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Particle-hole asymmetry in the dynamical spin and
charge responses of corner-shared 1D cuprates
Shaozhi Li 1✉, Alberto Nocera2,3, Umesh Kumar 4 & Steven Johnston5,6✉

Although many experiments imply that oxygen orbitals play an essential role in the high-

temperature superconducting cuprates, their precise role in collective spin and charge

excitations and superconductivity is not yet fully understood. Here, we study the doping-

dependent dynamical spin and charge structure factors of single and multi-orbital (pd)

models for doped one-dimensional corner-shared spin-chain cuprates using several

numerically exact methods. In doing so, we determine the orbital composition of the col-

lective spin and charge excitations of cuprates, with important implications for our under-

standing of these materials. For example, we observe a particle-hole asymmetry in the

orbital-resolved charge excitations, which is directly relevant to resonant inelastic x-ray

scattering experiments and not captured by the single-band Hubbard model. Our results

imply that one must explicitly include the oxygen degrees of freedom in order to fully

understand some experimental observations on cuprate materials.
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The high-temperature (high-Tc) superconducting cuprates
are governed by multiple intertwined orders, including
unconventional superconductivity, pseudogap behavior,

and various spin- and charge-orders1. Determining how well the
single-band Hubbard model describes these orders and their
associated dynamical fluctuations has become a frontier problem
in condensed matter physics2–4. Nevertheless, significant progress
has been made towards understanding the physics of the single-
band Hubbard model, including its superconducting3–7 and
normal-state transport properties8–10, its pseudogap11–13, and
stripe orders14–17, and its dynamical response functions11,18–20.
While it is now clear that the predictions of the single-band
Hubbard model are consistent with many experimental obser-
vations in the cuprates, recent x-ray scattering and nuclear
magnetic resonance experiments have implied that the oxygen 2p
orbitals provide important contributions to the spin- and charge-
orders21–23. These observations raise questions on the validity of
the single-band Hubbard model for describing some properties of
the cuprates, including the fluctuations of their intertwined
orders.

Studying the ground and excited-state properties of the single-
and multi-band Hubbard model on large two-dimensional (2D)
lattices is challenging. For example, theoretical studies using
dynamical mean-field theory and its cluster and diagrammatic
extensions24–27 have been limited to relatively small clusters. The
study of the Hubbard model can be extended to larger lattices
with determinant quantum Monte Carlo (DQMC)9,17,18,28,29 but
this method is more limited by the sign problem in comparison to
embedded cluster methods. Some zero temperature techniques,
such as the tensor network30,31 and the path-constrained aux-
iliary-field quantum Monte Carlo32 can access large lattices but
have difficulty in calculating the single- and two-particle dyna-
mical response functions probed by angle-resolved photoemission
(ARPES), inelastic neutron scattering (INS), and resonant
inelastic x-ray scattering (RIXS) experiments. Importantly, con-
trasting results obtained from the single-band model with multi-
orbital models adds another layer of difficulty since the inclusion
of the O 2p orbitals significantly increases the complexity of the
problem29,33–35.

In this work, we study single- and multi-orbital models for
quasi-one-dimensional (1D) corner-shared spin-chain cuprates
like Sr2CuO3 and the recently synthesized doped chains
Ba2−xSrxCuO3+δ

36,37. Specifically, we compute and contrast the
momentum-resolved dynamical spin and charge responses in
these models using DQMC, density matrix renormalization group
(DMRG), and exact diagonalization (ED, see Supplementary
Note 1). By focusing on 1D cuprate models, we can perform
reliable calculations for the single- and two-particle response
functions for large system sizes with good momentum resolution,
even in the multi-orbital case. These calculations are enabled by
the fact that 1D systems generally have manageable fermion sign
problems38 and algorithmic advances in computing dynamical
response functions using DMRG39,40.

Results
Model for the corner-shared spin chains. The active orbitals in
spin-chain cuprates like Sr2CuO3 and Ba2−xSrxCuO3+δ are
located in their CuO4 plaquettes, which are arranged in a
corner-shared geometry, as shown in Fig. 1a. Sr2CuO3 has been
extensively studied both experimentally41–46 and using single-
band models like the Heisenberg model, the t− Jmodel41–44,46,47,
and the extended Hubbard model48,49. These models generally
provide an excellent description of the magnetic excitations—in
this case, a multi-spinon continuum—observed in INS41–44 and
RIXS45,46 experiments. The spin and charge excitations of doped

samples have received comparatively less attention because dop-
ing electrons or holes in Sr2CuO3 has proved to be
challenging50–52. However, the Ba2−xSrxCuO3+δ system offers
new possibilities in this regard36,37.

