshots of two cluster modes by
numerical simulations, the single-cluster and multi-cluster mode.
One can notice that these two modes possess radically distinct
properties. For the single-cluster mode (Fig. 2a), there is only one
node that switches from xL to xH in the beginning, and the rest of
nodes shift to xH through the interactions with the neighbors
which have already transitioned; while for the multi-cluster mode
(Fig. 2e), there is more than one node in the separate location that
transfers to xH simultaneously. This is expected as for the large
system, there are enough candidates to receive fluctuations,
increasing the chance to induce independent transitions.

As predicted by nucleation theory, the evolution of ρ(t) for the
single-cluster mode and multi-cluster mode differs a lot, and

numerical results confirm the difference. Figure 2b, f display 100
realizations for system sizes N= 100 and N= 10,000 under the
same intensity of noise. For the single-cluster mode (Fig. 2b), the
evolution varies for individual realizations, so the transition times
are different, indicating the uncertain evolution feature. In
contrast, for the multi-cluster mode (Fig. 2f), the evolution of
ρ(t) is similar for different realizations, implying that the
evolution is deterministic in the infinite system-size limit.
Following this, the waiting time distribution Pnot for two cluster
modes is also verified (Fig. 2c). For the single-cluster mode, Pnot is
initially constant and then decreases exponentially with respect to
t verifying Eq. (8). The slope of the distribution gets more
negative as noise becomes stronger suggesting a larger nucleation
rate. For the multi-cluster mode, Pnot gets closer to a step function
(Fig. 2g) as noise strength increases. This is because the larger
nucleation rate induces more separate clusters for a given system
size and thus leads to the more deterministic evolution by self-
averaging. From the theoretical analysis, the global state ρ for the
multi-cluster mode evolves predictably according to Eq. (9).
Whereas, for the finite-size system, the evolution of the multi-
cluster mode (Fig. 2h) is not perfectly deterministic, but still
much less random than the single-cluster mode (Fig. 2d).

The cluster mode not only depends on the system size but also
relies on the nucleation rate, which is decided by noise strength.
Typically, large systems under strong noise belong to the multi-
cluster mode, while small systems under weak noise exhibit the
single-cluster mode. However, low nucleation rates resulting from
weak noise can induce the single-cluster mode even for a very
large system (Fig. 3a, b). Also, the average nucleation time
〈tn〉= (NI)−1 for the single-cluster mode is validated. The
average lifetime 〈τ〉 behaves differently for the two cluster
modes and exhibits two regimes (Fig. 3c), and its value increases
exponentially as σ−2 increases for both cluster modes as predicted
by Eq. (15). For the given dynamics, 〈τ〉 entirely depends on
the system size N and noise strength σ (Fig. 3c, d), and there is a
decrease as N or σ increases. One can also notice that the slope of
ln hτi as a function of σ−2 for the single-cluster mode is larger
than the slope for the multi-cluster mode.

In accord with the scaling theory (see the “Methods” section,
Eqs. (15)–(17)), the two distinct cluster-growth modes are
separated by a crossover region centered around N1/2 ~ R0
(Fig. 4a). One should note that this crossover (centered around
the dashed curve in Fig. 4a) is not a sharp transition separating
the two cluster-growth modes. The gradual change of the
background color (red-white-blue) is to qualitatively illustrate
the continuous nature of the crossover from the single-cluster
mode to the multi-cluster mode. The small system (Fig. 4b) or
weak noise induces (Fig. 4c) the single-cluster mode, while the
large system or relatively strong noise (Fig. 4d, e) produces the
multi-cluster mode. According to the proposed scaling function,
employing and plotting properly scaled variables, hτie� c

3σ2 vs.
e

c
3σ2=N

1
2, we expect that all numerical data would collapse onto a

single curve, capturing general nucleation behavior54.
Nevertheless, observed in Fig. 5a, for the multi-cluster mode,

