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Diffusive skin effect and topological heat funneling
Pei-Chao Cao1,4, Ying Li 2,3,4✉, Yu-Gui Peng 1, Minghong Qi2,3, Wen-Xi Huang1, Peng-Qi Li1 &

Xue-Feng Zhu 1✉

Non-Hermitian wave system has attracted intense attentions in the past decade since it

reveals interesting physics and generates various counterintuitive effects. However, in the

diffusive system that is inherently non-Hermitian with natural dissipation, the robust control

of heat flow is hitherto still a challenge. Here we introduce the skin effect into diffusive

systems. Different from the skin effect in wave systems, where asymmetric couplings were

enabled by dynamic modulations or judicious gain/loss engineering, asymmetric couplings of

the temperature fields in diffusive systems can be realized by directly contacted metamaterial

channels. Topological heat funneling is further presented, where the temperature field

automatically concentrates towards a designated position and shows a strong immunity

against the defects. Our work indicates that the diffusive system can provide a distinctive

platform for exploring non-Hermitian physics as well as thermal topology.
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Non-Hermitian Hamiltonian plays a core role to describe
systems that exchange energy with the environment. In
wave systems, the non-Hermitian physics has been

explored intensely in the past decade1–5. For example, the parity-
time symmetric system that operates at an exceptional point (EP)
can realize unidirectionally invisible cloak6, single mode laser7,
one-way mode switcher8,9, high-sensitivity sensor10, and wireless
power transfer11,12. The dynamically modulated systems with a
broken time-reversal symmetry can produce various novel gyra-
tors, isolators and circulators13. Besides, an intriguing “skin
effect” was recently discovered in non-Hermitian systems, where
all the bulk states localize at the edges under the open boundary
condition (OBC), which modifies the bulk-boundary correspon-
dence in Hermitian cases14–22. The non-Hermitian skin effect
shows application prospects in the nonreciprocal energy manip-
ulation and has been demonstrated in various fields such as
optical lattices23, mechanical systems24, quantum-walk
networks25, and electrical circuits26, etc.

In diffusive systems that are non-Hermitian inherently, the
thermal metamaterials advanced rapidly as it enables various
agile and flexible manipulation of heat flow27,28. Based on the
theory of transformation thermotics, fruitful progresses have
been achieved, such as thermal cloaks that conceal objects in
heat conduction or radiative camouflages against infrared
detection29–31, thermal diodes and concentrators that isolate
and harvest heat directionally32–35. Since the diffusive system is
dissipative, it provides a natural platform to investigate the
non-Hermitian physics, for example, the observation of anti-
parity-time symmetric phase transition at an EP36–38. The
Hamiltonian respecting anti-parity-time symmetry can be
constructed by imposing the convection to diffusive systems,
which generates dynamically “stopped” temperature fields36.
However, the diffusive counterparts of asymmetric coupling
and skin effect have not been discovered hitherto. Due to the
symmetric energy exchanges in general cases, breaking the
time-reversal symmetry with temporal modulations23 and
judicious gain/loss engineering of couplings26 were considered
the few-in-number choices.

In this work, we show that it is possible to realize asymmetric
coupling and skin effect in the diffusive systems by directly
contacting thermal metamaterials. Different from the cases in

wave systems, the effective non-Hermitian Hamiltonians
describing asymmetric couplings in diffusive systems are ima-
ginary due to the dissipative nature, as shown in Fig. 1a. Our
finding starts from the fact that heat and temperature variations
during the energy exchange are not equivalent. Temperature
evolution is actually asymmetric between different components.
As a result, we realize the diffusive skin effect, which shows that
the eigenstates in all bulk bands can become localized edge
states under open boundaries. This is fundamentally different
from the Hermitian case in which only the edge modes can have
boundary localizations. Unlike the non-Hermitian skin effects
in the wave systems, where the asymmetric couplings were
implemented by temporal modulations or tailored gain/loss
couplings, asymmetric coupling of temperature fields can be
easily enabled by the directly contacted thermal metamaterials.
We further propose an approach to construct a periodic non-
Hermitian Hamiltonian in the parameter space from an aper-
iodic structure. On this basis, the skin-effect-induced heat
funneling is showcased, where temperature fields concentrate to
the designated position, being regardless of the initial condition
and showing a strong immunity against the defects, as sche-
matically shown in Fig. 1b. The robust temperature fields with
nontrivial gradients can be useful for thermoelectric power
generation or heat harvesting39. Moreover, the high sensitivity
of diffusive skin effect to the change of boundary conditions
makes it possible to achieve topological thermal sensing40.