We consider a four-orbital pd-model for corner-shared
cuprates, which includes the Cu 3dx2�y2 and O 2px/y orbitals
near the Fermi level, (Fig. 1a). The Hamiltonian for the four-
orbital pd-model, written in hole language, is given by

H ¼ ðϵd � μÞ∑
i;σ
n̂di;σ þ ∑

j;γ;σ
ðϵp;γ � μÞn̂pj;γ;σ

þ ∑
hi;jiγ;σ

tijpd dyi;σpj;γ;σ þ h:c:
� �

þ ∑
hj;j0 i
γ;γ0 ;σ

tjj
0

ppp
y
j;γ;σpj0;γ0;σ

þ Ud ∑
i
n̂di;"n̂

d
i;# þ Up ∑

j;γ
n̂pj;γ;"n̂

p
j;γ;# þ Upd ∑

hi;j;γi
σ;σ0

n̂di;σ n̂
p
j;γ;σ 0 :

ð1Þ

Here, 〈⋯ 〉 denotes a sum over nearest neighbor orbitals; dyi;σ and

pyj;γ;σ create a hole with spin σ (= ↑, ↓) on the ith Cu 3dx2�y2

orbital and the jth O 2pγ (γ= x, ±y) orbital, respectively; ϵd and
ϵp,γ are the onsite energies; n̂di;σ and n̂pj;γ;σ are the number
operators for the Cu 3dx2�y2 orbital and O 2pγ orbital,

respectively; tijpd and tjj
0

pp are the nearest-neighbor Cu−O and
O−O hopping integrals, whose phase factors are drawn in Fig. 1a;
Ud and Up are the onsite Hubbard interactions on the Cu and O
orbitals, respectively, and Upd is the nearest-neighbor Cu−O
Coulomb repulsion; Finally, μ is the chemical potential, which is
adjusted to control the hole density in our DQMC simulations.
Throughout, we adopt parameters determined from density
functional theory calculations and comparisons to
experiments53,54. Specifically, we set (in units of eV) ϵd= 0,
ϵp,x= 3, ϵp,y= 3.5, ∣t(p,x)d∣= 1.5, ∣t(p,y)d∣= 1.8, ∣tpp∣= 0.75, Ud= 8,
Up= 4, and Upd= 1. For these parameters, 60% of the holes are
distributed on the Cu orbitals and 40% of the holes reside on the
O orbitals at half filling (see Supplementary Note 2).

To isolate the influence of the oxygen degrees of freedom and
assess the validity of a single-band effective model, we also
studied a single-band t-t0 Hubbard model with model parameters
selected to reproduce results from our multi-orbital model (see
Supplementary Note 3). To remain consistent with the pd-model,
our single-band Hubbard model is also written in the hole
language, and is given by

H ¼ �μ∑
i;σ
n̂i;σ þ∑

i;σ
ti;jc

y
i;σcj;σ þ U∑

i
n̂i;"n̂i;#: ð2Þ

Here, ti,j= t and t0 are the nearest- and next-nearest-neighbor
hopping integrals (we set all longer range hopping to zero). We
adopt t= 0.5 eV based on the analysis in ref. 55. To determine the
remaining parameters, we adjusted t0 and U to fit the dynamical
magnetic susceptibility of the pd-model and found that
U= 5.32t= 2.66 eV and t0 ¼ 0:06t ¼ 0:03 eV produce the best
agreement between these two models (see Supplementary
Note 3).

All of our calculations are performed on N= 20 chains (for a
total of 80 orbitals total in the multi-orbital case). We have
checked that finite-size effects are minimal for chains of this
length (see Supplementary Note 4). The simulation temperature
was held at T= 0.0625 eV for both the single- and multi-orbital
DQMC calculations. We also perform simulations for the same
system size at T= 0 using the DMRG.

Electronic structure. There is a significant orbital overlap
between the Cu and O orbitals in quasi-1D and 2D cuprate
materials, which hybridizes the Cu 3dx2�y2 and O 2px,y orbitals. In
the non-interacting limit, these orbitals form bonding (pd),
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nonbonding (pd)0, and anti-bonding (pd)* bands, as shown in
Fig. 1b−d. In the corner-shared cuprates, there is also a flat band,
which originates from a nonbonding combination of 2p±y orbitals
that does not hybridize with the 3dx2�y2 orbital.

Throughout, we work in hole language where hn̂i ¼ 1
corresponds to half-filling (i.e., 1 hole/Cu), and hn̂i > 1 (<1)
corresponds to hole (electron) doping. At half-filling, when the
interactions are turned on, the bonding (pd) band is split into the
lower and upper Hubbard band (LHB/UHB) as well as an
additional Zhang-Rice band (ZRS) located above the Fermi
level56,57. These bands can be easily resolved in the total
interacting density of states (DOS) shown in Fig. 1e, and in both
the single-particle spectral functions shown in Figs. 2 and 3. For
our parameters, the energy of the upper Hubbard band is close to
the O-derived bands, leading to a broad peak in the DOS centered
around ω= 6 eV.

To study the electronic structure of the interacting pd-model,
we plot the momentum-dependent spectral functions A(k, ω) in
Figs. 2 and 3 for hole concentrations hn̂i ¼ 1:1, 1, and 0.9.
Figures 2a−c and 3a−c show results obtained from finite-
temperature DQMC and zero temperature DMRG calculations,
respectively. (Additional plots of A(k, ω) for both models,
focusing on the low-energy region ω ∈ [−4,4] eV, are provided
in Supplementary Note 5.) From bottom to top, the momentum
k increases from −π/a to π/a in each panel. The black dashed

lines represent the Fermi level EF. To highlight the orbital
content of the spectral features, we indicate the Cu dx2�y2 orbital
of the spectral function with red color and the sum of the
spectral weights of the O px and O p±y orbitals in cyan. The zero-
temperature spectral function shown in Fig. 3 exhibits sharper
features and hence richer details compared to the DQMC
results.