〈τ〉 is not precisely proportional to I−1/3. Therefore, the two
transition modes cannot be scaled in a satisfactory fashion as the
scaled data for the multi-cluster regime is not constant (Fig. 5b),
which contradicts the assumption of Eq. (16) (see the “Methods”
section). The deviation from Avrami’s Law suggests that the
assumption(s) of homogeneous nucleation might be violated. For
a large system subjected to relatively strong noise, which
guarantees the multi-cluster mode, the nucleation rate changes
in the beginning (Fig. 5c), defying the assumption of constant
nucleation rate. The initial rise of the spatially distributed low
state for the nodes which have not been driven to the high state
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Fig. 2 Single-cluster and multi-cluster modes in the mutualistic system. a One snapshot for the state value ρi of each node under the noise strength
σ= 0.1 (σ is defined by the standard deviation of noise distribution). The color scale is used to represent the values of normalized state ρi (defined in
Eq. (2), and it is unitless) from the undesired state (ρi= 0) to the desired state (ρi= 1). Initially, all of the nodes are at the low state. At some time later, the
transition to the high state occurs to one node, which is treated as a single cluster. Such transition then spreads out to its neighbors. b The evolution of the
global state ρ for 100 realizations of the single-cluster mode. c The probability distribution of waiting time Pnot for the fixed system size and various noise
strengths σ= 0.08, 0.09, 0.1. The single dots are simulation data, and different types of lines are obtained by linear fit according to Eq. (8). d The evolution
of the average global state ρ using the same data as in c. e One snapshot shows the state ρi of each node for σ= 0.1. Different from a, the transition from
the initial low state to the high state occurs at several separate nodes, and they expand independently, forming the multiple cluster. f The evolution of the
global state ρ for 100 realizations, which are more centered around a certain value instead of being random in b. g The distribution Pnot for
σ= 0.08, 0.09, 0.1, which approaches the step function as σ increases. h The evolution of the global state ρ averaged over 100 realizations using the same
data as in g. The single dots are simulation data, and different types of lines are obtained by linear fit according to Eq. (9).

Fig. 3 The influence of system size N and noise strength σ on transition modes and average lifetime 〈τ〉. Initially, all of the nodes are at the low state
xL, and the time to switch to the high state xH is measured. a The average nucleation time 〈tn〉 changes with noise strength for different system sizes
N= 9, 100, 900, 2500, 10,000. b The linear relationship between the average nucleation time〈tn〉 and N−1. c Two regimes with different slopes of ln hτi
as a function of σ−2, which corresponding to two cluster modes. It shares the same legend as a. c and d summarize the effects of system size N and noise
strength σ on the average lifetime〈τ〉. The increase of noise strength lowers the average lifetime. For the single cluster mode, the larger system requires
less time to complete transitions.
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indicates that the initial state is not the precise metastable state. In
the presence of noise, the metastable state is a state distribution
where all nodes are around the low state ρL, but some nodes are
closer to the unstable state ρu and some are even below the state
ρL. The system in the presence of noise needs time to reach the
actual metastable state which is different from the mean-field
low-stable state. To keep the nucleation rate constant, one should
use the metastable configuration as the initial condition.
However, as seen in Fig. 5c, some cluster have already emerged
before the system reaches the metastable configuration indicated
by the increase of the average low state and the nucleation rate, so
that the preprocessing of the initial state is needed to forbid any
transition before the metastable configuration is constructed. One
can artificially prepare the system close to the metastable state by
reverting the node back to ρL if any other sites nucleate during
preprocessing.

To gain further insight into the source of this discrepancy, we
carried out simulations with the initial configurations being very
close to the metastable state. In such a case, the nucleation rate I
stabilizes much faster (Fig. 5g) compared with the system without
preprocessing. Afterward, the nucleation rate is roughly constant,
so homogeneous nucleation theory can be reliably applied. This
leads to a better agreement between the simulation and the
theory, as the evolution of ρ is closer to what Eq. (9) postulates
(Fig. 5d, h), and the data from the two cluster modes follows
the scaling function (Fig. 5e, f). It is expected that the average
lifetime 〈τ〉 agrees better with Eq. (15) if the metastable state
can be perfectly prepared.

