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Exceptional points in oligomer chains
Charles Andrew Downing 1✉ & Vasil Arkadievich Saroka 2,3✉

Symmetry underpins our understanding of physical law. Open systems, those in contact with

their environment, can provide a platform to explore parity-time symmetry. While classical

parity-time symmetric systems have received a lot of attention, especially because of the

associated advances in the generation and control of light, there is much more to be dis-

covered about their quantum counterparts. Here we provide a quantum theory which

describes the non-Hermitian physics of chains of coupled modes, which has applications

across optics and photonics. We elucidate the origin of the exceptional points which govern

the parity-time symmetry, survey their signatures in quantum transport, study their influence

for correlations, and account for long-range interactions. We also find how the locations of

the exceptional points evolve as a function of the chain length and chain parity, capturing how

an arbitrary oligomer chain transitions from its unbroken to broken symmetric phase. Our

general results provide perspectives for the experimental detection of parity-time symmetric

phases in one-dimensional arrays of quantum objects, with consequences for light transport

and its degree of coherence.
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While the eigenvalues of a Hermitian Hamiltonian are
always real, the Hermicity condition is more stringent
than is strictly necessary1. It was shown by Bender and

co-workers that Hamiltonians that obey parity-time (PT ) sym-
metry can both admit real eigenvalues and describe physical
systems2,3. The condition of combined space and time reflection
symmetry has immediate utility for some open systems, where
there is balanced loss into and gain from the surrounding
environment. The application of the concept of PT symmetry
into both classical and quantum physics has already led to some
remarkable advances and unconventional phenomena, which
cannot be captured with standard Hermitian Hamiltonians4–8.

An important concept within PT symmetry is that of excep-
tional points. Let us consider the simplest case of a pair of cou-
pled oscillators, each of resonance frequency ω0 and interacting
via the coupling constant g. The two resulting eigenfrequencies ω2

and ω1 are given by ω2,1= ω0 ± g. After including gain at a rate κ
into the first oscillator and an equivalent loss κ out of the second
oscillator, the renormalized eigenfrequencies ω0

2 and ω0
1 of this

PT -symmetric setup become ω0
2;1 ¼ ω0 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � κ2=4

p
[see Sup-

plementary Note 1]. The exceptional point (for this N ¼ 2
oscillator system) is

g
κ

� �
N¼2

¼ 1
2
; ð1Þ

which defines the crossover between the unbroken PT phase
with wholly real ω0

2;1, and the broken phase with complex ω0
2;1.

Therefore, by modulating the ratio g/κ one can induce a plethora
of (sometimes unexpected) phenomena intrinsically linked to PT
symmetry, for example in light transport where amplification and
attenuation readily arise4–8.

Recently, optical and photonic systems have become popular
playgrounds to test PT -symmetric effects in the laboratory9–11.
Indeed, recent experiments in the area have seen non-reciprocal
light propagation in coupled waveguides12, single-mode lasing in
microring cavities13, extraordinary transmission in microtoroidal
whispering-gallery-mode resonators14, and the development of
hybrid optoelectronic devices15. In parallel, there has been much
theoretical work on many-mode PT -symmetric systems16,
including considerations of trimers17,18, quadrimers19–29, and
more generally oligomers30–45.

