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Qubit-excitation-based adaptive variational
quantum eigensolver
Yordan S. Yordanov 1,2✉, V. Armaos3, Crispin H. W. Barnes1 & David R. M. Arvidsson-Shukur 1,2✉

Molecular simulations with the variational quantum eigensolver (VQE) are a promising

application for emerging noisy intermediate-scale quantum computers. Constructing accurate

molecular ansätze that are easy to optimize and implemented by shallow quantum circuits is

crucial for the successful implementation of such simulations. Ansätze are, generally, con-

structed as series of fermionic-excitation evolutions. Instead, we demonstrate the usefulness

of constructing ansätze with "qubit-excitation evolutions”, which, contrary to fermionic

excitation evolutions, obey "qubit commutation relations”. We show that qubit excitation

evolutions, despite the lack of some of the physical features of fermionic excitation evolu-

tions, accurately construct ansätze, while requiring asymptotically fewer gates. Utilizing qubit

excitation evolutions, we introduce the qubit-excitation-based adaptive (QEB-ADAPT)-VQE

protocol. The QEB-ADAPT-VQE is a modification of the ADAPT-VQE that performs mole-

cular simulations using a problem-tailored ansatz, grown iteratively by appending evolutions

of qubit excitation operators. By performing classical numerical simulations for small mole-

cules, we benchmark the QEB-ADAPT-VQE, and compare it against the original fermionic-

ADAPT-VQE and the qubit-ADAPT-VQE. In terms of circuit efficiency and convergence

speed, we demonstrate that the QEB-ADAPT-VQE outperforms the qubit-ADAPT-VQE,

which to our knowledge was the previous most circuit-efficient scalable VQE protocol for

molecular simulations.
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Quantum computers are anticipated to enable simulations
of quantum systems more efficiently and accurately than
classical computers1,2. A promising algorithm to perform

this task on emerging noisy intermediate-scale quantum
(NISQ)3–5 computers is the variational quantum eigensolver
(VQE)6–12. The VQE is a hybrid quantum-classical algorithm that
estimates the lowest eigenvalue of a Hamiltonian H by minimizing
the energy expectation value E(θ)= 〈ψ(θ)∣H∣ψ(θ)〉 with respect to
a parametrized state ψðθÞ

�� � ¼ UðθÞ ψ0

�� �
. Here, θ is a set of var-

iational parameters, and the unitary U(θ) is an ansatz. Compared
to other purely quantum algorithms for eigenvalue estimation, like
the quantum-phase estimation algorithm13,14, the VQE requires
shallower quantum circuits. This makes the VQE more noise
resistant, at the expense of requiring a higher number of quantum
measurements and additional classical postprocessing.

The VQE can solve the electronic structure problem6,15 by
estimating the lowest eigenvalue of an electronic Hamiltonian. A
major challenge for the practical realization of a molecular VQE
simulation on NISQ computers is to construct a variationally
flexible ansatz U(θ) that: (1) accurately approximates the ground
state of H; (2) is easy to optimize; and (3) can be implemented by
a shallow circuit.

These desired qualities are satisfied, to various levels, by several
types of ansätze. The unitary coupled-cluster (UCC) type, was the
first to be used for molecular VQE simulations16. The UCC is
motivated by the classical coupled-cluster theory15, and corre-
sponds to a series of unitary evolutions of fermionic-excitation
operators, which we refer to as “fermionic excitation evolutions”
(see the section “Ansatz elements”). A prominent example of a
UCC ansatz is the UCC Singles and Doubles (UCCSD)17–22,
which corresponds to a series of single and double-fermionic-
excitation evolutions. The UCCSD has been used successfully to
implement the VQE for small molecules16,17,23. Due to their
physically motivated fermionic structure, UCC ansätze respects
the symmetries of electronic wavefunctions, which makes these
ansätze accurate and easy to optimize. Even a relatively simple
UCC ansatz, like the UCCSD, is highly accurate for weakly cor-
related systems, such as molecules near their equilibrium
configuration16,17,24,25. However, UCC ansätze are general-
purpose built and do not take into account details of the sys-
tem of interest. They contain redundant excitation terms,
resulting in unnecessarily high numbers of variational parameters
as well as long ansatz circuits. Moreover, to simulate strongly
correlated systems, UCC ansätze requires higher-order excitations
and/or multiple-step Trotterization24, which creates additional
overhead for the quantum hardware.

Another type of “hardware-efficient” ansätze26–30 corresponds
to universal unitary transformations implemented as periodic
sequences of parametrized one- and two-qubit gates. These
ansätze are implemented by shallow circuits, and can be highly
variationally flexible. However, as they lack a physically motivated
structure, these ansätze require a large number of variational
parameters and may suffer by vanishing energy gradients along
their variational parameters, making classical optimization
intractable for large molecules31,32. In some scenarios, this is
known as the barren plateau problem32–35.

Recently, a number of works36–44 suggested new “iterative”
VQE protocols, which instead of using general-purpose, fixed
ansätze, construct problem-tailored ansätze on the go. These
algorithms can construct arbitrarily accurate ansätze that are
optimized in the number of variational parameters and the
ansatz-circuit depth, at the expense of requiring a larger number
of quantum computer measurements. The ADAPT-VQE
protocols36,37 are perhaps the most prominent family of itera-
tive VQE protocols. The fermionic-ADAPT-VQE36, which was

the first iterative VQE protocol, constructs its ansatz by iteratively
appending parametrized unitary operators, which we refer to as
“ansatz elements”. The ansatz element at each iteration is sam-
pled from a pool of spin-complement single- and double-
fermionic-excitation evolutions, based on an energy-gradient
hierarchy. The fermionic-ADAPT-VQE was demonstrated to
achieve chemical accuracy (10−3 Hartree), using an ansatz with
several times fewer variational parameters, and a correspondingly
shallower circuit, than the UCCSD. In the follow-up work37, the
qubit-ADAPT-VQE utilizes an ansatz-element pool of more
variationally flexible and rudimentary Pauli string exponentials.
Due to this, the qubit-ADAPT-VQE constructs even shallower
ansatz circuits than the fermionic-ADAPT-VQE, thus being, to
the best of our knowledge, the currently most circuit-efficient,
physically motivated VQE algorithm. However, the use of more
rudimentary unitary operations comes at the expense of requiring
additional variational parameters and iterations to construct an
ansatz for a given accuracy.

