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Observing light-induced Floquet band gaps in the
longitudinal conductivity of graphene
Lukas Broers 1,2✉ & Ludwig Mathey1,2,3

Floquet engineering presents a versatile method of dynamically controlling material prop-

erties. The light-induced Floquet-Bloch bands of graphene feature band gaps, which have not

yet been observed directly. We propose optical longitudinal conductivity as a realistic

observable to detect light-induced Floquet band gaps in graphene. These gaps manifest as

resonant features in the conductivity, when resolved with respect to the probing frequency

and the driving field strength. The electron distribution follows the light-induced Floquet-

Bloch bands, resulting in a natural interpretation as occupations of these bands. Furthermore,

we show that there are population inversions of the Floquet-Bloch bands at the band gaps for

sufficiently strong driving field strengths. This strongly reduces the conductivity at the cor-

responding frequencies. Therefore our proposal puts forth not only an unambiguous

demonstration of light-induced Floquet-Bloch bands, which advances the field of Floquet

engineering in solids, but also points out the control of transport properties via light, that

derives from the electron distribution on these bands.
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Controlling solids with light constitutes a modern approach
to induce novel functionalities. A specific framework within
this broader effort is Floquet engineering. Floquet engi-

neering refers to inducing dynamics that are captured by an
effective Floquet Hamiltonian in a system by periodic driving. For a
non- or weakly interacting system this approach describes effective
single-particle states that form a natural basis for the driven system.
These states are the Floquet-Bloch bands of the electrons, in analogy
to the Bloch bands of the equilibrium system. These Floquet-Bloch
bands can have qualitatively distinct features from the Bloch bands
of the non-driven system1–4. A striking example are Floquet
topological insulators5–7, for which applications in spintronics8

have been discussed. A general overview on spintronics can be
found in9. A specific realization of Floquet topological insulators is
monolayer graphene illuminated with circularly polarized light, for
which the band structure approaches the Haldane model in the
high-frequency limit10,11. However, while the ground state of the
equilibrium Haldane model forms indeed a topological insulator,
which manifests in a quantized Hall conductance, the Hall con-
ductance of optically driven graphene is not topologically quantized,
but of geometric-dissipative origin12,13. This observation is part of
the larger challenge of an unambiguous detection of the Floquet-
Bloch bands in a solid. We note that the geometric properties of
bands in periodically driven lattices have been demonstrated in
ultracold atom experiments14–16 as well as helical wave guides17,18

and classical settings19. Signatures of Floquet-Bloch bands have
been seen in angle-resolved photoelectron spectroscopy20 and
approaches for observing related pseudospin textures have been
proposed21,22. In this context, the effects of Auger recombination23

and scattering decoherence24 on the electron dynamics in graphene
have been discussed. The transport properties of similar Floquet
systems have been discussed25 and the high-frequency probing limit
has been explored26. However, a smoking-gun in the transport
measurements of solids is lacking.

In this paper, we propose to detect light-induced Floquet band
gaps in graphene via the optical longitudinal transport. We deter-
mine the optical conductivity as a function of the probing frequency
and the driving field strength, which displays resonant features. We
present an interpretation of these features in terms of the Floquet-
Bloch band dispersion and the effective occupation of these states.
These occupations are determined by the dissipation and the
driving field, which balance out to form the steady state. We include
the dissipation processes in our master equation approach that we
use to describe the system. With this, we attribute the observable
resonant features in the optical conductivity to two transition
processes. One occurs between bands inside the same Floquet zone
and the other between adjacent bands of neighboring Floquet zones.
These processes compete in their impact on the optical con-
ductivity, which can result in vanishing and even negative optical
conductivity for specific frequencies and driving field strengths. In
general, we show that the conductivity depends on the relative
occupation of the Floquet bands. We also point out that the relative
occupation is in qualitative agreement with a comoving band
velocity, to be defined below. In particular, we show that there are
regimes of driving field strengths that show an effective inversion of
Floquet band populations. These are in the regimes in which
negative optical conductivity is achieved. Therefore, as a second
point besides the demonstration of Floquet-Bloch bands in solids,
our proposal shows non-trivial control of the transport properties of
solids, induced by light.