Results
Directly asymmetric coupling. In order to understand the
asymmetric coupling diffusive systems intuitively, we can start
from a double-ring toy model that was experimentally demon-
strated recently36. As shown in Fig. 2a, where two rings are
vertically coupled in z direction through an interlayer. According
to the Fourier’s law in heat conduction, the coupling equations
can be written as36–38

∂T1
∂t ¼ D1

∂2T1
∂x2 þ h21 T2 � T1

� �
;

∂T2
∂t ¼ D2

∂2T2
∂x2 þ h12 T1 � T2

� �
;

ð1Þ

where T1 (T2) is the temperature field of upper (lower) channel
and D1 ¼ κ1

ρ1C1
(D2 ¼ κ2

ρ2C2
) is the diffusivity of the upper (lower)
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Fig. 1 Asymmetric coupling and heat funneling. a Schematic of coupling dynamics with Hamiltonians in the wave and diffusive systems. The main diagonal
elements are the decoupled on-site resonant frequency (ω0) in wave systems and the decay rate (iS0) in diffusive systems, the off-diagonal elements are
the coupling coefficients (c12;21 and ic12;21). Elements in the diffusive systems are imaginary, indicating the dissipative nature of heat transfer. The black
curves describe the field distributions for symmetric and asymmetric couplings. b Concept of the heat funneling effect, showing that the temperature field
is rapidly gathered at where we specify (the dashed red line), and finally achieve a steady state. t axis indicates the time evolution and z axis is along the
coupling direction.
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channel with κ1 (κ2), ρ1 (ρ2) and C1 (C2) being the thermal
conductivity, mass density and heat capacity. x is the position
along the channel. The heat exchange rate of the upper (lower)
channel is h21 ¼ κi

ρ1C1bd
(h12 ¼ κi

ρ2C2bd
), where κi is the thermal

conductivity of the coupling layer, b and d are the thicknesses of
the ring channel.

As the temperature field in the ring structure is spatially
periodic, we can assume that Eq. (1) has a wave-like solution of
T1;2 ¼ A1;2e

i βx�ω1;2tð Þ þ T0
36. In the solution, A1;2 is the ampli-

tude, β is the propagation constant, ω1;2 is the complex
frequency, and T0 is the reference temperature that is set to be
zero for simplicity. Here we employ the temperature gradient
and position of maximum temperature to represent the
amplitude and phase of the wave-like solution. As all the ring
channels have the same size, the propagating constants of
circulating “heat wave” in them are equal to be β ¼ m 2π

2πR ¼ m
R,

where m is the mode order and R is the radius of the ring.
Usually, only the first-order mode is taken into consideration,
since it is very stable and can be selectively excited.
Temperature variations in each channel can be regarded as
uniform on condition that the layers are thin enough. As a
result, the heat transfer in these channels possess coherent
properties. Substituting the wave-like solution into Eq. (1) and
considering the boundary continuity condition, we can deduce

an effective Hamiltonian about A1; A2

� �T36–38
H0 ¼

iS1 ih21
ih12 iS2

� �
; ð2Þ

where S1 ¼ �ðβ2D1 þ h21Þ and S2 ¼ �ðβ2D2 þ h12Þ. In Eq. (2),
the Hamiltonian of the diffusive system is imaginary, which is
different from the one in the wave system (real), as shown in
Fig. 1a. Moreover, when the material parameters ρ1C1≠ρ2C2, the
ring coupling becomes asymmetric with ih21≠ih12. It needs to be
pointed out that the main diagonal elements in Eq. (2) can be
unified into iS0 by adjusting the diffusivities D1;2 along with
h21;12, where ih21;12 are replaced by ic21;12 in Fig. 1a. Eigenvalues

and eigenvectors of Eq. (2) are solved to be ω± ¼
i S0 ±

ffiffiffiffiffiffiffiffiffiffiffiffi
h12h21

p� �
and u± ¼ A± 1; A± 2

� �T¼ e�iω± t ±
ffiffiffiffiffi
h12
h21

q
; 1

� �T
.