Inspired by the pioneering experiments of Hodaei and co-
workers with chains of ring-shaped optical resonators46, we
develop a simple theory of short oligomer chains in an open
quantum systems approach. In particular, we study dimer
(N ¼ 2), trimer (N ¼ 3) and quadrimer (N ¼ 4) chains in
detail [see also Supplementary Notes 1 and 2]. We derive the
locations of the exceptional points, and explore the influence of
the PT symmetry phase on both the population dynamics
(revealing regions of amplification) and for correlations (showing
areas of perfect coherence and incoherence). Our open quantum
systems approach follows in the wake of a number of recent
theoretical works47–54, which employ the concept of PT sym-
metry with quantum master equations. We note that a related
and pioneering experiment with superconducting qubits has lat-
terly been reported55, highlighting the timeliness of quantum
PT -symmetry. We also uncover how the exceptional point of Eq.
(1) is generalized for an oligomer chain of an arbitrary size N ,
where there is gain into the first oscillator and an equivalent loss
out of the last oscillator, with neutral oscillators in between. Using
a transfer matrices approach, we derive an interesting scaling with
N of ðg=κÞN , and we find a feature due to the parity of the
oligomer which provides tantalizing opportunities for experi-
mental detection. Finally, we investigate the emergent and rich
PT symmetry phase diagrams when long-range coupling
(beyond nearest-neighbor) is taken into account, which crucially

determines whether the exceptional point is of higher order
(compared to the dimer case) or not.

Results and discussion
Trimer chain: model. Here, we look at the simplest nontrivial
linear chain of harmonic oscillators: the trimer chain (that is, a
N ¼ 3 site oligomer). The trimer [which is sketched in Fig. 1a]
already displays some interesting phenomena which is common
across all odd-sited oligomers, and yet it retains some beauty due
to its simplicity. The Hamiltonian operator Ĥ for this system is
(we set ℏ= 1 throughout this manuscript)

Ĥ ¼ ω0 by1b1 þ by2b2 þ by3b3
� �

þ g by1b2 þ by2b3 þ h:c:
� �

; ð2Þ

where byn and bn, which satisfy bosonic commutation relations,
are the creation and annihilation operators, respectively for site n.
All of the oscillators are associated with the identical resonance
frequency ω0, while the nearest-neighbor coupling strength
between sites is given by g. Diagonalization of Eq. (2) leads to the

Fig. 1 The PT -symmetric trimer and its eigenfrequencies. a A cartoon of
the three-site chain (colored balls), where each oscillator has the resonance
frequency ω0. The left oscillator (green sphere) is subject to gain κ (yellow
arrow), while the right oscillator (cyan sphere) suffers an equivalent loss κ
(purple arrow), such that the arrangement fulfills PT symmetry. The
coupling strength is g. b The real parts of the eigenfrequencies ω0

n, as a
function of g [Eq. (11)]. c The imaginary parts. Dashed lines: exceptional
points at the transition between the broken and unbroken PT -symmetric
phases [Eq. (13)].
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three eigenfrequencies ωn, which read

ω3;1 ¼ ω0 ±
ffiffiffi
2

p
g; ð3aÞ

ω2 ¼ ω0: ð3bÞ
This analysis reveals a solitary eigenfrequency ω2, which is

unshifted from the bare resonance ω0, while the two other
eigenfrequencies ω3 and ω1 exhibit a splitting of

ffiffiffi
2

p
g from the

central resonance. Incoherent processes in the chain are taken
into account via a quantum master equation in Lindblad
form56–58

∂tρ ¼ i½ρ; Ĥ� þ ∑
n¼1;2;3

γn
2
Lbn þ ∑

n¼1;2;3

Pn

2
L0bn; ð4Þ

where the two Lindblad superoperators are

Lbn ¼ 2bnρb
y
n � bynbnρ� ρbynbn; ð5aÞ

L0bn ¼ 2bynρbn � bnb
y
nρ� ρbnb

y
n: ð5bÞ

The unitary evolution is supplied by the commutator term on
the right-hand-side of Eq. (4), where the Hamiltonian operator Ĥ
is given by Eq. (2). The external environment surrounding the
chain allows for energy exchange. Losses are tracked by the first
Lindbladian term in Eq. (4), where γn ≥ 0 is the damping decay
rate of the nth oscillator into its heat bath. Incoherent gain
processes, where Pn ≥ 0 is the pumping rate into oscillator n, are
similarly modeled by the final term in Eq. (4).