For simplicity, we begin by discussing the spectra at half-filling.
Both DQMC and DMRG have a clear gap at the Fermi level EF,
consistent with a Mott-insulating state. In the low energy region
[−4,4] eV, the DMRG spectra also have footprints of spin-charge
separation, consistent with ARPES measurements on SrCuO2

58.
Besides, the DMRG results show a dispersing band between 6 and
8 eV with a significant amount of O 2p character and two flat
bands at ω= 6 eV and ω= 7.2 eV. The flat band at lower energy
is composed almost entirely of the O 2p±y orbitals
and corresponds to the flat band shown in the noninteracting
band structure. The higher-energy flat band is mixed between Cu
and O and corresponds to the UHB with additional weak Cu
satellites at ω ≈ 10 eV. Note that the contribution of the Cu
orbitals to the anti-bonding (pd)* band is reduced significantly in
the interacting case compared to the noninteracting case. Due to a
combination of thermal broadening and the Maximum Entropy
method, these fine structures blend into a broad peak in the
DQMC results in the same energy region.

Fig. 1 The multi-orbital model for the corner-shared cuprate spin chains. a A sketch of the four-orbital Cu−O pd-model describing the corner-shared
spin-chain cuprates like Sr2CuO3. Panels b−d plot the noninteracting band structure in hole language and at half-filling. In each panel, the weight of the Cu
3d and O 2px and 2p±y orbitals are indicated by the weight of the colored overlays. Panel e shows the density of states (DOS) of the pd-model with
interactions at half-filling, obtained from determinant quantum Monte Carlo (DQMC) simulations at T= 0.0625 eV. Here, LHB (UHB) and ZRS denote the
portions of the spectra corresponding to the lower (upper) Hubbard band and the Zhang-Rice Singlet quasi-particle band, while "flat" indicates portions of
the electronic structure arising from the non-bonding oxygen 2py flat band appearing in panel (d). The model parameters for the noninteracting bands are
the onsite energies ϵd= 0, ϵp,x= 3, and ϵp,y= 3.5, and the hopping integrals ∣t(p,x)d∣= 1.5, ∣t(p,y)d∣= 1.8, and ∣tpp∣= 0.75. For the DOS shown in panel e, we
set the onsite Hubbard interactions on Cu and O to Ud= 8 and Up= 4, respectively, and the interorbital Cu−O Hubbard interaction to Upd= 1. All
parameters are given in units of eV.
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By considering the full pd-model, we can access the Cu and O
components to the spinon and holon states in the low energy
region, which have not been reported in the literature to our
knowledge. Our DMRG results show that the Cu and O weights
of the main structures are comparable over the entire Brillouin
zone. We note, however, that the holon-shadow bands are
dominated by the Cu component below the Fermi level near k= 0
but dominated by the O component above the Fermi level near
k= ±π/a. Our DQMC results show a similar composition for the
main structures, but the intensity of the shadow bands is too weak
to be captured by our Maximum Entropy method.

The system undergoes a metal−insulator transition as the
system is either electron- or hole-doped. In our pd-model, we see

that spinon-antiholon branches are responsible for the spectral
weight crossing the Fermi level, consistent with the results of the
single-band Hubbard model59. The orbital components in both
low and high-energy regions do not change much compared to
the half-filled case.

The magnetic excitations. We now examine the collective
magnetic excitations of the pd-model. Figure 4a−j summarizes
our finite-temperature (T= 0.0625 eV) DQMC results for the
dynamical spin structure factor S(q, ω) for doping levels spanning
from hn̂i ¼ 0.8−1.2. (Additional DQMC data for the doping
levels not shown here are provided in Supplementary Note 6.)
Figure 5a−j shows comparable results at zero temperature

Fig. 2 The single particle spectral function A(k,ω) of the multi-orbital
model computed using the determinant quantum Monte Carlo (DQMC)
method. Results are shown as a function of momentum k and energy ω for
fillings of a hn̂i ¼ 1:1, b hn̂i ¼ 1, and c hn̂i ¼ 0:9 holes/Cu. Red color
represents Cu dx2�y2 , while cyan color represent the sum of O px and O p±y
components. From bottom to top, the momentum k increases from− π/a to
π/a in each panel. All results were obtained on chains with N= 20 unit cells
and onsite energies ϵd= 0, ϵp,x= 3, and ϵp,y= 3.5, hopping integrals ∣t(p,x)
d∣= 1.5, ∣t(p,y)d∣= 1.8, and ∣tpp∣= 0.75, and Hubbard interactions Ud= 8,
Up= 4, and Upd= 1, in units of eV.