We can find the amplitudes in channels are asymmetric in the
steady state, meanwhile, they are always time dependent with
the factor of e�iω± t due to the system is dissipative. Therefore,
our structure does not require dynamic modulation or gain-loss
engineering to achieve asymmetric couplings.

Diffusive skin effect and non-Bloch band theory. For imple-
mentation, we can take the densities of directly coupled channels
varying with a ratio of a2. Figures 2a and 2b display the asym-
metric coupling temperature fields with different a, respectively.
In order to realize the non-Hermitian diffusive Su-Schrieffer-
Heeger (SSH) model, we can connect the asymmetric coupling
unit cells with symmetric couplings in Fig. 2c16. Each unit cell
consists of sublattices (A+B), where the asymmetric intracell
couplings and symmetric intercell coupling are i h1 ± δ

� �
and ih0,

respectively. For the open boundary condition, the Hamiltonian

ih 

i(h −δ)

i(h +δ)
● ● ●

01

1 i(h −δ)

i(h +δ)1

1BA

iS0 iS0 iS0 iS0 iS0 iS0

a

c

ω

ω

b

a = 2

a = 1

a = 0.5

Temperature fields
Channel 1

Channel 2

3D Model

d e

Fig. 2 Asymmetric coupling model and diffusive skin effect. a, b Temperature fields intensities and distributions of two directly coupled channels versus
the asymmetric factor a. Note that at a= 1, the temperature field distribution is symmetric, the insert shows the 3D model at a= 0.5. c The diffusive tight-
binding Su-Schrieffer-Heeger (SSH) model for open boundary condition (OBC) with asymmetric intracell coupling iðh1 ± δÞ and symmetric intercell coupling
ih0, iS0 is the unified decay rate on each site. d Spectra in the complex plane at coupling parameters h1 ¼ 0; 1:45; 2 for OBC with h0 ¼ 1 and δ ¼ 1:05.
e Amplitude distributions of eigenstates for OBC and periodic boundary condition (PBC), at h1 ¼ 1:45. The unitcell number is 28.
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is16,20

HOBC ¼iS0 ∑
l
½Ây

l Âl þ B̂y
l B̂l� þ∑

l
½i h1 þ δ
� �

B̂y
l Âl

þ i h1 � δ
� �

Ây
l B̂l þ ih0ðB̂y

l Âlþ1 þ Ây
l B̂l�1Þ�;

ð3Þ

where Ây
l and B̂y

l are the creation operators of A and B sites in the
lth period. For the periodic boundary condition (PBC), the Bloch-
mode Hamiltonian in momentum space is expressed into

HPBC Kð Þ ¼ iS0 Î þ i h1 þ h0cosK
� �

σ̂x þ i h0sinK � iδ
� �

σ̂y; ð4Þ

which respects the sublattice symmetry of σ̂�1
z ðHPBC Kð Þ �

iS0 ÎÞσ̂z ¼ �ðHPBC Kð Þ � iS0 ÎÞ with σ̂x;y;z the Pauli matrices and K
the Bloch vector19. Eigenvalues of Eq. (4) can be deduced

ω± Kð Þ ¼ iS0 ± i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2x þ dy � iδ

� �2r
; ð5Þ

where dx ¼ h1 þ h0cosK and dy ¼ h0sinK . When the complex
spectrum at the zero-energy level, viz., ω± Kð Þ � iS0 ¼ 0, we can
obtain EPs at which all eigenstates degenerate (the sign ‘×’ in
Fig. 2d). However, the EPs deduced from the PBC case (h1 ¼ 2:05)
contradict the OBC one (h1 ¼ 1:45), which indicates the bulk
boundary correspondence breaks down (the complex spectrum of
PBC case can be found in Supplementary Note 1)16,20. Back to the
OBC case, where the eigen-equation HOBC � iS0 Î

� �
Ψ ¼

ω� iS0
� �

Ψ with Ψ ¼ TA;1;TB;1; ¼ ;TA;l;TB;l; ¼ ;TA;N ;TB;N

� �T
,

the non-Hermitian Bloch vector should be modified into complex to
eliminate the influence of boundary condition. Here the generalized

