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Node and edge nonlinear eigenvector centrality
for hypergraphs
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Network scientists have shown that there is great value in studying pairwise interactions

between components in a system. From a linear algebra point of view, this involves defining

and evaluating functions of the associated adjacency matrix. Recent work indicates that there

are further benefits from accounting directly for higher order interactions, notably through a

hypergraph representation where an edge may involve multiple nodes. Building on these

ideas, we motivate, define and analyze a class of spectral centrality measures for identifying

important nodes and hyperedges in hypergraphs, generalizing existing network science

concepts. By exploiting the latest developments in nonlinear Perron−Frobenius theory, we

show how the resulting constrained nonlinear eigenvalue problems have unique solutions

that can be computed efficiently via a nonlinear power method iteration. We illustrate the

measures on realistic data sets.
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The study of pairwise interactions has led to a vast range of
useful concepts and tools in network science1,2. Several
recent studies have developed extensions that account for

higher-order interactions3–5. Of course, the appropriate higher-
order representation is dependent on the research problem being
addressed. For example, as discussed in ref. 5, in studying a
coauthorship data set one could pose three distinct questions:

1. Have two given authors ever contributed simultaneously to
a multi-authored paper? A simple undirected graph records
such pairwise interactions.

2. Has a given set of authors ever contributed simultaneously
to a multi-authored paper? Because any subset of these
authors must also have contributed simultaneously to a
multi-authored paper, we may use a simplicial complex to
record these interactions. This structure incorporates
downward closure: any subset of nodes within a simplex
also forms a simplex.

3. Has a given set of authors formed the complete coauthor-
ship list on a paper? In this case, a hypergraph is
appropriate, with the set of authors forming a hyperedge.
Any proper subset of those authors will not appear as a
hyperedge unless they form the complete coauthorship list
on some other paper.

In this work, we are concerned with extensions of so-called
eigenvector centrality measures to the higher-order setting of
hypergraphs. Eigenvector centrality for graphs has been widely
used to assign levels of importance to individual nodes. It assigns
scores to nodes in terms of the Perron eigenvector of the adja-
cency matrix of the graph1,6. A standard approach when dealing
with hypergraphs is to use graph-based algorithms on the clique-
expanded graph of the hypergraph7. In this case, we can assign
centrality scores to the nodes of the hypergraph by looking at the
centrality of the nodes in its clique-expanded graph. Another
relatively well-established idea to represent and work with
hypergraphs relies on the use of higher-order tensors8,9. This
approach requires a uniform hypergraph, and defines centrality
scores in terms of the Perron eigenvector of the adjacency tensor.

We note that the clique-expansion matrix approach is a form
of flattening which essentially corresponds to an additive model:
for a given node, the importance of its neighbours in a hyperedge
is summed into a linear (possibly weighted) combination. Instead,
the tensor-eigenvector approach is a multiplicative model: the
importance of the neighbours in each hyperedge is multiplied.
While the two models coincide on standard graphs (as each
hyperedge involves exactly two nodes, and hence there is at most
one neighbour), these two models are intrinsically different on
uniform hypergraphs with larger hyperedges. See the “Results and
Discussion” section for more details.

In this work, we define a general eigenvector model for node
and edge centralities on hypergraphs with arbitrary hyperedge
size based on the hypergraph incidence matrix and the choice of
four nonlinear functions. Working in terms of the incidence
matrix provides a general yet simple model which, for example,
immediately transfers to the case of simplicial complexes, where
all subsets of each hyperedge happen to be present. The choice of
the nonlinear functions allows us to specify the way node
importances are combined within the hyperedges (and, vice-
versa, the way hyperedge importances influence node scores). We
show that both the clique-expansion and, for uniform hyper-
graphs, the tensor-based eigenvector centralities are particular
cases of the proposed model obtained for specific choices of the
nonlinearities. Thus, our approach allows us to generate a whole
new family of centrality models and to extend popular tensor-
eigenvector centrality models to general hypergraphs in a natural

way. More precisely, the main contributions of this work are as
follows.