Fig. 3 The single particle spectral function A(k,ω) of the multi-orbital
model computed using the density matrix renormalization group
(DMRG) method. Results are shown as a function of momentum k and
energy ω for fillings of a hn̂i ¼ 1:1, b hn̂i ¼ 1, and c hn̂i ¼ 0:9 holes/Cu. Red
color represents Cu dx2�y2 , while cyan color represents the sum of O px and
O p±y components. From bottom to top, the momentum k increases from
−π/a to π/a in each panel. All results were obtained on chains with N= 20
unit cells and onsite energies ϵd= 0, ϵp,x= 3, and ϵp,y= 3.5, hopping
integrals ∣t(p,x)d∣= 1.5, ∣t(p,y)d∣= 1.8, and ∣tpp∣= 0.75, and Hubbard
interactions Ud= 8, Up= 4, and Upd= 1, in units of eV.
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obtained using DMRG. In both Figs. 4 and 5, panels a−e show
the spectra obtained from the full pd-model while panels f−j
show the corresponding results obtained from a single-band
Hubbard model. To compare to the single-band model, we pre-
sent the total spin response of the pd-model. We stress that both

the cluster sizes and simulation temperatures are the same for the
two models, and one can directly compare the results shown on
both sides of each figure.

At low-temperature and hn̂i ¼ 1, the corner-shared cuprates
are charge-transfer insulators with antiferromagnetic correlations.

Fig. 4 Finite temperature determinant quantum Monte Carlo (DQMC) results for the total dynamical spin structure factor S(q,ω) of the multi-orbital
pd- and single-band Hubbard models. Panels a−e show the dynamical spin structure factor S(q,ω) as a function of momentum q and energy ω, obtained
from DQMC simulations of the multi-orbital model with a Cu−O basis (the pd-model) at various fillings hn̂i, as indicated. The parameters for the pd-model
include the onsite energies ϵd= 0, ϵp,x= 3, and ϵp,y= 3.5, the hopping integrals ∣t(p,x)d∣= 1.5, ∣t(p,y)d∣= 1.8, and ∣tpp∣= 0.75, onsite Hubbard interactions
Ud= 8 and Up= 4, and the interorbital Hubbard interaction Upd= 1, in units of eV. Panels f−j show corresponding results for DQMC simulations of the
single-band Hubbard model with nearest-neighbor hopping t= 0.5 eV, next-nearest-neighbor hopping t0 ¼ 0:06t ¼ 0:03 eV, and an onsite Hubbard
interaction U= 5.32t= 2.66 eV. Both sets of results were obtained using chains with N= 20 unit cells and at temperature T= 0.0625 eV.

Fig. 5 Zero temperature density matrix renormalization group (DMRG) results for the total dynamical spin structure factor S(q,ω) of the multi-orbital
pd- and single-band Hubbard models. Panels a−e show the dynamical spin structure S(q,ω) as a function of momentum q and energy ω, obtained from
DMRG simulations of the multi-orbital model with a Cu−O basis (the pd-model) at various fillings hn̂i, as indicated. The parameters for the pd-model
include the onsite energies ϵd= 0, ϵp,x= 3, and ϵp,y= 3.5, the hopping integrals ∣t(p,x)d∣= 1.5, ∣t(p,y)d∣= 1.8, and ∣tpp∣= 0.75, onsite Hubbard interactions
Ud= 8 and Up= 4, and the interorbital Hubbard interaction Upd= 1, in units of eV. Panels f−j show corresponding results for DMRG simulations of the
single-band Hubbard model with nearest-neighbor hopping t= 0.5 eV, next-nearest-neighbor hopping t0 ¼ 0:06t ¼ 0:03 eV, and an onsite Hubbard
interaction U= 5.32t= 2.66 eV. Both sets of results were obtained using chains with N= 20 unit cells and at zero temperature.
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The system’s elementary magnetic excitations are spinons in this
limit, which must be created in pairs. The magnetic excitation
spectrum is dominated by a two-spinon continuum, which has
been explicitly observed in, for example, Sr2CuO3 using INS43

and RIXS45,46. The upper and lower boundaries of the two-
spinon continuum are given by ωþðqÞ ¼ πJj sinðqa=2Þj and
ω�ðqÞ ¼ πJ

2 j sinðqaÞj, respectively, where J is the Cu−Cu anti-
ferromagnetic superexchange energy. Our DQMC and DMRG
results for both the pd- (Figs. 4a and 5a) and single-band (Figs. 4f
and 5f) models reproduce this behavior. Specifically, we observe a
continuum of magnetic excitations confined within ω±(q) but
with a maximum spectral weight ωm(q) [indicated by the cyan
points] concentrated at energies near the lower boundary ω−(q).
This distribution suggests that the low-energy magnetic excita-
tions of the pd-model are close to the Heisenberg limit, where the
low-energy physics is described by the 1D t-J model55,60. By
assuming that the locations of the maximum spectral weight in
Figs. 4a and 5a correspond to ω−(q), we can estimate J ¼

2
π ωm= sinðπ2Þ � 350 meV for the multi-orbital model. This value is
a little smaller than the value J ≈ 4t2/U= 376 meV that one would
obtain from the single-band Hubbard model in the large U limit.
(For this estimate, we have neglected the presence of t0 ¼ 0:06t,
which would induce a negligible frustration to the system.)