Bloch vector K ! K � ilnr r ¼
ffiffiffiffiffiffiffiffiffiffiffi
h1þδ
h1�δ

			 			r� �
and the Bloch phase

factor eiK ! α ¼ reiK16,20. According to the non-Bloch band the-
ory, the nearest neighbor coupling of temperature fields can be
further transformed into

i½ðh1 þ δÞ þ h0α�ϕA ¼ ðωl � iS0ÞϕB;
i½ðh1 � δÞ þ h0=α�ϕB ¼ ðωl � iS0ÞϕA;

ð6Þ

where ϕA;B ¼ αlϕAl ;Bl
are the eigenstates in lth unit cell and

degenerate at ωl � iS0 ¼ 0 (also at the EPs) with the generalized
phase factor

α±

		 		 ¼ h1 þ δ

h0

				
				; h0

h1 � δ

				
				: ð7Þ

Therefore, EPs locate at the hyperbolic curve
		�h1

h0

�2 � � δh0�2		 ¼ 1:
The corresponding amplitudes of eigenstates for PBC and OBC at
the EP are shown in Fig. 2e and Fig. S2 (in Supplementary Note 2).
Here the EP is also a topological phase transition point and the
topological phase diagram is shown in the “Methods”.

Heat funneling effect. Figure 3a presents the heat funnel model
with two mirrored SSH chains splicing at the designated interface.
In our case, there are 5 periods for the left chain and 1 period for
the right chain. The thicknesses of ring channels and interlayers
are b and d. The internal and external radii of each channel are R1
and R2 with R1 � R2. We define the propagation constant of
temperature fields as β ¼ 1

R1
. The thermal conductivities, mass

densities and capacities of thermal metamaterials for ring chan-
nels and coupling interlayers are ðκn; ρn; C0Þ and ðκin; ρ0; C0Þ,
where the channel number n indicates that the associated mate-
rial parameters are varied.
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Fig. 3 Heat funneling model. a Schematic of the coupled ring structure for realization, where the red dashed line denotes the position of interface, there
are 5 periods for the left chain and 1 period for the right chain. b Thermal conductivity (κi) and mass density (ρn) distributions of thermal metamaterials for
the ring channels and coupling interlayers. c Equivalent tight-binding model, with the asymmetric intracell couplings are ih0

a and ih0a. d Homogenization of
the decay rates of channels iSn at a ¼ 0:4, Dn are the diffusivity of channels. e Generalized gapless Bloch bands of the non-Hermitian Su-Schrieffer-Heeger
(SSH) model at a ¼ 0:4; 1; 4, K is Bloch vector and ω is the eigenfrequency.
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The coupling coefficients between channels n and nþ 1 can be
expressed into ihn;nþ1 ¼ i κin

ρnþ1C0bd
and ihnþ1;n ¼ i κin

ρnC0bd
for the

forward and backward couplings, respectively. In order to keep
the couplings in the non-Hermitian diffusive SSH model
respecting the translation symmetry in parameter spaces, the
parameters ρn and κin of thermal metamaterials should be
arranged as

ρn ¼
an�1ρ0; n ¼ 1; 3; 5; ¼
anρ0; n ¼ 2; 4; 6; ¼

(
; κin ¼ anκi0; n ¼ 1; 2; 3; 4; ¼ ;

ð8Þ
which is shown by the setting of the heat funnel model in Fig. 3b.
However, it is difficult to find the natural materials that satisfies
these gradient parameters in implementation. According to the
effective medium theory, we can realize the effective densities of
channels and the effective thermal conductivities of coupling
interlayers with composite metamaterials. In this way, the
effective material parameters can be satisfied by modulating the
doping rates of materials with highly contrasted properties (such
as Cu and Polydimethylsiloxane). Here the asymmetric intracell
couplings are ih0

a and ih0a, with the symmetric intercell coupling
ih0, where h0 ¼ κi0

ρ0C0bd
. From the semi-infinite model in Fig. 2c, we

can easily obtain h1 ¼ 1
2 h0

1
a þ a
� �

; δ ¼ 1
2 h0

1
a � a
� �

: However, this
cannot lead to the equivalent tight-binding model in Fig. 3c, if the
diffusivity takes the form of Dn ¼ κ0

ρnC0
(the diamond dots in

Fig. 3d). The eigenfrequency of iSn ¼ �iðβ2Dn þ hn;nþ1 þ hnþ1;nÞ
should be uniformed. Here we adjust Dn in the way shown by the
square dots in Fig. 3d to homogenize iSn into iS0 ¼
�i β2D0 þ aþ 1

a þ 1
� �

h0
� �

(the circular dots in Fig. 3d), with
D0 ¼ κ0

ρ0C0
. The Hamiltonian of non-Hermitian SSH model can be

derived by replacing K with K þ ilna and the eigenvalues are
deduced as ω± Kð Þ � iS0 ¼ ± i2h0cos

K
2 . It is interesting to find

that the system operates exactly at the topological transition point
with a gapless band for any value of a. The generalized Bloch
band is plotted in Fig. 3e, where the blue dots denote EPs.