We formulate node and edge hypergraph centrality as a general
constrained nonlinear eigenvalue problem Eq. (2) based on the
hypergraph incidence operator. We provide existence and
uniqueness theory for the eigenvalue equation in Theorem 2.2
and we propose a nonlinear power method (NPM) to compute its
solution. In the special case of a 2-uniform hypergraph (a graph)
this leads to a hypertext induced topic search (HITS) type
iteration for networks that simultaneously assigns centrality to
nodes and edges, whereas, for general hypergraphs, the NPM
allows us to compute centrality scores for nodes and general
hyperedges. The convergence theory for the NPM is provided in
Theorem 2.3. Finally, in the “Experiments” section, we provide
several computational experiments on synthetic and real-world
data to illustrate the behaviour of different node and edge cen-
trality models obtained as particular cases of the general con-
strained nonlinear eigenvalue Eq. (2).

Our main contributions are presented in the “Results and
Discussion” section while all proofs appear in the “Methods”
section.

Results and discussion
Notation and motivation. We begin by considering an
unweighted, undirected, graph G= (V, E) with node set
V= {1,…, n}, edge set E= {e1,…, em} and binary adjacency
matrix A 2 Rn´ n. In this context, eigenvector centrality was
popularized in the social network science community6, although
the idea can be traced back to the 19th Century10. This centrality
model assigns a measure of importance, xi > 0, to node i in such a
way that the importance of node i is linearly proportional to the
sum of the importance of its neighbours. This relationship may be
written

Ax ¼ λx; x > 0; for some λ > 0: ð1Þ

Thanks to the Perron–Frobenius theorem, this matrix eigenvector
problem admits a unique solution x* if A is irreducible (that is,
the graph is connected)1. In this case, x* can be computed to
arbitrary precision via the power method if A is primitive (that is,
the graph is aperiodic), see, for example11.

Over the years, a large amount of work has been devoted to the
definition of centrality models able to capture different network
properties and thus provide an importance score to the nodes of a
graph. However, much less work has focused on models and
methods for quantifying the centrality of edges. In addition to
being of interest in its own right, quantifying edge importance has
natural applications in a number of important tasks, including
link detection, edge prediction, and matrix completion12–14.

An eigenvector centrality for edges can be developed by
considering the line graph and its adjacency matrix A(e)15. In this
setting, AðeÞ 2 Rm´m has AðeÞ

e1;e2
≠0 if and only if e1∈ E and e2∈ E

share at least one node. The centrality of the edges can thus be
defined via the Perron eigenvector A(e)y= λy, as in Eq. (1).

Another somewhat natural model for edge centrality can be
induced by a given node centrality x: assign to each edge e
the score ye=∑i∈exi obtained by looking at the nodes the edge
connects. This is what is typically done when computing edge
scores for, e.g., link prediction13,16,17 or network robustness
optimization18,19. However, a mutually reinforcing centrality
score for both nodes and edges can be designed by requiring the
edges to inherit importance from the nodes they connect and,
vice-versa, the nodes to inherit importance from the edges they
participate in. We describe this idea in detail in the next section.
Since the resulting model extends essentially unchanged to the
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higher-order setting where edges contain an arbitrary number of
nodes, we will present this idea in the framework of a hypergraph.

Hypergraphs. In the remainder of this work, we consider a
general hypergraph H= (V, E) where V= {1,…, n} is the set of
nodes and E= {e1,…, em} now denotes the set of hyperedges20.
Note that in our setting every node can belong to an arbitrary
number of hyperedges, i.e., we allow hereditary hypergraphs21,
which can also be used to model a simplicial complex structure.
We let B denote the n ×m incidence matrix of H, defined as
follows: the rows of B correspond to nodes while its columns
correspond to hyperedges and we have Bi,e= 1 if node i takes part
in hyperedge e, that is,

Bi;e ¼
1 i 2 e

0 otherwise.