Results and discussion
Model Hamiltonian. We consider a circularly polarized laser
with frequency ωd= 2π × 48 THz ≈ 200 meV and variable field
strength Ed, which illuminates a graphene layer from

perpendicular direction. The electromagnetic forces drive the
electrons into a steady state. We propose to measure the long-
itudinal AC conductivity of this steady state in the optical fre-
quency domain. The conductivity displays frequency regimes in
which its magnitude is increased compared to the non-driven
graphene layer, and regimes in which it is decreased. These fre-
quency regimes derive from resonances between the Floquet
states, which in turn depend on the driving field strength. As a
result, these frequency regimes can be tuned to overlap, resulting
in a partial cancellation. In particular, the band gap Δ0 at the
Dirac point can be overshadowed, in general, by other features.
However, we point out a regime in which it can be identified
unambiguously.

The Hamiltonian of light-driven graphene, close to the Dirac
point is given by

H ¼ ∑
k
cykhðkÞck; ð1Þ

where ck ¼ ðck;A; ck;BÞT and ck,i are the fermionic annihilation
operators of an electron with momentum k and sublattice index
i=A, B. Invoking the edge-bulk correspondance, the transport
properties of the periodic bulk captured by Eq. (1) directly
translate to localized edge modes of finite systems. The
Hamiltonian of a single momentum k is

hðkÞ ¼ _vFðqxσx þ qyσyÞ; ð2Þ
with

qx ¼ kx þ
Ed

ωd
sinðωdtÞ �

EL

ωL
cosðωLtÞ; ð3Þ

qy ¼ ky þ
Ed

ωd
cosðωdtÞ; ð4Þ

where vF ≈ 106 m s−1 is the Fermi velocity. ki are the momentum
components and σi are the Pauli matrices. Ed and ωd are field
strength and frequency of the driving laser. EL and ωL are the
same quantities for the longitudinal probing field.

We simulate the dynamics via a master equation approach,
expanding on previous work by some of the authors12. The
density matrix of the system factorizes in momentum space, as
ρ=∏kρk. Each ρk matrix operates on a four dimensional Hilbert
space, given by the states 0j i, cyk;A 0j i, cyk;B 0j i, cyk;Bcyk;A 0j i. We
include doubly and unoccupied states to determine two-time
correlation functions, and thereby frequency-resolved quantities.

In addition to the unitary time evolution induced by the
Hamiltonian in Eq. (2), we include dissipation via Lindblad
operators defined in the instantaneous eigenbasis of the driven
system, to describe the dissipative environment due to degrees of
freedom not included in the Hamiltonian. We include a
dephasing term γz, a decay term γ− and a term with decay rate
γbg that models particle exchange of the graphene layer to a
supporting substrate backgate. This model provides a realistic
discription of the non-equilibrium electron dynamics12.

We choose the coefficients γz= 1 THz, γ−= 2.25 THz and
γbg= 2.5 THz. This sets the scale for the broadening of the
effective bands in the single-particle correlation function as well
as the optical conductivity. These values are a factor of 10 smaller
than those estimated12 for the experimental setup of McIver
et al.13. Our predictions apply to high-mobility samples, e.g., BN-
encapsulated graphene. For larger values, such as those that are
realized in the work of McIver et al.13, resolving the gap features
that we describe in the following, would require larger driving
frequencies and stronger driving. Throughout this work we use
the temperature T= 80 K, which is the same as the setup of
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McIver et al.13. We fix the value of the chemical potential at
μ= 0.