In order to probe the mean-field dynamics of the chain, we
exploit the property hOi ¼ Tr Oρ

� �
for some operator O. The

cyclic properties of the trace operator, along with the quantum
master equation introduced Eq. (4), leads to the following
Schrödinger-like equation for the first moments 〈bn〉 of the chain

i∂tψ ¼ Hψ; ð6Þ
where the three-dimensional Bloch vector ψ reads

ψ ¼
hb1i
hb2i
hb3i

0
B@

1
CA; ð7Þ

and with the 3 × 3 dynamical matrix H, given by

H ¼
ω0 � i Γ12 g 0

g ω0 � i Γ22 g

0 g ω0 � i Γ32

0
BB@

1
CCA: ð8Þ

In Eq. (8) we have introduced the renormalized damping decay
rate Γn for each oscillator n, which is necessary due to the
incoherent pumping Pn and the bosonic statistics. Explicitly, this
quantity reads

Γn ¼ γn � Pn: ð9Þ
Let us now consider the specific chain configuration where the

left oscillator is subject to gain via P1= κ (and γ1= 0), while the
right oscillator is described by the equivalent loss γ3= κ (and
P3= 0). The central oscillator is neutral (since P2= γ2= 0). Then
the mean-field theory of Eq. (8) implies a PT -symmetric
Hamiltonian Ĥ0 may be written down as

Ĥ0 ¼ ω0 þ i
κ

2

� �
by1b1 þ ω0b

y
2b2 þ ω0 � i

κ

2

� �
by3b3

þg by1b2 þ by2b3 þ h:c:
� �

:
ð10Þ

Equation (10) is indeed invariant under the necessary
combined transformations of space (P) and time (T ), essentially
because the twin replacements i→−i and (1, 3)→ (3, 1) leave Ĥ0

unchanged. This PT -symmetric arrangement of the trimer chain
is portrayed in Fig. 1a. Upon diagonalizing Eq. (10), the three
eigenfrequencies ω0

n are [cf. Eq. (3) for the closed system]

ω0
3;1 ¼ ω0 ±Ω; ð11aÞ

ω0
2 ¼ ω0; ð11bÞ

where we have introduced the frequency Ω, where

Ω ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8g2 � κ2

p
: ð12Þ

Equation (11) reveals the renormalization of the upper and
lower eigenfrequencies ω0

3 and ω0
1, as compared to ω3 and ω1 in

the closed system modeled in Eq. (3). This is due to the
incoherent processes captured by κ. In particular, there is now an
exceptional point located at

g
κ

� �
N¼3

¼ 1

2
ffiffiffi
2

p ’ 0:353:::; ð13Þ

which marks the border between the regime when the PT
Hamiltonian Ĥ0 is in its unbroken phase with real eigenvalues,
g ≥ κ=ð2 ffiffiffi

2
p Þ, and the broken phase with complex eigenvalues,

g < κ=ð2 ffiffiffi
2

p Þ [cf. Eq. (1) for the dimer result, ðg=κÞN¼2].
We plot the PT -symmetric regime eigenfrequencies ω0

n in
Fig. 1 using Eq. (11). The real parts are given in panel b, while the
imaginary parts are displayed in panel c. The exceptional point of
Eq. (13) is marked by the dashed gray line, and makes explicit the
broken and unbroken PT -symmetric phases. There are several
features of Fig. 1 which are shared amongst all odd-sited
oligomers, namely: the purely real resonance frequency ω0

(orange line) is always a valid eigenfrequency; two eigenfrequen-
cies always become complex in the broken PT -symmetric phase;
and these two aforementioned eigenfrequencies are always the
two eigenfrequencies closest to ω0 (neglecting the aforemen-
tioned, guaranteed ω0 eigensolution). Under the popular
classification where an nth order exceptional point refers to
when n eigenvalues coalesce at the exceptional point46, Fig. 1b, c
exposes a higher order exceptional point of the 3rd order
(compared to 2nd order for a dimer, see Supplementary Note 1).
These remarks are further justified in Supplementary Note 2,
where analogous behavior with the quadrimer chain (N ¼ 4) is
analyzed in detail, and some features associated with all even-
sited oligomers are discussed in Supplementary Note 3.