In this work, we utilize unitary operations that, despite the lack
of some of the physical features captured by fermionic-excitation
evolutions, achieve the accuracy of fermionic excitations evolu-
tions as well as the hardware efficiency of Pauli string exponen-
tials. These operations can be used to construct circuit-efficient
molecular ansätze without incurring as many additional varia-
tional parameters and iterations, as the qubit-ADAPT-VQE. We
call these unitary operations “qubit excitation evolutions”. Qubit-
excitation evolutions23,45–47 are unitary evolutions of “qubit
excitation operators”, which satisfy “qubit commutation
relations”46,47. Qubit-excitation evolutions can be implemented
by circuits that act on fixed numbers of qubits, as opposed to
fermionic-excitation evolutions, which act on a number of qubits
that scale at least as Oðlog 2NMOÞ with the number of considered
molecular spin orbitals NMO. We show numerically that qubit-
excitation evolutions can approximate an electronic wavefunction
almost as accurately as fermionic-excitation evolutions can. On
the other hand, qubit-excitation evolutions enjoy higher com-
plexity than Pauli string exponentials, thus allowing for more
rapid construction of the ansatz. We utilize qubit-excitation
evolutions to introduce the qubit-excitation-based adaptive var-
iational quantum eigensolver (QEB-ADAPT-VQE) protocol. As
the name suggests, the QEB-ADAPT-VQE is an ADAPT-VQE
protocol for molecular simulations that grows a problem-tailored
ansatz from an ansatz-element pool of qubit-excitation evolu-
tions. The QEB-ADAPT-VQE also features a modified ansatz-
growing strategy, which allows for a more efficient ansatz con-
struction at the expense of a constant-factor increase of quantum
computer measurement. We benchmark the performance of the
QEB-ADAPT-VQE with classical numerical simulations for small
molecules: LiH, H6, and BeH2. In the section “Energy dissociation
curves”, we compare the QEB-ADAPT-VQE to the standard
UCCSD-VQE by presenting energy-dissociation curves obtained
with each of the two methods. In the section “Energy con-
vergence”, we compare the QEB-ADAPT-VQE to the fermionic-
ADAPT-VQE and to the qubit-ADAPT-VQE by presenting
energy convergence plots, obtained with each of the three
ADAPT-VQE protocols.

Results
Theoretical background and notation. We begin with a theo-
retical introduction (required for the self-completeness of the
paper) and by defining our notation. Finding the ground-state
electron wavefunction E0

�� �
and corresponding energy E0 of a

molecule (or an atom) is known as the “electronic structure
problem”15. This problem can be solved by solving the time-

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00730-0

2 COMMUNICATIONS PHYSICS |           (2021) 4:228 | https://doi.org/10.1038/s42005-021-00730-0 | www.nature.com/commsphys

www.nature.com/commsphys


independent Schrödinger equation H Φ0

�� � ¼ E0 Φ0

�� �
, where H is

the electronic Hamiltonian of the molecule. Within the
Born–Oppenheimer approximation, where the nuclei of the
molecule are treated as motionless, H can be secondly quantized
as

H ¼ ∑
NMO

i;k
hi;ka

y
i ak þ ∑

NMO

i;j;k;l
hi;j;k;la

y
i a

y
j akal: ð1Þ

As already mentioned, NMO is the number of molecular spin
orbitals, ayi and ai are fermionic creation and annihilation
operators, corresponding to the ith molecular spin orbital, and
the factors hij and hijkl are one- and two-electron integrals, written
in a spin-orbital basis15. The Hamiltonian expression in Eq. (1)
can be mapped to quantum-gate operators using an encoding
method, e.g., the Jordan–Wigner48 or the Bravyi–Kitaev49

methods. Throughout this work, we assume the more straight-
forward Jordan–Wigner encoding, where the occupancy of the ith
molecular spin orbital is represented by the state of the ith qubit.

The fermionic operators ayi and ai satisfy anticommutation
relations

fai; ayj g ¼ δi;j; fai; ajg ¼ fayi ; ayj g ¼ 0: ð2Þ

Within the Jordan–Wigner encoding, ayi and ai can be written in
terms of quantum-gate operators as

ayi ¼ Qy
i

Yi�1

r¼0

Zr ¼
1
2
ðXi � iYiÞ

Yi�1

r¼0

Zr and ð3Þ

ai ¼ Qi

Yi�1

r¼0

Zr ¼
1
2
ðXi þ iYiÞ

Yi�1

r¼0

Zr; ð4Þ

where

Qy
i �

1
2
ðXi � iYiÞ and ð5Þ

Qi �
1
2
ðXi þ iYiÞ: ð6Þ

We refer to Qy
i and Qi as qubit creation and annihilation

operators, respectively. They act to change the occupancy of spin-
orbital i. The Pauli-z strings, in Eqs. (3) and (4), compute the
parity of the state and act as exchange phase factors that account
for the fermionic anticommutation of a† and a. Substituting Eqs.
(3) and (4) into Eq. (1), H can be written as

H ¼ ∑
r
hr

YNMO�1

s¼0

σrs ; ð7Þ

where σs is a Pauli operator (Xs, Ys, Zs, or Is) acting on qubit s, and
hr (not to be confused with hik and hijkl) is a real scalar coefficient.
The number of terms in EQ. (7) scales as OðN4

MOÞ.
Once H is mapped to a Pauli operator representation, the VQE

can be used to minimize the expectation value E(θ)=
〈ψ(θ)∣H∣ψ(θ)〉. The VQE relies upon the Rayleigh–Ritz variational
principle

hψðθÞjHjψðθÞi≥E0; ð8Þ
to find an estimate for E0. The VQE is a hybrid quantum-classical
algorithm that uses a quantum computer to prepare the trial state
ψðθÞ
�� �

and evaluate E(θ), and a classical computer to process the
measurement data and update θ at each iteration. The trial state
ψðθÞ
�� � ¼ UðθÞ ψ0

�� �
is generated by an ansatz, U(θ), applied to an

initial reference state ψ0

�� �
.