Electron distribution. As a first observable we display the
momentum-resolved and energy-resolved electron distribution
inspired by Freericks et al.27

nðk;ωÞ ¼
Z τ2

τ1

Z τ2

τ1

Gðk; t2; t1Þ
eiωðt2�t1Þ

ðτ2 � τ1Þ2
dt2dt1; ð5Þ

which is manifestly real-valued with

Gðk; t2; t1Þ ¼ hcyk;Aðt2Þck;Aðt1Þi þ hcyk;Bðt2Þck;Bðt1Þi ð6Þ
for which its complex conjugate corresponds to the exchange of t1
and t2. We use the time interval [τ1, τ2] as the probing interval.
We choose τ1 such that the system has reached its steady state.
τ2− τ1 is a sufficiently long probing time of the order of hundreds
of driving periods 2π/ωd that is also commensurate with the
probing period 2π/ωL. We note that this quantity provides a
prediction for trARPES measurements27. In Fig. 1 we show
n(k= ∣k∣, ω) for the driving field strength Ed= 26Me Vm−1. We
note that a similar result was presented in previous work by some
of the authors12. The electron distribution of the steady state is
consistent with the effective band structure predicted by Floquet
theory and identifies the non-equilibrium electron occupation of
these Floquet-Bloch bands.

We label the band gaps as Δm, based on their location mωd/
(2vF) in momentum space for small driving field strength Ed→ 0,
as shown in Fig. 1. Due to the periodicity in frequency space of
the Floquet spectrum, there is a complementary gap ωd− Δm for
any given band gap Δm, with m > 0. These complementary gaps

are also visible in the optical conductivity of the system. They
reduce the conductivity at the corresponding frequency, rather
than enhance it. The gap Δ0 at the Dirac point does not exhibit
this behavior, as discussed later.

Optical conductivity. The second observable that we present is
the longitudinal optical conductivity. We propose to measure this
quantity experimentally, to compare to the predictions made
here. In Fig. 2 we show the real part of the total optical con-
ductivity of the system as a function of the driving field strength
Ed. This is obtained from our master equation approach as

σrðωLÞ ¼ Re
jxðωLÞ
ExðωLÞ

� �
; ð7Þ

with the longitudinal current and electric field

jxðωLÞ ¼ nsnvevF ∑
k

Z τþ2π
ωL

τ
TrðρkðtÞσxÞeiωLtdt; ð8Þ

ExðωLÞ ¼
Z τþ2π

ωL

τ
ðEd cosðωdtÞ þ EL sinðωLtÞÞeiωLtdt; ð9Þ

where τ is a point in time where the system has reached its steady
state. ns= nv= 2 are the spin- and valley-degeneracies. e is the
electron charge. σr(ωL) is obtained for the probing field EL= 10
Vm−1. We have verified that the conductivity obtained in this
manner is the linear response and that the sum over k includes
sufficiently many points surrounding the Dirac point.

As we demonstrate in Fig. 2a, σr(ωL) displays resonant features
that match the band gaps of the Floquet spectrum. The energy
gap Δ0 increases with increasing field strength Ed, in a

Fig. 1 Electron distribution of light-driven graphene, revealing its Floquet states. The electron distribution n(k, ω) of graphene driven with circularly
polarized light at the driving frequency ωd= 2π × 48 THz≈ 200meV and field strength Ed= 26MVm−1. The distribution n(k, ω) depends only on the
momentum k= ∣k∣. This quantity displays the steady state occupation of the Floquet-Bloch band structure. The one-photon resonance gap Δ1 at k=ωd/
(2vF), the two-photon gap Δ0 at the Dirac point, and the two-photon gap at k=ωd/vF are highlighted for clarity. vF is the Fermi velocity. Additionally, the
complementary gaps ωd−Δ1 and ωd−Δ2 are indicated. The dotted lines indicate the Floquet energies of the first Floquet zone.
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monotonuous fashion. The energy gaps Δm, with m > 0, first
increase with Ed, then reach a maximum at Ed ¼ EðmÞ

d;max, then

decrease, and ultimately reach 0 at Ed ¼ EðmÞ
d;band. At this driving

strength the gap is located at k= 0 and merges with Δ0.
The magnitude of σr(ωL) at the resonance Δ1, i.e., the

magnitude of σr(Δ1), displays a maximum for Ed<E
ð1Þ
d;max, relative

to its background, and a minimum for Ed>E
ð1Þ
d;max. The magnitude

of σr(ωL) at ωd− Δ1, displays the complementary behavior.
σr(ωd− Δ1) has a minimum for Ed<E