Restoration of diffusion dynamics. To further validate the
proposed theory, we adapt three well-studied ecological models
exhibiting alternative stable states55,56 with diffusive interaction
and then apply the above theory to investigate the transition
features. The self-dynamics for three diffusion models are
defined below.

The harvesting model in Eq. (11) describes the growing
resource biomass with fixed grazing rate10. The first term on the
right-hand side of Eq. (11) describes logistic growth, where r is
the maximum growth rate, and K is the carrying capacity. The
second term is the “Holling’s type III” consumption function57.
The system transitions from an underexploited state to over-
exploited state as the harvesting rate β exceeds a certain critical
value.

FðxiÞ ¼ rxi 1� xi
K

� 	
� β

x2i
x2i þ 1

ð11Þ

The eutrophication model in Eq. (12) describes the dynamics
of nutrient concentration in the eutrophic lake58. The variable xi
represents the density of phosphorus mass (nutrient) in the
location i of the lake. The first term a on the right hand side of
Eq. (12) is the nutrient loading rate, the second term describes
nutrient loss processes with the rate r, and the last term accounts
for recycling processes following a sigmoid function. As the
maximum recycling rate β increases to the critical point, the lake
transfers from oligotrophic to eutrophic.

FðxiÞ ¼ a� rxi þ β
x8i

x8i þ 1
ð12Þ

The vegetation-turbidity model in Eq. (13) describes the
vegetation dynamics considering turbidity59. The variable xi
represents the density of aquatic vegetation in the location i of the
lake. The first term on the right-hand side of Eq. (13)
characterizes the growth of vegetation with the maximum growth
rate rv. The function E is an inverse Monod function and used to
describe the vegetation effect on turbidity. Accordingly, the
second term is a Hill function describing the sigmoidal decline of
vegetation with turbidity. As the water becomes turbid, indicated
by the background turbidity β, macrophytes suddenly decrease.

FðxiÞ ¼ rvxi � rvx
2
i
r4 þ E4

i

r4

Ei ¼
hvβ

hv þ xi

ð13Þ

All three models can exhibit alternative stable states with the
properly chosen bifurcation parameter β as illustrated in Fig. 7a,
e, i. The transition from the low stable state to the high stable
state is possible in the presence of noise for such single-variable
systems. Likewise, the underlying topology is also a square lattice
with periodic boundaries. The interaction dynamics is defined in
Eq. (14), which represents the diffusive process between adjacent
neighbors, and the interaction strength R determines the uniform
diffusion rate. The species density at each location varies
according to the internal dynamics as defined in Eqs. (11)–(13),
and it is also influenced by dispersion to or immigration from
neighbors and stochastic environmental fluctuations.

Gðxi; xjÞ ¼ xj � xi; ð14Þ
Once the system degrades to a malfunctioning state, resilience

restoration is required. In the presence of noise, each component
is likely to be driven from the undesired state to the functional
stable state, and then the entire system undergoes substantial
changes due to the transition of one or a few nodes. Nucleation
theory can be employed as well to study the overall transition
features. The results we collected from three diffusion models are

Fig. 4 Crossover between two cluster modes for the sample mutualistic
system. Initially, all of the nodes are at the low stable state xL, and they are
driven to the high stable state xH in the presence of noise. a According to
Eq. (15), two cluster modes are distinguished. The dashed curve is drawn
according to the equation N1=2 ¼ e