The ADAPT-VQE protocols. The ADAPT-VQE protocols itera-
tively construct problem-tailored ansätze on the go. At the mth
iteration one or several unitary operators, fU ðmÞ

r ðθðmÞ
r Þg, which we

refer to as ansatz elements, are appended to the left of the already
existing ansatz, U(θ(m−1)):

UðθðmÞÞ ¼
Y
r

U ðmÞ
r ðθðmÞ

r ÞUðθðm�1ÞÞ ¼
Y1
p¼m

Y
r

U ðpÞ
r ðθðpÞr Þ: ð9Þ

The ansatz elements, U ðmÞ
r ðθðmÞ

r Þ� �
, at each iteration, are chosen

from a finite ansatz-element pool P, based on an ansatz-growing
strategy that aims to achieve the lowest estimate of E(θ(m)). After a
new ansatz U(θ(m)) is constructed, the new set of variational
parameters θðmÞ ¼ θðm�1Þ ∪ θðmÞ

r

� �
is optimized by the VQE, and a

new estimate for E(θ(m)) is obtained. This iterative greedy strategy
results in an ansatz that is tuned specifically to the system being
simulated, and can approximate the ground eigenstate of the system
with considerably fewer variational parameters and a shallower
ansatz circuit, than general-purpose fixed ansätze, like the UCCSD.

In the fermionic-ADAPT-VQE, the ansatz-element pool P is a
set of spin-complement pairs of single and double-fermionic-
excitation evolutions. In the qubit-ADAPT-VQE, P is a set of
parametrized exponentials of XY-Pauli strings. The growth
strategy of the fermionic-ADAPT-VQE and the qubit-ADAPT-
VQE is to add, at each iteration, the ansatz element with the
largest energy-gradient magnitude

∂

∂θðmÞ hψðm�1ÞjU ðmÞyðθðmÞÞHU ðmÞðθðmÞÞjψðm�1Þi
����

����
θ¼0

;

where ψðm�1Þ�� �
is the trial state at the end of the (m−1)th

iteration. For detailed descriptions of the fermionic-ADAPT-
VQE and the qubit-ADAPT-VQE, we refer the reader to refs. 36

and 37, respectively.

Ansatz elements. Single- and double-fermionic-excitation evo-
lutions can construct an ansatz that approximates an electronic
wavefuction to an arbitrary accuracy50,51. Single and double-
fermionic-excitation operators are defined, respectively, by the
skew-Hermitian operators

Tik � ayi ak � aykai and ð10Þ

Tijkl � ayi a
y
j akal � ayka

y
l aiaj: ð11Þ

Single and double-fermionic-excitation evolutions are thus given,
respectively, by the unitaries

AikðθÞ ¼ eθTik ¼ exp θðayi ak � aykaiÞ
h i

and ð12Þ

AijklðθÞ ¼ eθTijkl ¼ exp θðayi ayj akal � ayka
y
l aiajÞ

h i
: ð13Þ

Using Eqs. (3) and (4), for i < j < k < l, Aik and Aijkl can be
expressed in terms of quantum-gate operators as

AikðθÞ ¼ exp i
θ

2
ðXiYk � YiXkÞ

Yk�1

r¼iþ1

Zr

" #
and ð14Þ

AijklðθÞ ¼ exp i
θ

8
XiYjXkXl þ YiXjXkXl þ YiYjYkXl þ YiYjXkYl

��

�XiXjYkXl � XiXjXkYl � YiXjYkYl � XiYjYkYl

� Yj�1

r¼iþ1

Zr

Yl�1

r0¼kþ1

Zr0

#
:

ð15Þ
As seen from Eqs. (14) and (15), fermionic-excitation evolutions
act on a number of qubits that scales as O(NMO). Therefore, they
are implemented by circuits whose size (in terms of number of
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CNOTs) also scales as O(NMO). We derived a CNOT-efficient
method to construct circuits for fermionic excitations evolutions
in ref. 47. The circuits for a single and double-fermionic-
excitation evolution have CNOT counts of 2(k− i)+ 1 and
2(l+ j− i− k)+ 9, respectively.

Qubit-excitation operators are defined by the qubit annihila-
tion and creation operators, Qi and Qy

i (Eqs. (5) and (6)), which
satisfy the qubit-commutation relations

fQi;Q
y
i g ¼ δi;j; ½Qi;Q

y
j � ¼ 0 if i≠ j; and ½Qi;Qj� ¼ ½Qy

i ;Q
y
j � ¼ 0 for all i; j:

ð16Þ
Some authors have referred to these commutation relations as
parafermionic46. Single- and double-qubit-excitation operators
are given, respectively, by the skew-Hermitian operators

~Tik � Qy
i Qk � Qy

kQi and ð17Þ

~Tijkl � Qy
i Q

y
j QkQl � Qy

kQ
y
l QiQj: ð18Þ

Thus, single and double-qubit-excitation evolutions are given,
respectively, by the unitary operators

~AikðθÞ ¼ eθ
~Tik ¼ exp θðQy

i Qk � Qy
kQiÞ

h i
and ð19Þ

~AijklðθÞ ¼ eθ
~Tijkl ¼ exp θðQy

i Q
y
j QkQl � Qy

kQ
y
l QiQjÞ

h i
: ð20Þ

Using Eqs. (5) and (6), ~Aik and ~Aijkl can be re-expressed in terms
of quantum-gate operators as

~AikðθÞ ¼ exp i
θ

2
ðXiYk � YiXkÞ

� 	
and ð21Þ

~AijklðθÞ ¼ exp i
θ

8
XiYjXkXl þ YiXjXkXl þ YiYjYkXl þ YiYjXkYl

��

�XiXjYkXl � XiXjXkYl � YiXjYkYl � XiYjYkYl

�i
:

ð22Þ
As seen from Eqs. (21) and (22), unlike fermionic-excitation
evolutions, qubit-excitation evolutions act on a fixed number of
qubits, and can be implemented by circuits that have a fixed
number of CNOTs. Single-qubit-excitation evolutions can be
performed by the circuit in Fig. 1, with a CNOT count of 2.
Double-qubit-excitation evolutions can be performed by the
circuit in Fig. 2, which was introduced in ref. 47, with a CNOT
count of 13.

For larger systems, qubit-excitation evolutions are increasingly
more CNOT-efficient compared to fermionic-excitation evolutions,
whose CNOT count scales as O(NMO) in the Jordan–Wigner
encoding and as OðlogNMOÞ in the Bravyi–Kitaev encoding. On the
other hand, single- and double-qubit-excitation evolutions, as seen
from Eqs. (21) and (22), correspond to combinations of 2 and 8,
mutually commuting Pauli string exponentials, respectively. Hence,
by constructing ansätze with qubit-excitation evolutions instead of

Pauli string exponentials, we decrease the number of variational
parameters. A further advantage of qubit-excitation evolutions is
that they allow for the local circuit optimizations of ref. 47, which
Pauli string exponentials do not.