ð1Þ
d;max, and a maximum for

Ed>E
ð1Þ
d;max. Note that this does not happen for Δ0 due to the lack

of a complementary gap ωd− Δ0 as can be seen in Figs. 1 and 3.
We note that in the limit of Ed→ 0, the optical conductivity

σr(ωL) approaches the value 1
4
e2
_ for non-zero frequencies. An

example for this is visible in Fig. 2b, for ωL= 2π × 24 THz.
Additionally, we obtain a peak at ωL= 0, which is the Drude peak
broadened by the dissipative terms. We show the real part of the
longitudinal conductivity σr(ωL) for Ed= 0 in Supplementary
Note 2.

We obtain analytical expressions for Δ0 and EðmÞ
d;band by

considering the Hamiltonian in Eq. (2) at the Dirac point and
without probing, i.e., k= 0 and EL= 0. This has the time-
dependent Rabi solutions

þj i � eiðωdt=2þπ=4Þ cosðΩtÞ � iωd sinðΩtÞ
2Ω

e�iωdt Ed sinðΩtÞ
Ωω

 !
; ð10Þ

�j i � e�iðωdt=2þπ=4Þ �eiωdt Ed sinðΩtÞ
Ωωd

cosðΩtÞ þ iωd sinðΩtÞ
2Ω

 !
; ð11Þ

where

Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2FE

2
d

ω2
d

þ ω2
d

4

s
: ð12Þ

The gap at the Dirac point is given by Δ0= 2Ω− ωd. This
expression is also the Aharanov-Anandan phase of this system2.
In the weak driving limit this gap follows the expected
perturbative behavior11Δ0 � v2FE

2
d=ω

3
d whereas in the strong

driving limit it develops a linear dependence on Ed as
Δ0 ≈ vFEd/ωd. We use the full expression for Δ0 to find the
driving strengths EðmÞ

d;band, since they occur whenever the gap Δ0

spans a multiple of ωd. By setting 2Ω− ωd=mωd, m 2 N, we
find

EðmÞ
d;band ¼ v�1

F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
2
þm2

4

r
ω2
d:

ð13Þ

We display the Dirac gap in Fig. 3, and compare it to the
electron distribution at k= 0, of the steady state. We observe that
the two maxima of the electron distribution that emerge from
ω= 0 follow the prediction of ±Δ0, even as Δ0 grows larger than
the Floquet zone boundary at ωd. Therefore, Δ0 is a more natural
energy scale to predict the resonances at k= 0 for large driving
intensities, than the direct band gap that is strictly smaller than
ωd. For increasing field strength Ed, the occupation of the upper

Fig. 2 Longitudinal optical conductivity of light-driven graphene. The real
part of the optical conductivity of graphene driven at the frequency
ωd= 2π × 48 THz≈ 200meV as a function of the driving field strength Ed
(a) and a cut at half the driving frequency ωL=ωd/2= 2π × 24 THz (b).
The dashed lines show the various band gaps Δm as given by Floquet
theory. The gap Δ0 becomes clearly visible above values of
ωL≈ 2π × 14 THz≈ 60meV and Ed≈ 28MVm−1. We also see the
complementary resonant features at ωd−Δm, with m > 0.