Upon doping hn̂i ¼ 1þ x, the location of the zero-energy
mode qs shifts from π

a to ð1� jxjÞ πa, consistent with the prior
demonstration that the deviation of the wave vector from π/a is
proportional to the excess hole or electron concentration60. We
note that using DQMC, at the largest doping, ∣x∣= 0.2, the spin
excitations at qs ¼ 0:8 π

a appear to acquire a finite gap at
T= 0.0625 eV but remain gapless at zero temperature. This
behavior may be an artifact of the Maximum Entropy Method
and/or the finite temperature effect of the simulation.

We observe a hardening of the spin excitation spectrum as the
total hole concentration increases. For example, Fig. 6a shows the
change of the energy of the maximum intensity ImaxðqÞ of S(q, ω)
as a function of the hole density at q= 0.4π/a. Here, the solid
triangles and circles represent DQMC results, while the open
triangles and circles represent DMRG results. Since the DQMC
data can be broad due to thermal broadening and the use of the
Maximum Entropy method, we also provide approximate error
bars, which are estimated as the energy range over which
Sðq;ωÞ≥ 0:99ImaxðqÞ. The two dashed lines are guides to the eye.
For both the pd- and downfolded single-band models, we find
that the energy of the peak increases with hn̂i. This observation
implies that the spin excitation energy hardens with hole-doping
and softens with electron doping. We also note that the spin
excitations obtained with DQMC at finite temperature are slightly
higher in energy compared to the DMRG results, implying that
the spin excitations shift to higher energies as the temperature
increases.

The observed particle−hole asymmetry in the energy scale of
the magnetic excitations is opposite to what is found in the two-
dimensional Hubbard model and experimental observations for
the 2D cuprates18,20. Since we observe consistent behavior in our
1D single- and multi-orbital models, we attribute this difference
to the value of t0 used in the models. For example, ref. 18 showed
that the single-band Hubbard model could account for the
observed behavior in 2D, provided t0 � �0:3t. Similarly, ref. 61
reported that the spin excitations in a 1D single-band Hubbard
model harden in the electron-doped case and soften significantly
in the hole-doped case after assuming t0 ¼ �0:3t to remain
consistent with the 2D cuprates. Later, ref. 62 showed that
changing the sign of t0 reverses this behavior in 1D, consistent
with our current results. It is important to stress that the next-
nearest-neighbor hopping process t0 in the 1D case is actually
analogous to the next-next-nearest-neighbor process t″ in the 2D
cuprates. With this in mind, it is then natural to expect that the
value of t0 in 1D will be very different from the one found in 2D
with jt01Dj � jt 002Dj < jt02Dj. We circumvent this issue by comparing
the single-band description directly to the multi-orbital descrip-
tion, where explicitly determining the value of t0 is not needed.
To reproduce the multi-orbital behavior, we found that
t0 ¼ 0:06t > 0, in line with our expectations that jt01Dj < jt02Dj.

In the strong coupling limit, the magnetic moment m= S(S+
1)= 0.75 in the single-band Hubbard model; however, this value
will be reduced for finite U due to double occupancy and
additional covalency effects in the pd-model43. To determine by
how much, we calculated the local moment from the expectation

value of the local spin operator m ¼ hðŜtotali Þ2i, where Ŝ
total
i ¼ Ŝi

and Ŝ
total
i ¼ ∑αŜi;α measures the total spin in the unit cell for the

single and multi-orbital models, respectively. The results are
shown in Fig. 6b, c for the single- and multi-band cases,

Fig. 6 The evolution of the magnetic moment and excitations with doping
hn̂i. a The shift in energy ω(q) of the maximum of S(q= 0.4π/a,ω) as a
function of doping in the multi-orbital Cu−O pd- and single-band models.
The dashed lines are guides to the eye. Panels b, c show the evolution of the
magnetic moment in the single-band (panel b) and pd-models (panel c).
The blue triangles indicate the value of m estimated by computing the
expectation value of the local spin operator hðŜtotali Þ

2
i while the red circles

indicate the value of m estimated by integrating S(q,ω) from ω∈ [0, 3] eV.
Results are shown for determinant quantum Monte Carlo (DQMC)
simulations at T= 0.0625 eV and density matrix renormalization group
(DMRG) simulations at zero temperature. The pie charts insets show the
weight of the Cu, O, and Cu−O components of the moment calculated
using d DQMC and e DMRG (see “Methods”).
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respectively. For both models, the DMRG and DQMC results are
in excellent agreement and predict an average local moment
m ≈ 0.6 at half-filling, which decreases as the system is doped with
electrons or holes. This decrease is mostly symmetric in the
single-band case and slightly asymmetric in the multi-band case.
Besides, we note that the temperature used in our DQMC
simulations is low enough so that the local magnetic moment is
the same as that at zero temperature. These results imply that the
effective moment in both models has a slight reduction due to
double occupancy, consistent with previous INS studies43,44,63.