Trimer chain: dynamics. The equation of motion for the second
moments hbynbmi of the trimer gives access to the mean popula-
tions along the chain, hbynbni. Similar to the calculation leading to
Eq. (6), we obtain the first-order matrix differential equation

d
dt

u ¼ P�Mu; ð14Þ

for the 9-vector of correlators u and the inhomogenous pumping
term P, where

u ¼
u1
u2
uy2

0
B@

1
CA; P ¼

P1

P2

P3

06

0
BBB@

1
CCCA; ð15Þ

where 0n is the zero matrix (of n-rows and a single column). The
sub-vectors of u read

u1 ¼
hby1b1i
hby2b2i
hby3b3i

0
B@

1
CA; u2 ¼

hby1b2i
hby2b3i
hby3b1i

0
B@

1
CA: ð16Þ
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The matrix M of second moments in Eq. (14) is

M ¼
M11 M12 M�

12

MT
12 M22 M23

My
12 M�

23 M22

0
B@

1
CA; ð17Þ

where the on-diagonal sub-matrices comprising M are

M11 ¼ diag Γ1; Γ2; Γ3
� �

; ð18aÞ

M22 ¼ diag
Γ1 þ Γ2

2
;
Γ2 þ Γ3

2
;
Γ3 þ Γ1

2

� �
; ð18bÞ

where Γn is defined in Eq. (9), while the two off-diagonal sub-
matrices of M are defined by

M12 ¼
ig 0 0

�ig ig 0

0 �ig 0

0
B@

1
CA; M23 ¼

0 0 ig

0 0 �ig

�ig ig 0

0
B@

1
CA: ð19Þ

In Eq. (17), the symbols *, †, and T represent taking the
conjugate, conjugate transpose, and transpose, respectively.

Let us consider the PT -symmetric arrangement of the trimer,
as sketched in Fig. 1a. In this special configuration, the nontrivial
eigenvalues of the matrix M in Eq. (17) are ± i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8g2 � κ2

p
and

± i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8g2 � κ2

p
=2, recovering the criticality first expounded at the

level of the non-Hermitian Hamiltonian in Eq. (13). Using the
frequency Ω as defined in Eq. (12), we find the following analytic
expressions for the populations

hby2b2i ¼
g2

2Ω5 sin
2 Ωt

2

� �
f8g2Ωþ 4κΩ2 sin Ωtð Þ þ 2Ω 4g2 � κ2

� �
cos Ωtð Þg;

ð20bÞ

hby3b3i ¼
4g4

Ω4 sin
Ωt
2

� �
; ð20cÞ

where ~Ω
5 ¼ 2Ωð8g4 � 8g2κ2 þ κ4Þ. Upon approaching the excep-

tional point (where Ω→ 0), Eq. (20) reduces to the algebraically
divergent hby1b1i ¼ ð1þ κt=4Þ4, hby2b2i ¼ ðκt=2Þ2ð1þ κt=4Þ2=2,
and hby3b3i ¼ ðκt=4Þ4. Below the exceptional point, the trigono-
metric functions in Eq. (20) are superseded by hyperbolic
functions, leading to exponential divergencies.

We plot the populations hbynbni of the first, second and third
oscillators (n= 1, 2, 3) as the thick green, medium orange and
thin cyan lines in Fig. 2, using the solutions of Eq. (20). In Fig. 2a,
where g= κ, a high frequency population cycle is observed, which
is maintained over time due to the balanced loss and gain in the
system. In panels b and c, where the coupling strength is reduced
to g= 3κ/4 and g= κ/2, respectively, the frequency of the
population cycle is successively reduced, while the maxima of
the mean populations are increased due to the closening
proximity to the exceptional point [cf. Eq. (13)]. The broken
PT phase is exemplified in panel d, where g ¼ 0:35κ < κ=ð2 ffiffiffi

2
p Þ,

which displays the characteristically diverging population
dynamics associated with breakdown beyond the exceptional
point.