Fig. 3 Electron distribution at the Dirac point. The electron distribution
n(k= 0, ω) at the Dirac point as a function of the driving field strength Ed.
The driving frequency is ωd= 2π × 48 THz≈ 200meV. The scaling
behavior of the gap at the Dirac point is Δ0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2FE

2
d=ω

2
d þ ω2

d=4
q

� ωd,
where vF is the Fermi velocity. The vertical dotted line indicates Ed ¼
Eð1Þd;band: The horizontal dotted lines indicate Floquet zone boundaries. The
dashed lines show the Floquet energies at the Dirac point (See
Supplementary Note 1) that are formally constrained to be inside the first
Floquet zone. The occupations stay confined within the Floquet bands
adiabatically connected to the bare graphene and one replica outwards.
There are no complementary gaps at k= 0.
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two bands decreases. The occupation of complementary gaps is
zero throughout Fig. 3.

As visible in Fig. 2a, the conductivity vanishes around the
probing frequency ωL ≈ 2π × 12 THz ≈ 50meV and the driving
field strength of Ed ≈ 39MVm−1. Here the first gap Δ1 decreases
with increasing Ed and creates a negative contribution that
suppresses σr(ωL) to zero. For higher order gaps, e.g., Δ2 and Δ3 in
Fig. 2a, the same phenomenon even leads to a sign change in the
conductivity. Whenever a gap is in the regime of decreasing with
increasing Ed, and no other resonance contributes positively and
too strongly to the conductivity, the negative contributions can
cancel the background and result in net negative optical
conductivity. Such a total negative conductivity in the system
amounts to an out-of-phase response to a probing field with a
probing frequency in the regime in which σr(ωL) is negative. In
principle this can be utilized to obtain electrical gain out of the
system, where the required energy is effectively taken from the
driving.

Momentum-resolved conductivity. In order to gain further
insight into the origin of the features in the total optical con-
ductivity shown in Fig. 2, we explore the momentum resolved
contributions to the conductivity. In Fig. 4 we resolve the con-
tributions to the conductivity along the kx and ky directions
relative to the Dirac point in momentum space, defined as

~σrðk;ωLÞ ¼
nsnvevFjkj
ExðωLÞ

Z τþ2π
ωL

τ
TrðρkðtÞσxÞeiωLtdt: ð14Þ

Here, we include the linear scaling with the absolute momenta ∣k∣
in polar coordinates. Direct interband transitions between
neighboring Floquet bands give rise to resonant features in
~σrðk;ωLÞ that match the Floquet band energy differences Δϵ(k)
and ωd− Δϵ(k) (See Supplementary Note 1). These resonant
features contribute to the conductivity with alternating signs. The
sign changes occur close to the band gap locations, but slightly
shifted towards (away from) the Dirac point in case the gap size
increases (decreases) with respect to the field strength Ed. For
gaps that do not change with respect to Ed, i.e., gaps at their
maximum, this shift vanishes. Therefore, the accumulated con-
tributions across gaps net either positive or negative conductivity
depending on the change in gap size with respect to field strength
Ed. This is consistent with the enhancements and reductions in
σr(ωL) at the gaps Δm, with m > 0, and their complementary gaps
ωd− Δm, seen in Fig. 2a.

For probing frequencies ωL that are not resonant with a given
band gap, ~σrðk;ωLÞ does not vanish in general. This results in a
background conductivity that can obscure the gap Δ0 at the Dirac
point in particular, as is the case for Ed<E

ð1Þ
d;max in Fig. 2a. Since

the band gaps Δm, with m > 0, and their complementary gaps
ωd− Δm have a maximum at the field strength Ed ¼ EðmÞ

d;max, there
is always a range that no gap Δm, with m > 0, reaches that is
centered around ωL= ωd/2. In this range, it is the gap Δ0 that is
visible predominantly. The overall behavior of the gaps is self-
similar with respect to the driving frequency ωd. Therefore in this
system, there always exists a reliable range of probing frequencies
where the gap Δ0 can be observed.