�

In many situations, we have access to external node and edge
weights in the form of weight functions ν : RV ! Rþ and
w : RE ! Rþ. For example, if the hypergraph data represents
grocery goods (the nodes) and the list of items purchased by each
customer in one visit to a supermarket (the hyperedges), then ν(i)
can be an indicator of the price of item i, while w(e) may
correspond to the profit the supermarket has made with the list of
items in e. We use two diagonal matrices N and W to take into
account these weights, defined by N=Diag(ν(1),…, ν(n)) and
W=Diag(w(e1),…,w(em)).

Note that a hypergraph where all edges have exactly two nodes
is a standard graph. In that case, we have BWB⊤= A+D where
A is the adjacency matrix of the graph and D=Diag(d1,…, dn) is
the digonal matrix of the weighted node degrees di=∑e∈Ew(e)
Bi,e= (BW1)i. Similarly, for a general hypergraph H, we have
BWB⊤=AH+DH where AH and DH are the adjacency and
degree matrices of the clique-expansion graph GH= (V, EH)
associated with H. The clique-expansion graph is a graph on the
same vertex set of H, obtained by adding a weighted clique
connecting all nodes in each hyperedge of H. More precisely,
given H= (V, E), we have

ðAHÞij ¼ ∑
e: i;j2e

wðeÞ; ðAHÞii ¼ 0:

Thus, ij∈ EH if and only if i ≠ j participates in at least one
hyperedge of H. Similarly, the degree matrix DH=Diag(d1, ..., dn)
is the diagonal matrix whose diagonal entries are the weighted
degrees of the nodes in the hypergraph, i.e.,
di=∑e:i∈ew(e)= (BW1)i.

Node and edge nonlinear hypergraph eigenvector centrality.
We describe here a spectral (thus mutually reinforcing) model for
node and edge centralities of hypergraphs. Suppose H= (V, E) is
given with ∣V∣= n and ∣E∣=m, and let x 2 Rn, y 2 Rm be
nonnegative vectors whose entries will provide centrality scores
for the nodes and hyperedges of H, respectively. We would like
the importance ye for an edge e∈ E to be a nonnegative number
proportional to a function of the importance of the nodes in e, for
example, ye∝∑i∈eν(i)xi. Similarly, we require that the centrality
xi of node i ∈V is a nonnegative number proportional to a
function of the importance of the edges it participates in, for
example, xi∝∑e:i∈ew(e)ye. As the centralities xi and ye are all
nonnegative, these sums coincide with the weighted ℓ1 norm of
specific sets of centrality scores. Thus, we can generalize this idea
by considering the weighted ℓp norm of node and edge impor-
tances. This leads to

xi / ∑
e:i2e

wðeÞype
� �1=p

; ye / ∑
i2e

νðiÞxqi
� �1=q

;

for some p, q ≥ 1. More generally, we can consider four functions
f ; g;φ;ψ : Rþ ! Rþ of the nonnegative real line Rþ and
require that

xi / g ∑
e:i2e

wðeÞf ðyeÞ
� �

; ye / ψ ∑
i2e

νðiÞφðxiÞ
� �

:

If we extend real functions on vectors by defining them as
mappings that act in a component-wise fashion, the previous
relations can be compactly written as the following constrained
nonlinear equations

λx ¼ g BWf ðyÞ� �
μy ¼ ψ B>NφðxÞ� �

(
x; y>0; λ; μ>0: ð2Þ

If f, g, ψ, and φ are all identity functions, then Eq. (2) boils
down to a linear system of equations that is structurally
reminiscent of the HITS centrality algorithm for directed
graphs22,23. HITS computes two different node centralities: a
hub centrality, which is proportional to the authority score of
neighbouring nodes, and at the same time, authority centrality,
which is proportional to the hub score of neighbouring nodes.
Similarly, Eq. (2) with f= g= φ= ψ= id defines two centralities,
but in this case, they relate to nodes and hyperedges: the
importance of a node is proportional to the sum of the
importance of the hyperedges it belongs to and, vice-versa, the
importance of a hyperedge is proportional to the sum of the
importance of the nodes it involves.