We can also estimate the effective size of the system’s local
moment using a sum rule that relates it to an integral over the
spin structure factor

m ¼ lim
ωc!1

3
N

∑
α;β;q

Z ωc

0
Sα;βðq;ωÞeiqðrx;α�rx;βÞdω: ð3Þ

Here, N is the number of the unit cells, α, β are orbital indices, rx,α
and rx,β are the x-components of the basis vectors, and the factor
of three comes from the sum over the three spin components,
which contribute equally because of the unbroken SU(2)
symmetry. Since INS experiments typically only access the low
energy region, in practice, one needs to cut off the integration to a
finite value of ωc (= 3 eV in our case). Performing the integral for
the single-band case, we find that the total sum rule is almost
completely recovered. However, for the pd-model, this energy
window only recovers ≈ 75−80% of the sum rule, depending on
the doping. This discrepancy is not due to the use of the
Maximum Entropy method, as we obtain very consistent results
using DMRG and DQMC. Rather, it reflects that some of the
magnetic moment has been transferred to higher energies in the
pd-model. To verify this, we also computed S(q, ω) to high
energies and confirmed that extending to ωc= 13 eV recovers the
missing weight (see Supplementary Note 7). Reference 43
previously estimated the local moment in Sr2CuO3 by integrating
INS data for S(q,w) up to ωc= 1 eV. The authors were only able
to recover 80% of the sum rule after accounting for covalency
effects and attributed the missing weight to Debye−Waller
effects. Our results demonstrate that the missing weight has
instead been transferred to higher energies. Remarkably, the
magnetic excitations of the full multi-orbital are well reproduced
by our effective single-band model, even though ≈20% of the
overall magnetic moment is transferred to higher energies in the
pd-model.

Next, we analyze the contribution of each orbital to the total
magnetic moment. The inset of Fig. 6c plots the weight of spin
excitations between two Cu orbitals, two O orbitals, and Cu and
O orbitals at half-filling. Here, the intraorbital spin excitations
between neighboring Cu and O orbitals are labeled as “Cu” and
“O,” respectively, while interorbital spin excitations between Cu
and O are labeled as “Cu−O”. Interestingly, we observe that the
spin excitations on the Cu sites have the maximum weight (about
52%), and interorbital spin excitations between Cu and O account
for sizable 39% of the total excitations.

The charge excitations. We now examine the charge excitations
of the pd-model and compare them to the excitations predicted
by the single-band model. Figure 7 plots DQMC results for the
dynamical charge structure factor N(q, ω) obtained from both
models, again at T= 0.0625 eV and for different hole densities.
As was the case with our spin results, N(q, ω) represents the total
charge response, and panels a−e show the excitation spectrum of
the pd-model while panels f−j show the excitation spectrum of
the single-band Hubbard model. Figure 8 plots DMRG results for
the same models at zero temperature, following the same format.

The charge excitation spectrum of the pd-model can be divided
into low- and high-energy sectors, with dividing line occurring at
ω ≈ 5 eV, as shown in Figs. 7 and 8. The high-energy region
corresponds to particle−hole excitations from the low-energy
bands crossing EF to the high-energy oxygen-derived bands and
UHB observed in the spectral function. The charge excitations in
the low-energy region appear as a sharp cosine-like excitation
that is gapped at half-filling and gapless in the doped systems.
These low-energy features originate from scattering within holon
and ZRS bands near the Fermi level.

At zero temperature, shown in Fig. 8, additional fine structure
in the high- and low-energy regions of the spectral function
develops. Here, we observe that the low-energy region consists of
two distinct branches, one gapped and the other gapless. The
gapless excitations are intraband scattering within the holon
branch of the doped system and are notably absent in the spectra
at half-filling. The gapped excitations are then scattering from the
holon band to the remnant of the ZRS band (located at
ω∈ [−3,−1] eV in Fig. 3a and ω ∈ [1, 4] eV in Fig. 3c,
respectively).

When comparing our pd-model results to the single-band
model, we focus on the low-energy section of the charge
excitation spectrum because the high-energy excitations are
understandably absent in the single-band model. Overall, we find
that the low-energy charge excitations of the pd-model are
qualitatively well described by the single-band model. The DMRG
results show that both the single-band and pd-models have
gapped and gapless charge excitations when hn̂i ≠ 1. The gapped
excitations of the single-band model originate from the scattering
between the holon band and the upper Hubbard band, while
these gapped excitations of the pd-model come from the
scattering between the holon band and the remnant ZRS band.
In the DQMC results, due to the broadening of the finite
temperature and the Maximum Entropy method, the sharp
gapped spectrum is replaced by a broad spectrum, connecting to
the spectrum of the gapless excitation.

To better visualize the charge excitations of the DQMC results
at low- and high-energy, we plot N(q, ω) of the pd-model in Fig. 9
for hn̂i ¼ 0:9, hn̂i ¼ 1:1, hn̂i ¼ 0:8, and hn̂i ¼ 1:2 at q= π/a. We
also include the DMRG results for reference. We decomposed the
DQMC results into three Gaussian functions to distinguish
the low- and high-energy charge excitations. The centers of these
three Gaussian functions coincide with the peak position of the
DMRG results. The sum of these three Gaussian functions
matches the original DQMC results very well. Besides, we observe
an asymmetry in the intensity of the lowest energy peak between
hole- and electron-doped regimes consistent with the asymmetric
orbital content between Cu and O in the undoped ground state.