The Floquet interband transitions resonant with Δϵ(k) occur
inside a given Floquet zone. The ones resonant with ωd− Δϵ(k)
occur across Floquet zone boundaries. Hence, we refer to them as
intra-Floquet ~σ intrar ðk;ωLÞ and inter-Floquet ~σ interr ðk;ωLÞ contri-
butions to the conductivity, respectively. To distinguish the two
we write

~σrðk;ωLÞ ¼ ~σ intrar ðk;ωLÞ þ ~σ interr ðk;ωLÞ þ ~σbgr ðk;ωLÞ; ð15Þ
where ~σbgr ðk;ωLÞ is a remaining background contribution
accounting for the ωL→ 0 behavior in ~σrðk;ωLÞ. Figure 4b shows
that σbgr ðky;ωLÞ � 0. We fit a function of two Lorentzians located
at Δϵ(k) and ωd− Δϵ(k) with the same fixed width Γ= 1 THz to
the numerical results of ~σrðky;ωLÞ. Specifically, we use

~σ fitr ðky;ωLÞ ¼
Γ

π

~σ intrar ðkyÞ
Γ2 þ ðωL � ΔϵÞ2

þ Γ

π

~σ interr ðkyÞ
Γ2 þ ðωL � ωd þ ΔϵÞ2

ð16Þ

as a fitting function.
The conductivity features derive from the transitions between

the Floquet bands, and are therefore related to the occupation of
these bands. We define the relative occupation

ΔnðkÞ ¼ ∑
m2Z

n�mðkÞ � nþmðkÞ; ð17Þ

where n±
m ðkÞ is the occupation at momentum k of the mth upper

(lower) Floquet band given by integrating n(k, ω) from ðm�
1
4 ±

1
4Þωd to ðmþ 1

4 ±
1
4Þωd.

Figure 5 shows the momentum-resolved intra-Floquet con-
ductivity ~σ intrar ðkyÞ which is determined via fitting as described
above, as well as the effective relative occupation Δn(k) of the

Fig. 4 Momentum-resolved optical conductivity of light-driven graphene. The momentum-resolved contributions to the optical conductivity of driven
graphene along the kx (a) and ky (b) momentum directions. The driving frequency is ωd= 2π × 48 THz≈ 200meV and the field strength is Ed= 34MVm
−1. For these parameters the gap at the Dirac point roughly matches half the driving frequency such that Δ0≈ωd/2. The dashed lines indicate the Floquet
band energy differences Δϵ(k) and ωd−Δϵ(k) (See Supplementary Note 1).
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Floquet bands as functions of the field strength Ed. They are in
good qualitative agreement with each other. Both quantities
display tongues with alternating signs and zero-crossings
seperating them that agree very well between Δn(k) and
~σ intrar ðkyÞ. The zero-crossings touch the vF k-axis at mωd/2 and

the Ed-axis at EðmÞ
d;band, m 2 N. The solid white lines show the

location of the Floquet band gaps, i.e., where the radial band

velocity vanishes, i.e., ∂k ϵ= 0. They roughly follow the zero-
crossings of Δn(k) and ~σ intrar ðkyÞ while showing small, but clear

deviations. We observe that for EðmÞ
d;max<Ed<E

ðmÞ
d;band the steady state

displays an inversion of the Floquet bands, which creates a
negative contribution to the optical conductivity. The dotted
white lines indicate where the comoving radial band velocity ∂Πϵ
with Π= vF(k+ Ed/ωd) vanishes, i.e., ∂Πϵ= 0. These lines show
improved agreement with the zero-crossings of Δn(k) and
~σ intrar ðkyÞ. Further, there is an overall resemblance between

∂Πϵ(k), Δn(k), and ~σ intrar ðkyÞ (See Supplementary Note 1).
We summarize that the momentum-resolved optical conduc-

tivity shows two types of interband processes across the effective
Floquet band structure. These resonant processes correspond to
the energy differences Δϵ(k) and ωd− Δϵ(k) between Floquet
bands and contribute both positively and negatively. We relate
these conductivities to the effective relative occupation of the
Floquet bands Δn(k). We find that effective inversions of the
Floquet bands correspond to reductions in the conductivity which
can lead to a sign change in the total optical conductivity. These
band inversions at the Floquet gaps and their reductions of the
optical conductivity systematically occur in regimes of decreasing
gap sizes with respect to the driving field strength.