As for HITS centrality, when f= g= φ= ψ= id and we have
no edge nor node weights (i.e., W,N are identity matrices), then
x, y in Eq. (2) are the left and right singular vectors of a certain
matrix, in this case B, and the matrix Perron–Frobenius theory
tells us that if the bipartite graph with adjacency matrix

0 B
B> 0

� �
is connected, then Eq. (2) has a unique solution.

Instead, when either f, g, φ, or ψ is not linear, even the most basic
question of the existence of a solution to Eq. (2) is not
straightforward. However, for homogeneous functions f, g, φ,
and ψ, the nonlinear Perron–Frobenius theory for multihomo-
geneous operators24 allows us to give guarantees on existence,
uniqueness, and computability for the nonlinear singular-vector
centrality model in Eq. (2).

Before addressing these issues, we investigate the system in Eq.
(2) further, showing how it includes some previously proposed
eigenvector centrality models as special cases, and offers
additional useful flexibility.

The linear case: eigenvector centrality for graph and line graph.
When H is a standard simple and unweighted graph H=G= (
V, E), with binary adjacency matrix A, it is easy to verify that
BB⊤= A+D, where D is the diagonal matrix of the node degrees.
Moreover, B⊤B=A(e)+ Δ, where A(e) is the adjacency matrix of
the line graph of G and Δ=Diag(δ1,…, δm) is a diagonal matrix
whose diagonal entries count the number of nodes each edge
contains. In this case, each edge has exactly two nodes, so Δ= 2I.
The corresponding identities hold if we allow weights on the
nodes and on the edges of G, namely BWB⊤= A+D, where now
A and D are the weighted adjacency and degree matrix of G, and
B⊤NB=A(e)+ Δ with

ðAðeÞÞe1;e2 ¼
νðiÞ e1≠e2 and they share the node i inG

0 otherwise

�
ð3Þ

and δe=∑i∈eν(i).
It follows that when H is a graph, the node-edge eigenvector

model in Eq. (2) for the linear case f= g= φ= ψ= id is strongly
related to the standard eigenvector centrality applied to G and its
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line graph. In fact, by using the two identities λx= BWy and
μy= B⊤Nx we obtain

eλ x ¼ BWB>Nx ¼ ðAþ DÞNxeλ y ¼ B>NBWy ¼ ðAðeÞ þ ΔÞWy

(

with eλ ¼ λμ. Thus, x and y are the Perron eigenvectors of
diagonally perturbed adjacency matrices of the graph and the
line graph.

A similar connection holds for the general hypergraph case. In
that case, the node-edge eigenvector model in Eq. (2) for the
linear choices f= g= φ= ψ= id is tightly connected to the
eigenvector centrality of the clique-expansion graph of H its line
graph. Precisely we have

BWB> ¼ AH þ DH and B>NB ¼ AðeÞ
H þ ΔH ;

where AðeÞ
H and ΔH are the adjacency and degree matrix of the line

graph of GH, as defined in Eq. (3).

Tensor-based eigenvector centrality for uniform hypergraphs
and its extension. In this subsection, we find an intriguing
connection between recently proposed tensor-based eigenvector
centralities for uniform hypergraphs and the nonlinear singular
vector model proposed in Eq. (2). In particular, we show that the
centrality models based on tensor eigenvectors are a special case
of our general nonlinear singular vector framework and that this
new approach allows us to extend tensor eigenvector centralities
to general non-uniform hypergraph data. We first review the
uniform hypergraph case.