We construct the 2D heat funnel model for simplicity in the
theoretical analysis and the full wave simulations here. The
structural parameters are chosen as b ¼ 5mm, d ¼ 1mm, and
R1 � R2 ¼ 100mm. The material parameters are set to be
ρ0 ¼ 1000 kgm�3, C0 ¼ 1000 J kg�1K�1, κ0 ¼ 100Wm�1K�1,
and κi0 ¼ 5Wm�1 K�1. In Figs. 4a, c, we show the imaginary
eigenvalues �Imω and the eigenmodes ϕn

		 		� �
at a ¼ 1; 0:4. The

result reveals that the temperature gradients of all eigenmodes are
almost evenly distributed in the channel array at a= 1. While at
a= 0.4, the temperature fields will localize in the interface
channels. For experiments, temperature gradient in the channel
can be measured by the difference between maximum and
minimum temperature values with an infrared camera. The

normalized steady-state temperature gradient in each channel
corresponds to the eigenmode solved from the Hamiltonian. As
heat transfer is inherently dissipative and it normally needs much
time for the temperature field evolving into the steady state, the
initial temperature gradient should be given larger (for example,
273 K for the cold-side cooling and 320 K for the hot-side
heating).

To testify the topological heat funneling, we study the
temperature field evolutions in a symmetric coupling structure
at a ¼ 1, where κi0 is set to be 0:3Wm�1K�1. Imposing a random
stimulation input, the temperature field will naturally concentrate
toward the central channels, since the eigenmode of the lowest
decay rate is excited and observed. In Fig. 5a, the simulated
evolutions of temperature fields agree well with the tight-binding
model, since the normalized temperature gradient of each
channel is consistent with the theoretical analysis. However, for
the asymmetric coupling case at a ¼ 0:4, the temperature field
tends to funnel to the designed interface at channels 10 and 11 in
Fig. 5b, regardless of initial conditions. Note that the heat
funneling is robust against the defects with different coupling
strengths, channel numbers, and interface locations (disorder
analysis can be found in Supplementary Note 3). For example, it
shows the robustness when channels 2 and 3 are set with an
asymmetric coupling defect (a ¼ 2:5) in the model, which is
different from the case in symmetric coupling systems where the
temperature field localizes at the defect in Figs. 5c and 5d. The
evolutions of temperature field along z axis are also presented in
Figs. 5e and 5f, which validates the concept of heat funneling
effect schematically displayed in Fig. 1b. Above discussions are
based on the gapless system with equivalent intracell and intercell
couplings. Without the loss of generality, we also investigate the
gapped diffusive system with the intercell coupling much larger
than asymmetric intracell couplings. In this case, the temperature
field will concentrate at the channel 12, since the heat flow
directions of the inverted structures change to be the same
(Supplementary Note 4 and Fig. S4).

Conclusion
In summary, we investigate the physical mechanisms of diffusive
skin effect and topological heat funneling. Unlike the cases in
wave systems, the diffusive skin effect and heat funneling can be
realized in a static framework such as directly contacted thermal
metamaterials. The periodically driven Hamiltonian can be con-
structed in the parameter space with an aperiodic structure. Our
results show that the diffusive system provides a distinctive
platform to explore the topological physics and non-Hermitian
dynamics. Our work is expected to inspire further exploration of
other intriguing effects, including the higher-order diffusive skin
effect, topological heat flow transfer, high-efficiency thermo-
electric effect39, heat harvesting, and thermal sensing40,41, etc.
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Fig. 4 Decay rates and eigenmodes. a Decay rates ð�ImωÞ at different asymmetric factors a. b Fields of all eigenmodes with the symmetric coupling a= 1.
c Fields of all eigenmodes concentrate at the interfaces with the asymmetric coupling factor a= 0.4.
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Methods
EPs in the topological phase. As the transformation factor