When comparing the QEB-ADAPT-VQE with the fermionic-
ADAPT-VQE (see the section “Energy convergence”), we assume
the use of the qubit- and fermionic-excitation evolutions circuits
derived in ref. 47. To our knowledge, these are the most CNOT-
efficient circuits for these two types of unitary operations. For the
qubit-ADAPT-VQE, we assume that an exponential of a Pauli
string of length l is implemented by a standard CNOT staircase
construction6,47,52, with a CNOT count of 2(l− 1). Global circuit
optimization is beyond the scope of this paper.

The QEB-ADAPT-VQE protocol. In the previous section, we
formally introduced qubit-excitation evolutions and presented the
circuits that implement such unitary evolutions. Here, we
describe the three preparation components, and the fourth
iterative component, of the QEB-ADAPT-VQE protocol.

First, we transform the molecular Hamiltonian H to a
quantum-gate-operator representation as described earlier. This
transformation is a standard step in every VQE algorithm. It
involves the calculation of the one- and two-electron integrals hik
and hijkl (Eq. (1)), which can be done efficiently (in time
polynomial in NMO) on a classical computer6.

Second, we define an ansatz-element pool Pð~A;NMOÞ of all
unique single and double-qubit-excitation evolutions, ~AikðθÞ and
~AijklðθÞ, respectively, for i, j, k, l∈ {0,NMO− 1}. The size of this

pool is jjPð~A;NMOÞjj ¼ NMO
2


 �þ 3 NMO
4


 �
. Here, ∣∣ ⋅ ∣∣ denotes a

set’s cardinality.
Third, we choose an initial reference state ψ0

�� �
. For faster

convergence, ψ0

�� �
should have a significant overlap with the

unknown ground state, E0

�� �
. In the classical numerical simula-

tions presented in this paper, we use the conventional choice of
the Hartree–Fock state53.

Fourth, we initialize the iteration number to m= 1, and the
ansatz to the identity U→U(0)= I. Then, we initiate the QEB-
ADAPT-VQE iterative loop. We start by describing the six steps
of the mth iteration of the QEB-ADAPT-VQE. We then
comment on these steps.

1. Prepare state ψðm�1Þ�� � ¼ Uðθðm�1ÞÞ ψ0

�� �
, with θ(m−1) as

determined in the previous iteration.
2. For each qubit-excitation evolution ~ApðθpÞ ¼ eθp

~Tp 2
Pð~A;NMOÞ, calculate the energy gradient:

∂

∂θp
Eðm�1ÞðθpÞ

�����
θp¼0

¼ ∂

∂θp
ψðm�1Þ� ��~Ay

pðθpÞH~ApðθpÞ ψðm�1Þ�� ������
θp¼0

¼ ψðm�1Þ� ��½H; ~Tp� ψðm�1Þ�� �
:

ð23Þ

3. Identify the set of n qubit-excitation evolutions, ~A
ðmÞðnÞ, with

largest energy gradient magnitudes. For ~ApðθpÞ 2 ~A
ðmÞðnÞ:

(a) Run the VQE to find minθðm�1Þ;θp
Eðθðm�1Þ; θpÞ ¼

minθðm�1Þ;θp
ψ0

� ��Uyðθðm�1ÞÞ~Ay
pðθpÞH~ApðθpÞUðθðm�1ÞÞ ψ0

�� �
:

(b) Calculate the energy reduction ΔEðmÞ
p ¼ Eðm�1Þ �

minθðm�1Þ;θp
Eðθðm�1Þ; θpÞ for each p.

(c) Save the (re)optimized values of θ(m−1) ∪ {θp} as θ
ðmÞ
p for

each p.

4. Identify the largest energy reduction ΔEðmÞ � ΔEðmÞ
p0 ¼

maxpfΔEðmÞ
p g, and the corresponding qubit-excitation

evolution ~A
ðmÞðθðmÞÞ � ~Ap0 ðθp0 Þ.

Fig. 1 A circuit to implement a single-qubit-excitation evolution. A single-
qubit-excitation evolution is defined by the unitary operator
~AikðθÞ ¼ exp i θ2 ðXiYk � YiXkÞ


 �
, where X and Y are the Pauli x and y

operators (the subscript denotes the qubit on which these operators act). qi
denote the state of qubit i. Rx(θ) and Rz(θ) denote single-qubit rotation
gates around the x and z axes, respectively, by θ.
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If ΔE(m) < ϵ, where ϵ > 0 is an energy threshold:

(a) Exit

Else:

(a) Append ~A
ðmÞðθðmÞÞ to the ansatz: UðθðmÞÞ ¼

~A
ðmÞðθðmÞÞUðθðm�1ÞÞ

(b) Set EðmÞ ¼ Eðm�1Þ � ΔEðmÞ
p0

(c) Set the values of the new set of variational parameters,
θðmÞ ¼ θðm�1Þ ∪ fθp0 g, to θðmÞ

p0

5. (Optional) If the ground state of the system of interest is
known, a priori, to have the same spin as ψ0

�� �
, append to the

ansatz the spin-complementary of ~A
ðmÞðθðmÞÞ, ~A

0ðmÞðθ0ðmÞÞ,
unless ~A

ðmÞðθðmÞÞ � ~A
0ðmÞ


θ
0 ðmÞ�:

UðθðmÞÞ ¼ ~A
0ðmÞðθ0 ðmÞÞ~AðmÞðθðmÞÞUðθðm�1ÞÞ: ð24Þ

6. Enter the m+ 1 iteration by returning to step 1

We now provide some more information about the steps of the
protocol. The QEB-ADAPT-VQE loop starts by preparing the
trial state ψðm�1Þ�� �

obtained in the (m− 1)th iteration. To identify
a suitable qubit-excitation evolution to append to the ansatz, first
we calculate (step 2) the gradient of the energy expectation value,
with respect to the variational parameter of each qubit-excitation
evolution in Pð~A;NMOÞ.The gradients are evaluated at θp= 0
because of the presumption that ψ0

�� �
is close to the ground state,

which suggests that the optimized value of θp is close to 0. The
gradients (Eq. (23)) are calculated by measuring, on a quantum
computer, the expectation value of the commutator of H and the
corresponding qubit-excitation operator ~Tp, with respect to

ψðm�1Þ�� �
. The expression for the gradient in Eq. (23) is derived

explicitly in Supplementary Note 1. Note that, steps 1 and 2 are
identical to those of the original fermionic-ADAPT-VQE.