Trimer chain: correlations. The temporal coherence can be
quantified using the first-order correlation function56

gð1Þn ðτÞ ¼ lim
t!1

hbynðtÞbnðt þ τÞi
hbynðtÞbnðtÞi

; ð21Þ

where τ is the time delay, and where the normalization is taken
over a long time scale t→∞. This quantity has the property that
perfect coherence is associated with jgð1Þn ðτÞj ¼ 1 and complete
incoherence corresponds to jgð1Þn ðτÞj ¼ 0, while intermediate cases
specify the degree of partial coherence. The manipulations
resulting in Eq. (6), and an application of the quantum regression
theorem, lead to an equation for the first desired two-time cor-
relator hby1ðtÞb1ðt þ τÞi, via

∂τv þ Qv ¼ 0; v ¼
hby1ðtÞb1ðt þ τÞi
hby1ðtÞb2ðt þ τÞi
hby1ðtÞb3ðt þ τÞi

0
B@

1
CA; ð22Þ

with the 3 × 3 regression matrix

Q ¼
iω0 þ Γ1

2 ig 0

ig iω0 þ Γ2
2 ig

0 ig iω0 þ Γ3
2

0
BB@

1
CCA: ð23Þ

Similar equations may be derived for hby2ðtÞb2ðt þ τÞi and
hby3ðtÞb3ðt þ τÞi. The solution of Eq. (22), along with the defini-

tion of Eq. (21), leads to the sought after first-order correlation
functions. In the PT -symmetric setup of trimer, as drawn in
Fig. 1a, one finds the neat expressions

gð1Þ1 ðτÞ ¼ gð1Þ3 ðτÞ ¼ 8g2cos2 Ωτ
2

� �� κ2

4Ω2 e�iω0τ ; ð24aÞ

gð1Þ2 ðτÞ ¼ 4g2κ2 � κ4 þ 32g4 cos Ωτð Þ
4g2κ2 � κ4 þ 32g4

e�iω0τ ; ð24bÞ

which characteristically include the harmonic component e�iω0τ ,
representing a monochromatic field centered on ω0, and a pre-
factor accounting for the specific PT -symmetric setup of the
trimer. In the limit of Ω→ 0, that is approaching the exceptional
point g ! κ=ð2 ffiffiffi

2
p Þ, Eq. (24) tends towards the quadratically

divergent results gð1Þ1;3ðτÞ ! f1� κ2τ2=16ge�iω0τ and

gð1Þ2 ðτÞ ! f1� κ2τ2=24ge�iω0τ . For coupling strengths below the
exceptional point the trigonometric functions are replaced with
hyperbolic functions, indicating exponentially divergent behavior.
We plot the real parts of the coherences gð1Þ1 ðτÞ and gð1Þ2 ðτÞ of the
first and second oscillators as the thick green and thin orange
lines in Fig. 3, using the solutions of Eq. (24). In Fig. 3a, well
above the exceptional point at g= κ, the PT symmetry ensures
an undamped periodic response, with rapid oscillations and a
dynamic behavior satisfying 0 < jgð1Þn ðτÞj < 1. Exactly at g= κ/2,
where all three coherences are accidentally equal as shown in
panel b, a well-defined wave envelope develops. In panel c, at the
exceptional point g ¼ κ=ð2 ffiffiffi

2
p Þ, there is initially regular, high

frequency oscillations due to short time behavior being essentially
dominated by the zeroth order term gð1Þn ðτÞ ’ e�iω0τ . Once the
quadratic correction in κt becomes non-negligible, the divergence
characteristic of the broken PT symmetric phase finally emerges.