Even though the single-band model can describe the low-
energy total charge excitations, the orbital-resolved results show a
fascinating behavior, which could help account for the particle-
hole asymmetry observed in RIXS experiments64,65. Figure 10
shows the orbital-resolved Nγ;γ0 ðq;ωÞ, which is evaluated from
both DMRG and DQMC calculations. Red, cyan, and blue colors
in Fig. 10 represent the charge excitations between Cu−Cu,
O−O, and Cu−O, respectively. We observe that the gapless low-
energy charge excitation for hn̂i ¼ 0:9 is dominated by the
Cu−Cu and Cu−O components, while the similar charge
excitation for hn̂i ¼ 1:1 mainly consists of the O−O and Cu−O
components. In two-dimensional superconducting cuprates, Cu
L3-edge RIXS experiments reported a strong charge signal near
q= 0 on the electron-doped side, which has been difficult to
observe on the hole-doped side64,65. The missing signal with hole
doping may be attributed to the weaker contribution to the
charge excitations originating from the Cu−Cu excitations. Our
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results show that the lost signal can be observed in the O
components, consistent with the O K-edge RIXS results.

Conclusion
We have studied the dynamical spin and charge structure factors
of a four-orbital pd-model relevant for one-dimensional cuprate
spin chains using numerically exact DQMC, DMRG, and ED. We
also compared the two-particle response functions of the pd-
model against those predicted by an effective downfolded single-
band Hubbard model.

Our results show that the single-band Hubbard model can
describe the low-energy total spin and charge excitations of the
pd-model upon hole- or electron-doping. In the case of the
magnetic excitations, we found that the collective excitations
harden (soften) with hole (electron) doping. This asymmetry is
captured by the single-band Hubbard model with a small positive
hopping between next-nearest-neighbors. We find even richer
physics in our orbital-resolved results in the four-orbital pd-
model. For example, we find that the low-energy spin excitations
mainly consist of intraorbital Cu−Cu and interorbital Cu−O

Fig. 7 Finite temperature determinant quantum Monte Carlo (DQMC) results for the total dynamical charge structure factor N(q,ω) of the multi-
orbital pd- and single-band Hubbard models. Panels a−e show the dynamical charge structure N(q,ω) as a function of momentum q and energy ω,
obtained from DQMC simulations of the multi-orbital with a Cu−O basis (the pd-model) at various fillings hn̂i, as indicated. Panels f−j show corresponding
results for DQMC simulations of the single-band Hubbard model. Both sets of results were obtained using chains with N= 20 unit cells and at temperature
T= 0.0625 eV. The model parameters are identical to those used in Fig. 4.

Fig. 8 Zero temperature density matrix renormalization group (DMRG) method results for the total dynamical charge structure factor N(q,ω) of the
multi-orbital pd- and single-band Hubbard models. Panels a−e show the dynamical charge structure factor N(q,ω) as a function of momentum q and
energy ω, obtained from DMRG simulations of the multi-orbital with a Cu−O basis (the pd-model) at various fillings hn̂i, as indicated. Panels f−j show
corresponding results for DMRG simulations of the single-band Hubbard model. Both sets of results were obtained using chains with N= 20 unit cells. The
model parameters are identical to those used in Fig. 5.
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components, and we distinguish the dynamical spin behaviors on
each orbital, including the effects of electron−electron interac-
tions beyond first principle approaches43. Our observations for
the collective charge excitations, which have not been widely
studied in the context of cuprate physics, are richer. Our results
show a gapped charge excitation spectrum in the undoped
regime. In contrast, gapless excitations develop upon doping with
weaker intensity on the hole-doped side than on the electron-
doped side at low energy. In the low-energy sector, the charge
excitations in the electron-doped regime are dominated by the
Cu−Cu and Cu−O components, while in the hole-doped
regime they are dominated by the Cu−O and O−O compo-
nents. This behavior reflects the charge transfer insulating nature
of the cuprates, where doped holes preferentially reside on the
oxygen sublattice while doped electrons reside on the copper
sublattice.

Our work has important implications for numerical studies of
competing and intertwined orders in one- and two-dimensional

cuprates. For example, in the 2D superconducting cuprates, a
clear particle-hole asymmetry has been identified in the excita-
tions probed by RIXS experiments64,65. Here, a branch of col-
lective modes has been observed in the electron-doped
Nd2−xCexCuO4, which has been challenging to observe in hole-
doped cuprates. This particle-hole asymmetry of the collective
modes is consistent with the behaviors of the charge excitations
on the Cu site observed here, suggesting that the explicit inclusion
of the oxygen degrees of freedom may be required to capture this
physics. It would, therefore, be interesting to extend this study to
higher dimensions by considering multi-leg ladders on the route
towards full 2D models. Finally, our results provide extensive
predictions for the evolution of the spin and charge excitations in
doped cuprate spin chains, which have been synthesized recently
for a wide range of hole doping37.

Methods
Determinant quantum Monte Carlo. The details of the DQMC algorithm applied
to the multi-orbital Hubbard models can be found in ref. 66. DQMC works in the
grand canonical ensemble, where the expectation value of an observable Ô is given
by hÔi ¼ Z�1Tr½Ôe�βH �, where Z ¼ Tr½e�βH � is the partition function and β is the
inverse temperature.