The gradients calculated in step 2, indicate how much each
qubit excitation can decrease E(m− 1). However, the largest
gradient does not necessarily correspond to the largest energy
reduction, optimized over all variational parameters. In step 3, we
identify the set of n qubit-excitation evolutions with the largest

energy-gradient magnitudes: ~A
ðmÞðnÞ 2 Pð~A;NMOÞ. We assume

that ~A
ðmÞðnÞ likely contains the qubit-excitation evolution that

reduces E(m− 1) the most. For each of the n qubit-excitation

evolutions in ~A
ðmÞðnÞ, we run the VQE with the ansatz from the

previous iteration to calculate how much it contributes to the
energy reduction. Step 3 is not present in the original fermionic-
ADAPT-VQE, which directly grows its ansatz by the ansatz
element with largest energy-gradient magnitude (equivalent to
n= 1). Performing step 3 for n > 1 further reduces the ansatz
circuit at the expense of more quantum computer measurements.
A study of the performance of the QEB-ADAPT-VQE for
different values of n is presented in Supplementary Note 5. The

study shows that for the three molecules considered in this paper,
LiH, H6, and BeH2, a CNOT reduction between 15 and 25% is
achieved for n= 10.

In step 4, we pick the qubit excitation, ~A
ðmÞðθðmÞÞ, with the

largest contribution to the energy reduction, ΔE(m). If ΔE(m) is
below some threshold ϵ > 0, we exit the iterative loop. If instead

the ∣ΔE(m)∣ > ϵ, we add ~A
ðmÞðθðmÞÞ to the ansatz.

If it is known, a priori, that the ground state of the simulated
system has spin zero as the Hartree–Fock state does, we assume
that qubit-excitation evolutions come in spin-complement pairs.

Hence, we append the spin-complement of ~A
ðmÞðθðmÞÞ, ~A0ðmÞðθ0ðmÞÞ

(step 5) to the ansatz. However, unlike the fermionic-ADAPT-
VQE, the QEB-ADAPT-VQE assigns independent variational
parameters to the two spin-complement excitation evolutions.
The reason for this is that qubit-excitation evolutions do not
account for the parity of the state. Hence, additional variational
flexibility is required to obtain the correct relative sign between
the two spin-complement qubit-excitation evolutions. Performing
step 5 roughly halves the number of iterations required to
construct an ansatz for a particular accuracy.

In Supplementary Note 4, we discuss the computational
complexity of the QEB-ADAPT-VQE. As a worst-case estimate,
the QEB-ADAPT-VQE might require as many as OðnNMO

16Þ
quantum computer measurements.

Classical numerical simulations. We perform classical numerical
VQE simulations for LiH, H6, and BeH2 to compare the use of
qubit and fermionic excitations in the construction of molecular
ansätze and to benchmark the performance of the QEB-ADAPT-
VQE. LiH and BeH2 have been simulated with VQE-based pro-
tocols on real quantum computers and are often used in the field
of quantum-computational chemistry to classically benchmark
various VQE protocols17,18,36,39,40. Similar to refs. 36,37, we use
H6 as a prototype of a molecule with a strongly correlated ground
state. Our numerical results are based on a custom code, designed
to implement ADAPT-VQE protocols for arbitrary ansatz-
element pools and ansatz-growing strategies. The code is opti-
mized to analytically calculate excitation-based state vectors (see
Supplementary Note 2). The code uses the openfermion-psi454

package to second-quantize the Hamiltonian, and subsequently to
transform it to quantum-gate-operator representation. For all
simulations presented in this paper, we represent the molecular
Hamiltonians in the Slater type orbital-3 Gaussians (STO-3G)
spin-orbital basis set55,56, without assuming frozen orbitals. In
this basis set, LiH, H6, and BeH2, have 12, 12, and 14 spin orbitals,
respectively, which are represented by 12, 12, and 14 qubits. For
the optimization of variational parameters, we use the gradient-
descend Broyden Fletcher Goldfarb Shannon (BFGS) minimiza-
tion method57 from Scipy58. We also supply to the BFGS an
analytically calculated energy-gradient vector (see Supplementary
Note 3), for faster optimization. We note that in the presence of
high noise levels, gradient-descend minimizers are likely to

Fig. 2 A circuit to implement a double-qubit-excitation evolution. A double-qubit-excitation evolution is defined by the unitary operator
~AijklðθÞ ¼ exp i θ8 ðXiYjXkXl þ YiXjXkXl þ YiYjYkXl þ YiYjXkYl � XiXjYkXl � XiXjXkYl � YiXjYkYl � XiYjYkYlÞ


 �
, where X and Y are the Pauli x and y operators.

qi denote the state of qubit i. H denotes the Hadamard gate (not to be confused with the molecular Hamiltonian), and Ry(θ) and Rz(θ) denote single-qubit
rotation gates around the y and z axes, respectively, by θ.
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struggle to find the global energy minimum59,60, while direct
search minimizers, like the Nelder–Mead61, are likely to perform
better62,63.

Qubit versus fermionic excitations. In this section, we compare
qubit and fermionic-excitation evolutions in their ability to
construct ansätze to approximate electronic wavefunctions.
Directly comparing the QEB-ADAPT-VQE and the fermionic-
ADAPT-VQE (as we do in the section “Energy convergence”)
does not constitute a fair comparison of the two types of exci-
tation evolutions: the QEB-ADAPT-VQE assigns one variational
parameter per qubit-excitation evolution in its ansatz, whereas
the fermionic-ADAPT-VQE assigns one variational parameter
per spin-complement pair of fermionic-excitation evolutions.
Consequently, here we compare the QEB-ADAPT-VQE for n= 1
and step 5 not implemented, to the fermionic-ADAPT-VQE
when it grows its ansatz by appending individual fermionic-
excitation evolutions (instead of spin-complement pairs of
fermionic-excitation evolutions). In this way, the two protocols
differ only in using a pool of qubit-excitation evolutions, and a
pool of fermionic-excitation evolutions, respectively.