A hypergraph is said to be k-uniform if ∣e∣= k for all e∈ E.
Thus, a 2-uniform hypergraph is a graph in the standard sense.
The concept of eigenvector centrality has been extended to the
case of k-uniform hypergraphs with k > 2 by means of the
hypergraph adjacency tensor9. As every hyperedge contains
exactly k nodes, we can associate to H a tensor A with k indices
Ai1;¼ ;ik

such that Ai1;¼ ;ik
¼ wðeÞ if the hyperedge e= {i1,…, ik}

belongs to E, and Ai1;¼ ;ik
¼ 0 otherwise. Clearly, A coincides

with the adjacency matrix of the graph when k= 2. Different
notions of tensor eigenvectors are available in the literature (see
e.g.,25,26). In particular, for p > 0, a ℓp eigenvector for A is a vector
x such that

∑
i2;¼ ;ik

Ai1;i2;¼ ;ik
xi2xi3 � � � xik ¼ λ x p

i1
: ð4Þ

The special cases p= 1 and p= k− 1 correspond to so-called Z-
and H-eigenvectors for A. Note that both Z- and H-eigenvectors
boil down to standard matrix eigenvectors when k= 2. However,
when k > 2 matters are significantly different. In particular, the
eigenvector centrality defined by Eq. (4) is no longer linear when
k > 2, in the sense that taking a linear combination of eigenvectors
does not automatically produce an eigenvector.

This nonlinearity makes the analysis and the computation of
solutions to Eq. (4) more challenging than standard eigenvector
centralities for graphs (i.e., k= 2). However, it has been observed
in, e.g.,26–28 that the nonlinear eigenvector Eq. (4) admits a
unique solution that can be computed to an arbitrary precision if
the tensor A is not too sparse and if the exponent p satisfies
certain assumptions. In particular, for a large range of values of p
all these properties hold with almost no requirement on the
connectivity of the underlying hypergraph25. From this point of
view, the nonlinearity yields a remarkable advantage rather than a
disadvantage.

Extending tensor eigenvector centrality models to the non-
uniform hypergraph setting is not straightfoward. The next
theorem shows that our nonlinear singular vector model in Eq.

(2) provides a natural framework to this end. In fact, Theorem
2.1 shows that, for uniform hypergraphs, the tensor-based
eigenvector centrality in Eq. (4) is a particular case of Eq. (2)
for logarithmic- and exponential-based nonlinear functions.
Thus, when used on non-uniform hypergraphs, these choices of
functions in Eq. (2) yield a tensor eigenvector-like centrality for
general hypergraphs. We will further discuss this extension in the
“Experiments” section.

Let H be a k-uniform hypergraph. As observed above, when
k= 2 we have BWB⊤=A+D, where A and D are the adjacency
and degree matrices of the graph H, respectively. Thus, for p= 2
we can easily rewrite the eigenvector centrality Eq. (4) in terms of
the incidence matrix, as Eq. (4) coincides with Ax= λx and we
have Ax= (BWB⊤−D)x= λx. If the vector x is entrywise
positive, we can add a nonlinear transformation in the
eigenvector equation to obtain a similar relation for any k ≥ 2
and any p ≥ 1. More precisely, we have

Theorem 2.1. Let H be a k-uniform hypergraph with ν(i)= 1 for
all i∈V. If x is a positive solution of Eq. (2) with f(x)= x, g(x)=
x1/(p+1), ψ(x)= ex and φðxÞ ¼ ln ðxÞ, then x is an eigenvector cen-
trality solution of the tensor eigenvalue problem in Eq. (4).

Existence, uniqueness, and computation of nonlinear hyper-
graph centralities. In this section, we discuss the existence,
uniqueness, positivity, maximality, and computation of the node
and edge hypergraph centrality defined by the general nonlinear
singular value problem in Eq. (2). Analogously to the linear case,
these properties will follow directly from the nonlinear
Perron–Frobenius theorem for multihomogeneous mappings24,
which extends the classical Perron–Frobenius theory for non-
negative matrices to a much broader class of nonlinear non-
negative operators.