To study the model’s excited state properties, we measured the imaginary-time
dynamical magnetic χs and charge χc susceptibilities. They are given by

χγ;γ
0

s ðq; τÞ ¼ hŜγ;zq ðτÞŜγ
0 ;z
�q ð0Þi ð4Þ

and

χγ;γ
0

c ðq; τÞ ¼ hn̂γqðτÞn̂γ
0
�qð0Þi; ð5Þ

where Ŝ
γ;z
q ðτÞ ¼ n̂γq;"ðτÞ � n̂γq;#ðτÞ and n̂γqðτÞ ¼ n̂γq;"ðτÞ þ n̂γq;#ðτÞ. Here, γ (γ0) is the

orbital index, and n̂γq;σ and Ŝ
γ;z
q are the Fourier transforms of the local density and

spin-z operators.
To compare to the single-band model, we calculate the total spin and charge

responses, which are given by

χsðq; τÞ ¼ hŜzqðτÞŜ
z
�qð0Þi ð6Þ

and

χcðq; τÞ ¼ hn̂zqðτÞn̂z�qð0Þi; ð7Þ

where Ŝ
z
q ¼ ∑i;γe

iqri;γ Ŝ
z
i;γ and n̂zq ¼ ∑i;γe

iqri;γ n̂i;γ . Here, ri,γ represents the position of
the orbital γ. Besides, we also calculate the spin and charge responses between Cu
(O) and O sites, where the operator on the O site is given by
Ô ¼ Ôpx

þ Ôpy
þ Ôp�y

.

To examine the spectral properties, we then used the method of the maximum
of entropy67 to analytically continue the imaginary-time susceptibilities to the real
frequency axis. Some of the authors have used the same analytic continuation
method to study the 2D cuprates, and reasonable results were obtained20. The
dynamical spin and charge structure factors are calculated by the fluctuation-
dissipation theorem, which simplifies to

Sγ;γ
0 ðq;ωÞ ¼ Imχγ;γ

0
s ðq;ωÞ

1� e�βω
ð8Þ

and

Nγ;γ0 ðq;ωÞ ¼ Imχγ;γ
0

c ðq;ωÞ
1� e�βω

: ð9Þ

The primary drawback to DQMC is the Fermion sign problem68, which limits
the range of accessible temperatures and Hubbard interactions. In general, we have
found that the sign problem is alleviated in 1D systems38, and the smallest value of
the sign we obtained in our simulations is about 0.78, much larger than the sign
value of the 2D three-orbital pd-model29.

Density matrix renormalization group. The DMRG69,70 calculations were carried
out with the correction-vector method39 using the Krylov decomposition40, as
implemented in the DMRG++ code71. This approach requires real-space repre-
sentations for the dynamical structure factors in Eqs. (4) and (5), which can be
found in ref. 72. Here, we calculated the response functions for N= 20 unit cell long
chains with open boundary conditions, corresponding to total system sizes of N and
4N+ 1 orbitals for the single- and multi-orbital cases, respectively. We kept up to
m= 1000 DMRG states to maintain a truncation error below 10−7 and introduced a
spectral broadening in the correction-vector approach fixed at η= 0.1 eV for both
the single- and multi-band calculations. We note that the accuracy of our calcula-
tion deteriorates at high excitation energies even with such small truncation errors.

Fig. 9 Comparative analysis of the charge excitations in the Cu−O pd-
model. Results were obtained using the determinant quantum Monte Carlo
(DQMC) and density matrix renormalization group (DMRG) methods.
Panels a−d show the dynamical charge structure factor N(q,ω) as a
function of energy ω at q= π/a for fillings of a hn̂i ¼ 0:9, b hn̂i ¼ 1:1, c
hn̂i ¼ 0:8, and d n̂ ¼ 1:2, respectively. The DQMC spectra (blue line) have
been fit with a set of Gaussian distributions, whose energies correspond
well with the main peaks observed in the DMRG data (black line). The
parameters for the pd-model, which includes the full Cu and O basis, are
identical to those used in Figs. 4 and 5.
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This behavior is expected within our Krylov DMRG correction vector approach, as
introduced in ref. 40. In the Krylov method, another source of error is given by the
Lanczos error, which occurs in the tridiagonalization of the Hamiltonian for the
construction of the correction vector c:v:j i ¼ 1

ω�Hþiη Ô g:s:
�� �

, where Ô is the relevant

operator. In the current work, we have imposed a maximum Lanczos error of 10−8

allowing at most 200 iterations (as opposed to standard 10−12 Lanczos precision of
ground state computations) to avoid the proliferation of a larger number of Lanczos
steps at high excitation energies and the consequent need for CPU consuming
reorthogonalization of the Lanczos vectors.

Data availability
The data that support the findings of this study are available from the corresponding
authors on reasonable request.

Code availability
The DQMC code can be downloaded at https://github.com/sli43/DQMC-for-the-1D-
corner-shared-cuprates. The DMRG code can be downloaded at https://github.com/
g1257/dmrgpp/.
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