c
3σ2 , where c is a constant decided by the

dynamics. The gradual change of the background color (red-white-blue)
is to qualitatively illustrate the continuous nature of the crossover from
the single-cluster mode to the multi-cluster mode. The dashed curve
corresponds to the center of the crossover region (provided by the above
formula), separating the two cluster-growth modes. b and c describe the
single-cluster mode (in red), while d and e display the multi-cluster mode
(in blue). b The distribution Pnot for the fixed noise strength σ= 0.1 and
different system sizes N= 9, 16, 25, 36, 49, 64, 81, 100. c Pnot for the fixed
weak noise σ= 0.06 and N= 100, 900, 2500, 10,000. In both b and c, the
single dots are simulation data, and different types of lines are obtained by
linear fit according to Eq. (8). d Pnot for the fixed noise strength σ= 0.1 and
different system sizes N= 900, 2500, 10,000. e The evolution of the global
state ρ using the same data as in d.
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similar to those obtained from the mutualistic system and thus
verify the predictions by nucleation theory. We consider the case
when the undesired state has a much smaller basin of attraction
than the desired state so that noise can drive the system from the
initial undesired state to the functional state, resulting in
resilience restoration.

Take the harvesting model as an example to illustrate the
successful application of nucleation theory to resilience restora-
tion. Two cluster-growth modes are observed and separated by a
crossover around N1/2 ~ R0 (Fig. 6a). Similar to the mutualistic
system, the large system or strong noise produces multi-cluster
mode; conversely, the small system or weak noise induces single-
cluster mode. For the small system (N= 100 in the example),
there is only one cluster formed during the transition, exhibiting
the single-cluster pattern. The individual lifetime τ in Fig. 6b
varies a lot for different realizations, indicating a stochastic
feature. As derived above, the distribution of waiting times Pnot
follows an exponential function after a certain period tg, observed
in Fig. 6c,d. If the system is exposed to weak noise which means a
low nucleation rate, it is very likely to enter the single-cluster
regime even the size is sufficiently large (Fig. 6d). For the large
system (like N= 10,000) with proper intensity of noise, more
than one node in the separate location is recovered simulta-
neously, presenting a multi-cluster pattern. Spatial-averaging
reduces randomness so that the individual lifetime τ is more
centered about a certain value (Fig. 6e). The evolution is much
more deterministic than the system in a single-cluster mode. The
global state ρ evolves approximately as Eq. (9) predicts (Fig. 6f). If
the applied noise is strong enough, the moderate-sized system can
still exhibit the multi-cluster mode (Fig. 6g).

As seen in Fig. 7, the system size and noise strength decide the
recovery time and the cluster mode. Similarly, the average lifetime

〈τ〉 of three diffusion models displays two distinct regimes. One
is the single-cluster and the other is the multi-cluster regime
(Fig. 7a, d, g). The slope of ln hτi versus σ−2 reveals which mode is
active. If the system starts from the undesired stable state, the
scaling between two cluster modes deviates a little from
the theoretical prediction (Fig. 7b, e, h). If the system starts from
the prepared state, resembling the metastable configuration, the
scaling agrees well with the designed scaling function (Fig. 7b, e, h).
Overall, the conclusions of the single-cluster and multi-cluster
transition are validated in three diffusion models.

Discussion
We have utilized nucleation theory to analyze the noise-induced
resilience restoration in ecosystems where the desired state has a
much larger basin of attraction than the undesired state has. This
is a general theory, and we successfully apply it to four ecological
models, revealing the transition features. During the restoration
process, homogeneous nucleation theory distinguishes two dif-
ferent cluster modes: the single-cluster and multi-cluster transi-
tion modes. We also derive the formulas for the recovery time
under different conditions and propose a scaling function that
collapses all the data onto one universal line.