hby1b1i ¼
48g4Ωþ 32κg2Ω2 sin Ωtð Þ þ κ κ4 � 12g2κ2 þ 32g4

� �
sin 2Ωtð Þ þ 16g2Ω 4g2 � κ2

� �
cos Ωtð Þ þ ~Ω

5
cos 2Ωtð Þ

32Ω5 ; ð20aÞ
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Trimer chain: long-range coupling. Let us now consider the
effects of going beyond the nearest-neighbor coupling approx-
imation employed in Eq. (2). To do so, we introduce the second-
nearest neighbor coupling constant h, which connects the first
and third oscillators, via the generalized Hamiltonian
Ĥ0 ¼ Ĥ þ hðby1b3 þ by3b1Þ, where Ĥ is defined in Eq. (2). This
extension leads to a generalization of the eigenfrequencies of Eq.
(3) to ~ωn, where

~ω3;1 ¼ ω0 þ
h
2
±
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8g2 þ h2

q
; ð25aÞ

~ω2 ¼ ω0 � h: ð25bÞ
The associated PT -symmetric setup of trimer chain is sketched

in Fig. 4a [cf. Fig. 1a]. The resulting eigenfrequencies ~ω0
n are [cf.

Fig. 3 Dynamics of the correlations. Evolution of the real part of the first-
order correlation function g(1)(τ), as a function of the time delay τ, in units
of the inverse loss-gain parameter κ−1 [Eq. (24)]. a–c The coupling
constant g is reduced from above [a, b] to at c the exceptional point located
at g ¼ κ=ð2

ffiffiffi
2

p
Þ. The results for the first and second oscillators are denoted

by the thick green and thin orange lines respectively [see the legend in
c, which applies to the whole figure]. In the figure, ω0= 20κ.

Fig. 2 Population dynamics. Evolution of the mean populations hbynbni along
the trimer chain, as a function of time t, in units of the inverse loss-gain
parameter κ−1 [Eq. 20]. The coupling constant g reduces from above to below
the exceptional point upon descending the column of panels [Eq. (13)]. a g= κ.
b g= 3κ/4. c g= κ/2. d g=0.35κ. The results for the first, second, and third
oscillators are denoted by the thick green, medium orange and thin cyan lines
respectively [see the legend in (d), which applies to the whole figure].
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Eq. (11)]

~ω0
3 ¼ ω0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8g2 þ 4h2 � κ2

3

s
cos

α

3

� �
; ð26aÞ

~ω0
2 ¼ ω0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8g2 þ 4h2 � κ2

3

s
cos

αþ 4π
3

� �
; ð26bÞ

~ω0
1 ¼ ω0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8g2 þ 4h2 � κ2

3

s
cos

αþ 2π
3

� �
; ð26cÞ

where we have introduced the quantity

α ¼ arccos
24

ffiffiffi
3

p
g2h

8g2 þ 4h2 � κ2
� �3=2
 !

: ð27Þ

The inclusion of second-nearest neighbor coupling h leads to a
significantly richer phase diagram than with nearest-neighbor
coupling only, as is demonstrated in Fig. 4 (b). Notably, when
h= 0 Eq. (13) is recovered, so that above this threshold strength
of 1=ð2 ffiffiffi

2
p Þ the system is in its unbroken phase. With increasing

h, the exceptional point (g/κ)3 increases in value, up until h= κ/2.
Above this critical point, the unbroken phase can be explored

either with weak enough g, or strong enough g, with a region of
broken phase in between. This causes a green stripe in the phase
diagram of Fig. 4b, which notably contains the equal coupling
(h= g) ring-like limit. The aforementioned broken-unbroken
transitions from above and from below can be explicitly seen in
Fig. 5, where the real and imaginary parts of ~ω0