Figure 3 shows energy-convergence plots, obtained with the
two protocols as explained above, for the ground states of LiH
(Fig. 3a), H6 (Fig. 3b), and BeH2 (Fig. 3c) at bond distances of rLi-
H= 1.546Å, rH-H= 1.5Å, and rBe-H= 1.316Å, respectively. All
plots are terminated for ϵ= 10−12 Hartree. The two protocols
converge similarly, with the fermionic-ADAPT-VQE converging
slightly faster for more than ~50 ansatz elements. This difference
is most evident for the more strongly correlated H6 (Fig. 3b),
where the fermionic-ADAPT-VQE requires up to 20% fewer
excitation evolutions than the QEB-ADAPT-VQE to achieve a
given accuracy. These observations suggest that fermionic-
excitation-based ansätze might be able to approximate strongly
correlated states a bit better than qubit-excitation-based ansätze.
To further investigate this observation, in Fig. 4 we include
energy-convergence plots, similar to those in Fig. 3, but for bond
distances of rLi-H= 3Å (Fig. 4a), rH-H= 3Å (Fig. 4b), and
rBe-H= 3Å (Fig. 4c). At larger bond distances the ground states of
the LiH, and BeH2 are more strongly correlated, so we expect to
see a larger difference in the convergence rates of the two
protocols.

In Fig. 4a, c, we see that for LiH and BeH2, at rLi–H= 3Å and
rBe–H= 3Å, respectively, indeed there is a larger difference in the
convergence rates of the two protocols, in favor of the fermionic-
ADAPT-VQE. This is more evident for BeH2 where the
fermionic-ADAPT-VQE requires ~20% fewer ansatz elements,
on average, than the QEB-ADAPT-VQE, to achieve a given
accuracy. These results further indicate that fermionic-excitation-

based ansätze can approximate strongly correlated states better
than qubit-excitation-based ansätze.

Energy-dissociation curves. Figure 5 shows energy-dissociation
curves for LiH, H6, and BeH2, obtained with the QEB-ADAPT-
VQE for n= 10 and energy-reduction thresholds ϵ4= 10−4

Hartree, ϵ6= 10−6 Hartree and ϵ8= 10−8 Hartree. Dissociation
curves obtained with the Hartree–Fock (HF) method, the full
configuration interaction (FCI) method, and the VQE, using an
untrotterized UCCSD ansatz (UCCSD-VQE) are also included
for comparison. The UCCSD includes spin-conserving single and
double-fermionic evolutions only, for a fairer comparison to the
QEB-ADAPT-VQE.

Figure 5a–c shows the absolute values for the ground-state
energy estimates. All methods except the HF, produce close
energy estimates that cannot be clearly distinguished. In Fig. 5d–f,
the exact FCI energy is subtracted in order to differentiate better
the different methods and their corresponding errors.

The UCCSD-VQE achieves chemical accuracy over all bond
distances for LiH (Fig. 5d) and over bond distances close to
equilibrium configuration for H6 (Fig. 5e) and BeH2 (Fig. 5f).
However, the UCCSD-VQE fails to achieve chemical accuracy for
bond distances away from equilibrium configuration for H6 and
BeH2, where the ground states become more strongly correlated.

The QEB-ADAPT-VQE for ϵ4, similarly to the UCCSD-VQE,
struggles to achieve chemical accuracy for strongly correlated
ground states. However, for ϵ6 and ϵ8 the QEB-ADAPT-VQE
achieves chemical accuracy over all investigated bond distances,
for all three molecules. This indicates that the QEB-ADAPT-VQE
can successfully construct ansätze to accurately approximate
strongly correlated states.

However, the real strength of the QEB-ADAPT-VQE, similarly
to other ADAPT-VQE protocols, is not just in constructing
accurate ansätze, but in constructing accurate problem-tailored
ansätze with few variational parameters, and corresponding
shallow ansatz circuits. Figure 5g–i shows plots of the number of
variational parameters used by the ansatz of each method as a
function of bond distance. In the cases of LiH (Fig. 5g) and BeH2

(Fig. 5i), the ansätze constructed by the QEB-ADAPT-VQE for ϵ6
and ϵ8 are not only more accurate than the UCCSD but also have
significantly fewer parameters. However, in the case of H6, the
QEB-ADAPT-VQE on average requires more parameters than
the UCCSD. The reason for this is that H6 is more strongly
correlated than LiH and BeH2, so even an optimally constructed
ansatz would require more variational parameters than the
UCCSD, to accurately approximate the ground state of H6.

An interesting observation is the abrupt changes in the number
of variational parameters used by the QEB-ADAPT-VQE for H6

Fig. 3 Comparison of the qubit and fermionic-excitation evolutions at equilibrium bond distances. The three subfigures present energy-convergence
plots for the ground states of: a LiH, b H6, and c BeH2, in the STO-3G orbital basis set, at bond distances of rLi−H= 1.546Å, rH−H= 1.5Å, and rBe
−H= 1.316Å, respectively. The blue plots are obtained with the QEB-ADAPT-VQE for n= 1 and step 5 not implemented. The red plots are obtained with
the fermionic-ADAPT-VQE using an ansatz-element pool of non-spin-complement fermionic-excitation evolutions. The plots are terminated at ϵ= 10−12

Hartree.
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Fig. 4 Comparison of the qubit and fermionic-excitation evolutions at large bond distances. The three subfigures present energy-convergence plots for
the ground states of: a LiH, b H6, and c BeH2, in the STO-3G orbital basis set, at bond distances of rLi−H= 3Å, rH−H= 3Å, and rBe−H= 3Å, respectively.
The blue plots are obtained with the QEB-ADAPT-VQE for n= 1 and step 5 not implemented. The red plots are obtained with the fermionic-ADAPT-VQE
using an ansatz-element pool of non-spin-complement fermionic-excitation evolutions. The plots are terminated at ϵ= 10−12 Hartree.