To this end, we recall that a function φ is said to be α-
homogeneous if φ(λu)= λαφ(u) for all λ ≥ 0. In this case, we say
that α is the homogeneity degree of φ. Furthermore, we say that φ
is order-preserving if φ(v) ≥ φ(u) for all v ≥ u; whereas we say that
φ is positive if φ(v) > 0 for all v > 0. We have

Theorem 2.2. Let f, g, φ, ψ be order-preserving and homogeneous
of degrees α, β, γ, δ, respectively. Define the coefficient ρ= ∣αβγδ∣. If
either

p1. ρ < 1, or
p2. ρ= 1; f, g, φ, ψ are differentiable and positive maps; the

bipartite graph with adjacency matrix

�
0 BW

B>N 0

�
is

connected
then there exist unique x, y > 0 (up to scaling) and unique λ, μ >

0 solution of Eq. (2).

By analogy with the linear case, we refer to the positive
solutions of Eq. (2) defining the hypergraph centralities as
nonlinear Perron singular vectors.

On top of existence and uniqueness guarantees, the matrix
Perron–Frobenius theorem provides us with the convergence of
the so-called power method, a very powerful tool for computing
the Perron singular vectors. In the case of nonnegative matrices,
however, one needs to require the bipartite graph of

A ¼ 0 BW
B>N 0

� �
to be aperiodic (i.e., the matrix A is

primitive) in order to ensure the convergence of the power
method for an arbitrary choice of the starting point, as
connectedness alone is not enough. As an example, consider

the 2 × 2 matrix A ¼ 0 1
1 0

� �
which acts on vectors by swapping

the first and the second coordinates. The graph of A is connected
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but not aperiodic and, indeed, the sequence x(r+1)=Ax(r) does
not converge in general (it converges only if x(0) has constant
entries).

Algorithm 1. Nonlinear Power Method for hypergraph centrality

Much like the matrix case, one can compute the nonlinear
Perron singular vectors in Eq. (2) via what we call the Nonlinear
Power Method, described in Algorithm 1. However, similarly to
the nonlinear eigenvalue problem for tensors25,26, the nonlinear
power method converges under significantly milder conditions
than its more common linear counterpart. In particular, no
aperiodicity assumption is required and, depending on the
homogeneity degree of the nonlinear functions, global conver-
gence may be ensured even for disconnected graphs. The
following theorem describes the convergence of Algorithm 1 to
the solution of Eq. (2).

Theorem 2.3. Under the assumptions and notation of Theorem 2.2,
let x(r), y(r) be the sequences generated byAlgorithm 1. If either P1 or
P2 holds, then x(r) and y(r) converge to the unique positive solutions
x*, y* of Eq. (2) such that ∥x*∥= ∥y*∥= 1. Moreover, if P1 holds,
then the convergence is linear, i.e.:

k xðrÞ � x� k þ k yðrÞ � y� k¼ OðρrÞ:

Experiments. In this section, we compare the behaviour of three
node-edge eigenvector centrality models, which correspond to three
choices of the functions f, g, φ, ψ in Eq. (2), as described below:

● The “linear” centrality model corresponds to the choice
f= g= φ= ψ= id which, as discussed in the Node and edge
nonlinear hypergraph eigenvector centrality section, essen-
tially corresponds to the standard eigenvector centrality
applied to the graph and the line graph obtained by clique-
expanding the input hypergraph.

● The “log-exp” centrality model corresponds to the choices
f= id, φðxÞ ¼ ln ðxÞ, ψðxÞ ¼ expðxÞ and gðxÞ ¼ ffiffiffi

x
p

. As
discussed in the Tensor-based eigenvector centrality for
uniform hypergraphs and its extension section, this choice
generalizes the tensor eigenvector centrality proposed in9 to
the case of nonuniform hypergraphs. In fact, when the
hypergraph is uniform, we have already observed in Theorem
2.1 that the node centrality defined via Eq. (2) with this
choice of f, g, φ, ψ boils down to a Z-eigenvector of the
adjacency tensor of the hypergraph. Similarly, for a general
hypergraph, from Eq. (2) we get

μye ¼ ψ
�
∑
j2e

νðjÞφðxjÞ
	
¼ exp

�
∑
j2e

νðjÞln ðxjÞ
	
¼

Y
j2e

xνðjÞj :