The two cluster modes possess quite distinct features. The
individual lifetime is random for the single-cluster phase, and the
waiting time before the transition follows an exponential dis-
tribution. In contrast, for the multi-cluster mode, the lifetime is
less random and centered about its average value so that the
evolution of the global state ρ is more deterministic. Which
cluster mode the system follows is decided by its size and noise
strength, and the crossover region is theoretically derived and can
separate two phases. Generally, the large system subjected to
strong noise presents the multi-cluster mode, and the small

Fig. 5 Scaling between two cluster modes in the mutualistic system. For a–c, the system starts from the low state xL, and the time to reach the high state is

characterized by τ. a The relationship of〈τ〉 and e�
c
σ2 differs between two cluster modes, where c is a constant specific to the dynamics and σ is the standard

deviation of noise. a, b, e, and f share the same legend. b The finite-size scaling is drawn by assuming the slope of multi-cluster mode in a is� 1
3. For c and d, the

system size is set as N= 10,000 and the noise strength is σ=0.08. c The nucleation rate increases before the average low-state nodes stabilizes. d The system
starts to evolve from xL and the prepared state, respectively. The single dots are simulation data, and different types of lines are obtained by linear fit according

to Eq. (9). The related uncertainty can be calculated by the standard deviation std ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�2∑
n
i¼1 ðlog ð1� ρfittedÞ � log ð1� ρsimulationÞÞ2

q
between the fitted state

and the simulated state, where n is the number of data for the linear fit. The uncertainties are 0.42 and 0.09 for the initial state being xL and the prepared state,
respectively. With the slope being fitted, the global state evolution for the latter case agrees better with Eq. (9) than the former case. For e–h, the system starts
from the prepared metastable state, and the time to reach the state xH is recorded as τ. e The average lifetime 〈τ〉 for two cluster modes. f The finite-size
scaling is consistent with the theoretical prediction in Eq. (17). g The nucleation rate takes less time to stabilize compared with c. h The evolution of the global
state ρ for the multi-cluster mode when N= 10,000 and σ=0.08, 0.085, 0.09, 0.095, 0.1. The uncertainties of linear fit are std=0.09, 0.14, 0.13, 0.13, 0.15,
respectively.
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system with weak noise displays the single-cluster regime. One
quantity of interest for resilience restoration is the recovery time,
which also depends on the system size and the noise strength. The
rise of noise strength increases the nucleation rate, diminishing
〈τ〉. There is no finite-size effect when noise is strong enough;
that is, 〈τ〉 is the same for different system sizes. The decrease
of noise strength reveals the size effect, where larger systems take
less time to complete transitions than smaller systems on average.
Due to the distinct evolution features, the relationship between
〈τ〉 and σ varies for two cluster modes. What can be clearly
seen in Fig. 3 and Fig. 7a, d, g, is that 〈τ〉 exhibits two dis-
tinctive regimes, corresponding to two cluster modes. The scaling
between two cluster modes is proposed according to Avrami’s
Law. The deviation observed in numerical simulation can be
corrected by preparing the initial state close to metastable con-
figurations to satisfy two homogeneous nucleation assumptions.

Employing the nucleation theory, we successfully extend the
noise-induced transition in single-variable systems to spatially

extended multi-variable systems. Our framework is useful to predict
critical transitions and guide the resilience restoration in the general
dynamical systems presenting alternative stable states. One may
wonder how the mean-field theory works in noisy environments as
the noise-induced transition in single-variable systems has been well
explored. The mean-field approach makes a satisfactory prediction
of the system state when the system is close to the stable states.
Unfortunately, it cannot capture the transition features observed in
spatially-extended systems, including the average lifetime, the
dependence on the system size, and the spatial-clustering patterns
(see Supplementary Note 2 for the results of mean-field theory and
the comparisons with the nucleation approach.). Therefore, it is still
an open question whether the mean-field theory can be used to
study transitions in noisy environments. One may need to develop
other dimension reduction approaches for this problem. Also, there
are further questions to be addressed. For example, we analyze
the transition in the lattice model. In reality, the interaction rela-
tionship in ecosystems exhibits various structures. In addition, the