(a) (b)

(d)

(g)

(c)

(e)

(h)

(f)

(i)

Fig. 5 Energy-dissociation curves for LiH, H6, and BeH2 molecules in the STO-3G orbital basis set. a–c Absolute energy as a function of bond distance.
d–f Energy error with respect to the exact FCI energy as a function of bond distance. g–i Number of ansatz variational parameters required to reach the
energy accuracies in (d–f). The QEB-ADAPT-VQE is performed for n= 10 and step 5 implemented. The number of variational parameters for the UCCSD is
92, 117, and 204 for LiH, H6, and BeH2, respectively. The number of variational parameters is also equivalent to the number of ansatz elements of each
ansatz.
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at bond distances of around 1, 2, and 2.75Å. The reason for these
changes are molecular structure transformations, where different
eigenstates of H become lowest in energy (energy-level crossings).

Energy convergence. In this section, we compare the QEB-
ADAPT-VQE against the fermionic-ADAPT-VQE and the qubit-
ADAPT-VQE using energy-convergence plots (see Fig. 6). To
ensure a fair comparison we choose the following settings for the
three protocols: We perform the QEB-ADAPT-VQE for n= 1,
using an ansatz-element pool of all unique single- and double-
qubit-excitation evolutions. The fermionic-ADAPT-VQE is

performed as in ref. 36, using an ansatz-element pool of all unique
single and double spin-complement fermionic-excitation evolu-
tions. For the qubit-ADAPT-VQE, we use an ansatz element of all
evolutions of XY-Pauli strings of length 2 and 4 that have an odd
number of Ys. This pool consists of O(N4) Pauli string evolutions
that can be combined to obtain all qubit-excitation evolutions in
the ansatz element of the QEB-ADAPT-VQE (see the section
“Ansatz elements”). Because of this, the comparison between the
QEB-ADAPT-VQE and qubit-ADAPT-VQE, in terms of ansatz-
circuit efficiency, can be considered fair. We note that the authors
of ref. 37 proved that the qubit-ADAPT-VQE actually can

Fig. 6 Comparison of the QEB-ADAPT-VQE, the fermionic-ADAPT-VQE, and the qubit-ADAPT-VQE. The subfigures above present energy-convergence
plots for the ground states of LiH, H6, and BeH2, in the STO-3G orbital basis set, at bond distances rLi-H= 1.546Å, rH–H= 1.5Å, and rBe–H= 1.316Å. The
plots compare the QEB-ADAPT-VQE (blue), the fermionic-ADAPT-VQE (red), and the qubit-ADAPT-VQE (green) protocols in terms of the number of
iterations (a–c), the number of parameters (d–f), and the number of CNOTs (g–i). The QEB-ADAPT-VQE is performed for n= 1. All convergence plots are
terminated for an energy-reduction threshold of ϵ= 10−12 Hartree. The CNOT counts in (g–i) are obtained assuming the use of the quantum circuits
discussed in the section “Ansatz elements''.
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construct an ansatz that exactly recovers the FCI wavefunction,
using a reduced ansatz-element pool of only 2NMO− 2 Pauli
string evolutions. This reduced pool can decrease the number of
quantum computer measurements required to evaluate the
energy gradients at each iteration (see step 2 of the QEB-ADAPT-
VQE) from OðN8

MOÞ to OðN5
MOÞ. However, the reduced ansatz-

element pool will also result in a slower and less circuit-efficient
ansatz construction, so using this reduced pool in the comparison
with the QEB-ADAPT-VQE would not be fair.

We compare the three protocols in terms of three cost metrics,
required to construct an ansatz to achieve a specific accuracy: (1)
the number of iterations; (2) the number of variational
parameters; and (3) the number of CNOTs. The number of
iterations and the number of variational parameters (the number
of iterations is the same as the number of variational parameters
for the fermionic-ADAPT-VQE and the qubit-ADAPT-VQE, but
not for the QEB-ADAPT-VQE) determine the total number of
quantum computer measurements (see Supplementary Note 4).
The CNOT count of the ansatz circuit is approximately
proportional to its depth. Hence, the CNOT count can be used
as a measure of the run time of the quantum subroutine of the
VQE, which also reflects the error accumulated by the quantum
hardware. Due to the limited coherence times of NISQ
computers, the CNOT count is considered as a primary cost
metric.

Figure 6 shows energy-convergence plots, obtained with the
three ADAPT-VQE protocols, for LiH, H6, and BeH2 at bond
distances of rLi−H= 1.546Å, rH−H= 1.5Å, and rBe−H= 1.316Å,
respectively. All energy-convergence plots are terminated at
ϵ= 10−12 Hartree.

In Fig. 6a–c, we notice that the QEB-ADAPT-VQE and the
fermionic-ADAPT-VQE perform similarly in terms of the
number of iterations. This implies that the QEB-ADAPT-VQE
and the fermionic-ADAPT-VQE use approximately the same
number of the qubit and fermionic-excitation evolutions,
respectively, when constructing their respective ansätze. This
result is expected because the two types of excitation evolutions
perform similarly in constructing electronic wavefunction
ansätze. Since qubit-excitation evolutions are implemented by
simpler circuits than fermionic-excitation evolutions, the QEB-
ADAPT-VQE systematically outperforms the fermionic-ADAPT-
VQE in terms of CNOT count in Fig. 6g–i.

While the QEB-ADAPT-VQE and the fermionic-ADAPT-
VQE require similar numbers of iterations (Fig. 6a–c), the QEB-
ADAPT-VQE requires up to twice as many variational
parameters (Fig. 6d–f). This difference is due to the fact that
the QEB-ADAPT-VQE assigns one parameter to each qubit-
excitation evolutions in its ansatz, whereas the fermionic-
ADAPT-VQE assigns one parameter to a pair of spin-
complement fermionic-excitation evolutions.

Figure 6a–d shows that the QEB-ADAPT-VQE converges
faster, requiring systematically fewer iterations and variational
parameters than the qubit-ADAPT-VQE. As suggested in the
section “Ansatz elements”, this result is due to the fact that single-
and double-qubit-excitation evolutions correspond to combina-
tions of 2 and 8 Pauli string exponentials.

In terms of CNOT count (Fig. 6g–i), the qubit-ADAPT-VQE is
more efficient than the QEB-ADAPT-VQE at low accuracies.
However, for higher accuracies, and correspondingly larger
ansätze, the QEB-VQE-ADAPT starts to systematically outper-
form the qubit-ADAPT-VQE in terms of CNOT efficiency. This
result can be attributed to the fact that qubit evolutions allow for
the local circuit optimizations introduced in ref. 47, whereas Pauli
string evolutions, albeit more variationally flexible, do not allow
for any local circuit optimizations.