Thus, if x, y are nonnegative vectors satisfying Eq. (2) there
exists a positive eλ such thateλx2i ¼ xνðiÞi ∑

e:i2e
wðeÞ

Y
j2enfig

xνðjÞj : ð5Þ

Note in particular that, when the input hypergraph has
binary node weights, i.e., ν(i)= 1 for all i∈V, Eq. (5)
corresponds to a nonuniform hypergraph version of the
tensor Z-eigenvector centrality for uniform hypergraphs,
precisely we have eλxi ¼ ∑

e:i2e
wðeÞ

Y
j2enfig

xj:

● The “max” centrality model is based on the observation
that the function μαðvÞ ¼ ðvα1 þ � � � þ vαmÞ1=α is a type of
‘softmax’: when α→∞, μα(v) converges to
maxðvÞ ¼ maxfv1; ¼ ; vmg. More precisely, we have

maxðvÞ≤ ðvα1 þ � � � þ vαmÞ1=α ≤m1=α maxðvÞ;
thus, already for α= 10 we have μαðvÞ � maxðvÞ. Based on
this observation, the proposed centrality model corresponds
to the choice of nonlinear mappings: f= g= id, φ(x)= xα

and ψ(x)= φ−1(x)= x1/α, for α= 10. Notice that, with this
choice of α, the max node centrality xi is large when i is part
of at least one important edge. In fact, from Eq. (2) we have

xi � maxfye : e � ig:

Illustrative example: hypergraph sunflower. A sunflower is a
hypergraph whose hyperedges all have one common intersection
in one single node, called the core. Let u∈V be that intersection.
Also let r be the number of petals (the hyperedges) each con-
taining ∣ei∣ nodes, for i= 1,…, r. By definition, u∈ ei for all i.
Further, a node v∈ ei and v∈ ej for i ≠ j if and only if v= u.

Let us first consider the case of a uniform sunflower. This case
corresponds to the setting where all the petals have the same
number of nodes, i.e., ∣ei∣= k+ 1 for all i and for some integer k.
The tensor eigenvector centrality of a uniform sunflower is studied
for example in9. In that case, we can assume that all the hyperedges
have the same centrality score and that the same holds for all the
nodes, besides the core, which is assigned a specific value.

Assuming no weights on nodes or hyperedges, by symmetry we
may impose the constraints xvi ¼ xv for all vi ≠ u and ye= y for all
e∈ E in Eq. (2) to obtain

xv / gðf ðyÞÞ; xu / gðrf ðyÞÞ; y / ψðφðxuÞ þ kφðxvÞÞ:
So, for example, with the choices of Theorem 2.1 we get xu/
xv= g(r)= r1/(p+1) which coincides with the value computed in9,
for the two choices p= 1 and p=m− 1, i.e., the tensor Z-
eigenvector and H-eigenvector based centralities, respectively.
More generally, if g is homogeneous of degree β we have

xu
xv

/ rβ: ð6Þ

This shows that the node centrality assignment in the case of a
uniform sunflower hypergraph only depends on the homogeneity
degree of g and, in particular, when β→ 0 all the centralities tend
to coincide, while xu > xv for all β > 0, confirming and extending
the observation in ref. 9 for the setting of uniform hypergraph
centralities based on tensor eigenvectors. Figure 1a illustrates this
behaviour on an example uniform sunflower hypergraph with
eight petals (r= 8) each having three nodes (k= 3). The figure
shows the nodes of the hypergraph with a blue dot whose size is
proportional to its centrality value computed according to the
“linear”, “log-exp”, and “max” centrality models. The value of β
for these three centralities is 1 for both the ‘max’ and the ‘linear’
centrality’, and 1/2 for ‘log-exp’ centrality’. Thus, all the three
models assign essentially the same centrality score: the core node
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u has a strictly larger centrality, while all other nodes have the
same centrality score. Similarly, the computed edge centrality is
constant across all models and all petals.