Fig. 6 Single-cluster and multi-cluster modes in the harvesting system. The parameters are set as r= 1 (defined as the maximum growth rate), K= 10
(defined as the carrying capacity), the diffusion rate R= 0.02, and the bifurcation parameter β= 1.8. Initially, all of the nodes are at the low stable state ρL,
and they are driven to the high stable state ρH in the presence of noise. a Two insets describe the snapshots of individual normalized state values ρi for the
single-cluster and multi-cluster mode, respectively. They are separated by a crossover region centered around the curve N1=2 ¼ e

c
3σ2 , where c is a constant

decided by the dynamics, and σ is the standard deviation of noise (noise strength). As in Fig. 4, the gradual change of the background color (red-white-
blue) is to qualitatively illustrate the continuous nature of the crossover from the single-cluster mode to the multi-cluster mode. b–d are about the single-
cluster mode. b 100 realizations of the global state evolution (state ρ changes with time t) for the system size N= 100 and the noise strength σ= 0.045.
c The distribution of waiting time Pnot for the fixed system size N= 100 and the varied noise strengths σ= 0.04, 0.043, 0.045. d Pnot for the fixed weak
noise σ= 0.035 and different system sizes N= 100, 900, 2500, 10,000. e–g correspond to the multi-cluster mode. e 100 realizations of the global state
evolution for the system size N= 10,000 and the noise strength σ= 0.045, which are more centered around a certain value instead of being random in
b. f The evolution of ρ averaged over 100 realizations for different noise strengths σ= 0.04, 0.043, 0.045. g The evolution of the global state ρ averaged
over 100 realizations for the fixed strong noise σ= 0.045 and large system sizes N= 900, 2500, 10,000.
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interaction strength between components in the real-world complex
systems varies, which may add to the difficulty of analysis. Fur-
thermore, we focus on the one-way transition, which requires that
the system be close to the theoretical bifurcation point where the
basin of attraction of the undesired state vanishes. For the case
when two alternative stable states have basins of attraction of
similar sizes, stochastic switching (namely back-and-forth switch-
ing) between states may arise, which is beyond the scope of this
study. In summary, network topology (in addition to spatial
structure), coupling strength, and stochastic switching are of great
interest to be investigated in future studies.

Methods
Scaling law of single-cluster and multi-cluster modes. According to Avrami’s
Law and homogeneous nucleation in finite systems33,38,39, the average lifetime of
two transition modes is summarized as

hτi �
1
IN ; N

1
2 � R0 ð single-cluster mode Þ

I�
1
3; N

1
2 � R0 ðmulti-cluster mode Þ

(
; ð15Þ

where R0 � ðvIÞ1=3 � I�1=3 is the typical distance between separate clusters (and N1/

2 is the linear size of the two-dimensional lattice). Transition patterns for different
system sizes and nucleation rates are classified into two distinct cluster nucleation
modes, separated by a crossover region centered around the curve, N1/2 ~ R0. Small
systems or low nucleation rates induce the single-cluster mode, while large systems
or high nucleation rates exhibit the multi-cluster mode.

By constructing a scaling function54 with the following asymptotic behavior:

SðuÞ � u2; u � 1 ð single-cluster mode Þ
const:; u � 1 ðmulti-cluster mode Þ



; ð16Þ

where u= R0/N1/2 ~ v1/3/(I1/3N1/2) ~ I−1/3N−1/2, one can capture the average
lifetime of any system size and nucleation rate (including the crossover between the

single-cluster and multi-cluster regimes),

hτi ¼ I�
1
3S R0=N

1
2

� 	
¼ I�

1
3S I�

1
3N�1

2

� 	
: ð17Þ

Motivated by the study on the average transition time 〈τ〉 for single-variable
systems [Eq. (4)], the relationship between local nucleation rate and noise strength
in spatially extended systems is expected to scale as

I � e�
c
σ2 ; ð18Þ

where c is a constant specific to the given dynamics and can be empirically fitted in the
weak-noise case. In turn, the average lifetime〈τ〉 for different system sizes and noise
strength can be described by a universal scaling function: employing Eqs. (17) and (18),
when plotting hτie� c

3σ2 vs. e
c

3σ2=N
1
2, all curves should collapse on the same curve S(u).
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