As a side point, it is interesting to note that when the
fermionic-ADAPT-VQE is performed with a pool of independent
single- and double-fermionic evolutions (Figs. 3 and 4) it is able
to converge, albeit more slowly, to higher final accuracies than
when it is performed with a pool of spin-complement pairs of
single and double-fermionic evolutions (Fig. 6). This is owing to
the fact that the pool of independent fermionic-excitation is more
variationally flexible.

Discussion
In this work, we investigated the use of qubit excitations to
construct electronic VQE ansätze. We demonstrated numerically
that in general an ansatz of qubit-excitation evolutions can
approximate a molecular electronic wavefunction almost as
accurately as an ansatz of fermionic-excitation evolutions. How-
ever, fermionic-excitation-based ansätze were found to be a
slightly more accurate per number of excitation evolutions when
approximating strongly correlated states. These results suggest
that, on their own, the Pauli-z strings, which measure the parity
of the state and account for the anticommutation of the
fermionic-excitation operators, play little role in the variational
flexibility of an electronic wavefunction ansatz. These results
agree with previous findings in refs. 37,45. Another advantage of
fermionic-excitation evolutions is that they can form spin-
complement pairs of fermionic-excitation evolutions. Such spin-
complement pairs can then be used to enforce parity conservation
and thus reduce the number of variational parameters of an
ansatz by up to a factor of 2. Nonetheless, fermionic-excitation
evolutions are implemented by circuits whose size, in terms of
CNOT count, scales linearly (logarithmically) in the
Jordan–Wigner (Bravyi–Kitaev) encoding with the system size, as
opposed to qubit-excitation evolutions, which enjoy the
quantum-computational benefit of being implemented by fixed-
size circuits. Therefore, for NISQ devices, where the number of
CNOTs is a primary cost factor, qubit-excitation evolutions are
more suitable for constructing electronic ansätze.

Motivated by the accuracy and circuit efficiency of qubit-
excitation-based ansätze, we introduce the qubit-excitation-based
adaptive variational quantum eigensolver (QEB-ADAPT-VQE).
The QEB-ADAPT-VQE simulates molecular electronic ground
states with a problem-tailored ansatz, grown iteratively by
appending single and double-qubit-excitation evolutions. We
benchmarked the performance of the QEB-ADAPT-VQE with
classical numerical simulations for LiH, H6, and BeH2. In parti-
cular, we compared the QEB-ADAPT-VQE to the original fer-
mionic-ADAPT-VQE, and its more slowly converging, but a
more circuit-efficient cousin, the qubit-ADAPT-VQE. Compared
to the fermionic-ADAPT-VQE, the QEB-ADAPT-VQE requires
up to twice as many variational parameters. However, the QEB-
ADAPT-VQE requires asymptotically fewer CNOTs, owing to its
use of qubit-excitation evolutions.

The simulations also showed that the qubit-ADAPT-VQE is
more CNOT-efficient than the QEB-ADAPT-VQE in achieving
low accuracies that correspond to small ansatz circuits. However,
for higher accuracies and correspondingly larger ansatz circuits,
the QEB-ADAPT-VQE systematically outperformed the qubit-
ADAPT-VQE in terms of CNOT efficiency. The primary reason
for this is that qubit evolutions allow for local circuit optimiza-
tions, while the more rudimentary Pauli string evolutions, utilized
by the qubit-ADAPT-VQE, do not. In practice, we are often just
interested in reaching chemical accuracy. Therefore, one might
question what is the usefulness of constructing more CNOT-
efficient ansätze with the QEB-ADAPT-VQE for accuracy higher
than chemical accuracy. Although the numerical results presented
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here are not sufficient to draw a general conclusion, they indicate
that the CNOT efficiency of the QEB-ADAPT-VQE becomes
more evident for larger ansatz circuits. Therefore, for larger
molecules, the QEB-ADAPT-VQE will likely be able to reach
chemical accuracy using fewer CNOTs than the qubit-ADAPT-
VQE. Our simulation results also demonstrated that in terms of
convergence speed, the QEB-ADAPT-VQE requires fewer var-
iational parameters, and correspondingly fewer ansatz-
constructing iterations, than the qubit-ADAPT-VQE.

These results imply that the QEB-ADAPT-VQE is more
circuit-efficient and converges faster than the qubit-ADAPT-
VQE, which to our knowledge was the previously most circuit-
efficient, scalable VQE protocol for molecular modeling. We do
remark though, that in our comparison of the QEB-ADAPT-VQE
and the qubit-ADAPT-VQE, we ignored the fact that the latter
protocol can use a reduced ansatz element of O(NMO) Pauli string
evolutions, as shown in ref. 37. Using a reduced ansatz-element
pool would decrease the number of required quantum computer
measurements, but will also result in a slower and less efficient
ansatz construction. Moreover, the complexity of a single itera-
tion of both the QEB-VQE-ADAPT and the qubit-ADAPT-VQE,
might actually be dominated by running the VQE (see Supple-
mentary Note 4). Therefore, reducing the size of the ansatz-
element pool might not affect the overall complexity of the
protocol. We also note that, in theory, hardware-efficient ansätze
and the ansätze of the IQCC protocol suggested in refs. 39,40 can
be implemented by shallower circuits than the ansätze con-
structed by the QEB-ADAPT-VQE. However, hardware-efficient
ansätze and the IQCC are unlikely to be scalable for large systems:
the optimization of hardware-efficient ansätze is likely to become
intractable for large systems; and the IQCC requires evaluating a
number of expectation values, exponential in the number of
variational parameters.

As further work, three potential upgrades to the QEB-VQE-
ADAPT can be considered. First, the ansatz-element pool of the
QEB-VQE-ADAPT can be expanded to include non-symmetry-
preserving terms as suggested in ref. 64. Potentially, this expanded
pool could further improve the speed of convergence and boost
the resilience to symmetry-breaking errors of the QEB-VQE-
ADAPT. Second, methods from ref. 41 can be used to “prune”,
from the already constructed ansatz, qubit-excitation evolutions
that have little contribution to the energy reduction. This could
potentially optimize further the constructed ansatz. Third, the
QEB-VQE-ADAPT functionality can be expanded to enable
estimations of energies of low-lying excited states. This will be the
topic of another work (see ref. 65 for a preprint).

Data availability
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