Conclusion
In conclusion, we have proposed the longitudinal optical con-
ductivity of illuminated graphene as a realistic observable to
detect Floquet band gaps. We have shown that this quantity
displays the Floquet gaps as functions of the driving intensity and
the probing frequency. In particular, we have pointed out a
regime in which the band gap at the Dirac point can be detected.
All band gaps except for the band gap at the Dirac point, first
increase with the driving intensity, approach a maximal value,
and then decrease. For the increasing regime, the optical con-
ductivity displays a positive contribution. For the decreasing
regime, it displays a negative contribution that can amount to a
total negative conductivity at the given frequency. We point out
that this negative contribution derives from an inversion of the
occupation of the Floquet bands. Therefore, the proposed
experiment not only provides an unambiguous detection of Flo-
quet bands, but also demonstrates dynamical control of transport
in solids with light.

Methods
Driven graphene dynamics. We express the driven graphene Hamiltonian in a
four-level description, spanned by the states 0j i, cyk;A 0j i, cyk;B 0j i and cyk;Bc

y
k;A 0j i. The

cðyÞk;A=B are the annihilation (creation) operators at the momentum k in the sublattice

A/B. The Hamiltonian H is defined in Eq. (1). We factorize the density matrix in
momentum space as ρ=Πkρk and simulate the dissipative dynamics using the
Lindblad-von Neumann master equation

_ρ ¼ i½ρ;H� þ∑
j
cjðLjρLyj �

1
2
fLyj Lj; ρgÞ;

where the sum over j goes over the momentum-dependent Lindblad operators

Lz ¼Vðcyk;Ack;A � cyk;Bck;BÞVy

Lþ ¼Vðcyk;Bck;AÞVy

L� ¼Vðcyk;Ack;BÞVy

Ll ¼V

0 δl;�1 δl;�2 0

δl;1 0 0 δl;�3

δl;2 0 0 δl;�4

0 δl;3 δl;4 0

0
BBB@

1
CCCAVy

with l= ±1, ±2, ±3, ±4. δl,i is the Kronecker-Delta and V is the transformation into
the instantaneous eigenbasis of h(k) defined in Eq. (2). The dissipation coefficients

Fig. 5 Effective Floquet state occupation and intra-Floquet conductivity.
The effective occupation Δn(k) (a) and the fitted intra-Floquet conductivity
~σ intrar ðkyÞ (b) as functions of the field strength Ed. The solid white lines are
given by the locations in momentum space of the band gaps Δm, with
m > 0. The dotted white lines are given by the zero-crossings of a type of
comoving band velocity ∂ΠΔϵ= 0, where Π= vF(k+ Ed/ωd) (See
Supplementary Note 1). The dashed line is given by k ¼ Ed

ωd
.
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cj fulfill the conditions

cz ¼ γz
cþ þ c� ¼ γ� cþ ¼ c� expf�2ϵβg
c1 þ c�1 ¼ γbg c�1 ¼ c1 expfþϵβg
c2 þ c�2 ¼ γbg c�2 ¼ c2 expf�ϵβg
c3 þ c�3 ¼ γbg c�3 ¼ c3 expf�ϵβg
c4 þ c�4 ¼ γbg c�4 ¼ c4 expfþϵβg

with β ¼ ðkBTÞ�1. ±ϵ are the instantaneous eigenenergies of h(k). This approach is
also detailed in previous work12.

In order to calculate the electron distribution, we first calculate the two-point
correlation functions hcyk;iðt2Þck;iðt1Þi. We do this by acting with ck,i on the density
matrix ρk(t1) and continuing the time-evolution with the same master equation
until the time t2 at which we act on the resulting density with the operator cyk;i . We
do this for all pairs of times t1 and t2 in the interval [τ1, τ2] and calculate the
electron distribution as detailed in Eq. (5).

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code used to generate the data presented in this study is available from the
corresponding author upon reasonable request.
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