n are shown, as a
function of g/κ, in the upper and lower rows respectively. In the
first column of Fig. 5, one notices how a nonzero second-nearest
neighbor coupling (h= κ/4) has led to a larger exceptional point
of (g/κ)3≃ 0.660, compared to the nearest-neighbor coupling case
when (g/κ)3≃ 0.353. The middle column, at the critical point of
h= κ/2, shows the onset of a region of unbroken PT phase for
vanishingly small g. This region is even more apparent in the final
column of Fig. 5, where h= 3κ/4 and the exceptional point is well
below the nearest-neighbor value, being (g/κ)3≃ 0.295. Across all
of these cases, it is most apparent that the higher (3rd order)
exceptional point of the trimer with nearest-neighbor coupling
only [cf. Fig. 1b, c] has been downgraded to a standard 2nd order
exceptional point in Fig. 5. This is due to the long-range inter-
actions perturbing the eigensolution otherwise residing exactly at
ω0. Similarly rich features due to long-range interactions are also
seen in the quadrimer chain (N ¼ 4), as is demonstrated in
Supplementary Note 2.

Oligomer chains. We have seen some fundamental properties of
short PT -symmetric oligomer chains (specifically forN ¼ 3, and
for N ¼ 2 and N ¼ 4 in the Supplementary Notes 1 and 2). Let
us now consider a general oligomer of arbitrary size N , with
nearest-neighbor coupling only. The eigenfrequencies read

ωnðN Þ ¼ ω0 þ 2g cos
nπ

N þ 1

� �
; ð28Þ

where the index n 2 ½1;N � labels each mode [such that the
specific results for N ¼ 3 reproduce Eq. (3)]. If we generalize the
PT -symmetric arrangement of Fig. 1a, that is, if we allow for gain
into the first oscillator and an equivalent loss out of the N th
oscillator in the chain, so that the setup is [gain]−[neutral]N�2
−[loss], we can find how the exceptional point ðg=κÞN evolves as
a function ofN . The result of this diagonalization of a chain of an
arbitrary N -oscillator oligomer is derived in Supplementary
Note 3, using a transfer matrix method59–61. This procedure leads
to the rather beautiful expression [cf. Eqs. (1 and 13)]

g
κ

� �
N

¼
1
2 ; N ¼ 2; 4; 6; :::

1
2

ffiffiffiffiffiffiffiffiffiffi
N � 1
N þ 1

q
; N ¼ 3; 5; 7; :::

8<
: ð29Þ

We display graphically the formula of Eq. (29) in Fig. 6. Most
notably, for oligomers of even sizeN (red circles), the exceptional
point is constant at ðg=κÞN ¼ 1=2, and is of 2nd order. However,
oligomers of odd size N (green circles) are associated with
smaller exceptional points than the celebrated dimer result, and
are of higher (3rd) order. These exceptional points are bounded
by the limiting cases of the trimer result of ðg=κÞ3 ¼ 1=ð2 ffiffiffi

2
p Þ ’

0:353::: and the infinitely long chain result of (g/κ)∞= 1/2, as
shown in Fig. 6 for chains up to N ¼ 20 oscillators. In particular,
the even-odd behavior shown in Fig. 6 is ripe for future experi-
mental detection, as is the trend for increasing large values of the
exceptional point with increasingly long odd-numbered chains,
following the trend encapsulated by Eq. (29), and its inverse-
linear asymptotics ðg=κÞN ’ ð1�N �1Þ=2 for large N . While we
do not account for disorder, or for dimerization of the chain
(which may be interesting from a topological point of view62),
such extensions can be readily taken care of within this
framework.