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþα�
		 		q

¼
ffiffiffiffiffiffiffiffiffiffiffi
h1þδ
h1�δ

			 			r
, we can deduce the Hamiltonian in OBC case to be

HOBC K þ ilnað Þ. The transformed effective intracell and intercell coupling

strengths are h1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1 þ δ
� �

h1 � δ
� �q

and h0 ¼ h0, from which we deduce

h1 ¼ h0. Substituting K ! K � ilnr into Eq. (4),

HOBC K � ilnrð Þ ¼ iS0 i 1r h1þh0e
�iK

� �
ir h1þh0e

iK
� �

iS0

 !
ð9Þ

The topological invariant (winding number W) is calculated by

W Kð Þ ¼ 1
2πi

Zπ
�π

dK
d
dK

ln detHOBC K � ilnrð Þ: ð10Þ

Figure 6 shows the topological phase diagram of the semi-infinite SSH model,
where the EPs locate at the hyperbolic boundaries.

From Eq. (6) we also generate

ω� iS0
		 		 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h1 þ δ
� �þ h0α

 �

h1 � δ
� �þ h0=α

 �q				

				: ð11Þ

As h1 þ δ ¼ h0
a and h1 � δ ¼ h0a, Eq. (11) can be simplified as

α± ¼ 1
a
F ±

ffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � 4

p

2
; ð12Þ

where F ¼ 2� ω�iS0
h0

� �2
. The branches of phase factors α ±

		 		 coalescence are the

EPs in the parameter space, with one EP at the left vertical axis and the other at
ω�iS0
h0

			 			 ¼ 2, which corresponds to the boundaries of the generalized Brillouin zone

(Fig. S5 in Supplementary Note 5).

Hatano–Nelson model. The Hamiltonian of semi-infinite Hatano–Nelson model
with OBC in momentum space can be expressed42

HHN Kð Þ ¼ iS0 þ i h1 þ δ
� �

e�iK þ i h1 � δ
� �

eiK ; ð13Þ
and the coupling equation in real space is

i h1 þ δ
� �

Tn�1 þ i h1 � δ
� �

Tnþ1 ¼ ðωn � iS0ÞTn: ð14Þ
According to the diffusive non-Bloch band theory, Eq. (14) can be transformed

into a standard form with phase factor eiK ! α ¼ reiK

i
h1 þ δ

α
þ iðh1 � δÞα ¼ ðωn � iS0Þ: ð15Þ

At the zero-mode,

α ±

		 		 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1 þ δ

h1 � δ

				
				

s
: ð16Þ

Obviously, EPs appear at δ ¼ h1 where the system is in absolutely asymmetric
coupling. The temperature field is exponentially localized at the right boundary
with the rate α±

		 		, when 0< δ < h1. In Fig. S6 (Supplementary Note 6), we show the
diffusive skin effect in the Hatano–Nelson model with densities of adjacent
channels and thermal capacities of interlayers having the same gradient of a2.

Data availability
All relevant data are available from the corresponding author X.F.Z. upon request.

Code availability
The code is available from the corresponding author X.F.Z. upon reasonable request.
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Fig. 6 Topological phase diagram. The yellow area with winding number
W= 1 corresponds to the topological nontrivial phase, the blue area with
winding number W= 0 corresponds to the topological trivial phase. The
orange circle at the boundary denotes a phase transition point where
coupling parameters h1

h0
¼ 1:05 and δ

h0
¼ 1.
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Fig. 5 Heat funneling effect. a, b Temperature field evolutions with time t for random stimulations at the symmetric coupling (a= 1) and the asymmetric
coupling (a= 0.4), respectively. Blue color and twilight color indicate the minimum temperature and the maximum temperature. c, d Temperature field
evolutions with an introduced asymmetric coupling defect between channels 2 and 3 for the cases in (a), (b). e, f Normalized strength evolutions of
temperature intensity ( Tgrad

		 		2) for a uniform stimulation at a= 1 and a= 0.4, where the concept of heat funneling in Fig. 1b is proved. Blue color and yellow
color indicate the minimum temperature intensity and the maximum temperature intensity, respectively. The red dashed lines denote the interfaces.
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