Fig. 4 The effect of long-range interactions. a A sketch of the
PT -symmetric trimer (colored spheres) beyond nearest-neighbor coupling,
where the first-neighbor coupling constant is g, and the second-neighbor
coupling constant is h. The first oscillator (green sphere) is subject to gain κ
(yellow arrow), and the final oscillator (cyan sphere) to loss κ (purple
arrow). b The PT symmetry phase diagram of the trimer, given by the
evolution of the exceptional point (g/κ)3 with the first and second-neighbor
couplings g and h, both in units of κ [Eq. (26)]. White: unbroken phase.
Green: broken phase.
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The addition of next-nearest neighbor hoppings to oligomers
of an arbitrary length allows us to generalize our investigation of
long-range interactions in a short trimer chain [cf. Fig. 4b].
Similar to the N ¼ 3 case, we can map the phase diagram
marking the regions of broken (colored) and unbroken (white)
PT symmetric phase, as is shown in Fig. 7a–d for oligomers of
length N ¼ f4; 5; 6; 7g. The two relevant parameters are the first
and second-neighbor coupling strengths g and h, such that the
vertical axis (h= 0) is marked with analytic results from Eq. (29).
Away from this point, the influence of nonzero next-nearest
neighbor hopping is rather profound: leading to seas (and even
enclaves) of unbroken PT symmetry in a variety of geometries.
Recent advances with so-called programmable interactions in
atomic arrays suggest that the experimental exploration of such
phase diagrams is increasingly accessible63, aside from the
demonstrated tunable interaction ranges in trapped atomic
ions64,65.

Conclusions
We have considered some fundamental properties of oligomers of
an arbitrary size which satisfy PT symmetry due to having gain
into the first oscillator and an equivalent loss out of the final
oscillator. We have unveiled analytically the behavior of the
exceptional points as a function of the chain length, which gov-
erns the stability of the population dynamics in the system and
the presence of amplification. In particular, we have reported an
even-odd effect for oligomers of increasing size, derived the
bounds on all possible exceptional points, and mapped the rele-
vant phase diagrams when long-range interactions are taken into
account.

Focusing on short oligomers, we have provided simple quan-
tum theories locating their exceptional points, and in doing so we
found unconventional population dynamics and interesting first-
order coherences near to the unbroken-broken PT -symmetric
phases. We have also discussed effects beyond nearest-neighbor
coupling, which leads to rich PT symmetry phase diagrams. In
particular, we have shown that reaching the unbroken PT
symmetric phase is no longer purely dependent on going above a
threshold value of coupling-to-dissipation strength g/κ, rather one
may also go below a different threshold value, such that the
broken phase can live in a sweet-spot in-between.

Our versatile theory is relevant across a number of optical and
photonic platforms, including coupled ring resonators66, coupled
cavities67, coupled waveguides68,69, and meta-atoms70. Our the-
oretical results provide a route-map for the scaling up of
PT -symmetric systems, and paves the way for the observation of
cooperative effects in arbitrarily large systems. There are clear
perspectives for the experimental detection of our predictions,
including finite size effects, even-odd behaviors, unconventional
light transport and correlations, and long-range interactions
leading to sweet spot regions of PT symmetry phase breakdown.

Methods
In this theoretical work, the methods used are quantum master equations (as
described in the main text [cf. Eq. (4)] and Supplementary Note 1), and an
extended transfer matrices method (as detailed in Supplementary Note 3).

Fig. 5 The influence of long-range interactions on the exceptional points of the trimer. a–c The real parts of the eigenfrequencies ~ω0
n, as a function of the

coupling strength g [Eq. (26)]. d–f The imaginary parts, corresponding to the real parts in a–c. Dashed lines: the exceptional points denote the border
between broken and unbroken PT -symmetric phases. The results for the first, second and third eigenfrequencies ~ω0

n are denoted by the thin green,
medium orange and thick cyan lines respectively [see the legend in a, which applies to the whole figure]. In the first, second, and third columns, the
second-nearest neighbor coupling constant h= κ/4, κ/2, and 3κ/4, respectively.

Fig. 6 Evolution of the exceptional point in arbitrary chains. The
exceptional point ðg=κÞN as a function of the number of sites N in the
oligomer chain [Eq. (29)]. Results with even (odd) N are associated with
red (green) circles.
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Data availability
The data that support the findings of this study are available from the corresponding
author C.A. Downing upon reasonable request.
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