The situation is different for the case of a non-uniform
hypergraph sunflower. In this case, we have r petals each containing
an arbitrary number of nodes. The computational results in Fig. 1b
indicate that the “linear”, “log-exp”, and “max” centrality models
capture significantly different centrality properties: All three models
recognize the core node as the most central one; however, while the
‘linear’ model favours nodes that belong to large hyperedges, the
multiplicative ‘log-exp’model behaves in the opposite way assigning
a larger centrality score to nodes being part of small hyperedges.
Finally, the ‘max’ model behaves like in the uniform case, assigning
the same centrality value to all the nodes in the petals (core node
excluded). For this hypergraph, we observe that the edge centrality
follows directly from the node one: for the ‘linear’ model the edge
centrality is proportional to the number of nodes in the edge, for the
‘log-exp’ model it is inversely proportional to the number of nodes,
while for the ‘max’ model all edges have the same centrality. It
would be of interest to pursue these differences analytically and
hence gain further insights into the effect of f, g, φ, and ψ.

Real-world hypergraph data. In this section, we analyze the pro-
posed nonlinear node-edge hypergraph centrality model on two
real-world datasets. The code used to compute the results of this
section is written in julia and is available at https://github.com/
ftudisco/node-edge-hypergraph-centrality.

Walmart trips. This is a transactional dataset that consists of a
hypergraph describing customer trips at Walmart: hyperedges are
sets of co-purchased products at Walmart, as released as part of
the Kaggle competition in29. The hypergraph data are taken from
ref. 30. Products are assigned a label that points to one of ten
broad departments in which each product appears on wal-
mart.com (e.g., “Clothing, Shoes, and Accessories”). There is

also an additional “Other” class. The hyperedge weights are given
by the number of times that a particular set of products appears
in the list of co-purchased items. We summarize relevant statistics
for this dataset in the list below:

● number of nodes: 88,860; number of hyperedges: 65,979;
● maximum edge weight: 679; mean/variance of edge

weights: 1.06/15.24;
● maximum edge size: 25; mean edge size 6.86.

Math stackexchange co-tags. This is a temporal higher-order
network dataset from ref. 31. Here we use the whole dataset
ignoring the temporal component. The resulting dataset is a
sequence of simplices where each simplex is a set of nodes. In this
dataset, nodes are tags and simplices are the sets of tags applied to
questions on math.stackexchange.com. We represent the
dataset as a hypergraph with one hyperedge for each simplex. As
before, the weight of each hyperedge is an integer number
counting how many times that hyperedge appears in the data.
Some basic statistics of this dataset are:

● number of nodes: 1,629; number of hyperedges: 170,476;
● maximum edge weight: 16,230; mean/variance of edge

weights: 4.82/9,430.71;
● maximum edge size: 5; mean edge size: 3.48.

In Fig. 2 we scatter-plot the node and edge centrality obtained
with these three models on the Walmart trip and the Math Stack-
exchange co-tag hypergraphs. We normalize the values of each
centrality vector by dividing them entry-wise by their largest entry
(so that their largest value is scaled to one). The figure compares the
three centrality models in a pair-wise fashion and shows no
apparent linear correlation between any pair of centralities,
confirming that different choices of the nonlinear functions lead
to remarkably different centrality score assignments. This is further
confirmed by Fig. 3, where we plot the intersection similarity—left

Fig. 1 Example of node centralities on sunflower hypergraphs. Node centrality scores for the "linear'', "log-exp'', and "max'' centrality models on the two
example hypergraph sunflowers. The corresponding centrality model is specified on top of each panel. Dots represent the hypergraph nodes and their size
is proportional to their centrality value. a Shows results on a uniform sunflower with eight petals each containing three nodes; b shows results on a
hypergraph sunflower with eight petals containing 3, 4,…, 10 nodes, respectively.
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panel—as well as the Kendall-τ and the Spearman correlation
coefficients—middle and right panels, respectively—between the
top k nodes ranked by the linear model vs the ranking assigned to
the same nodes by the other models, for k which varies between 1
and 100. The intersection similarity32 is a measure used to compare
the top k entries of two ranked lists ℓ1 and ℓ2 that may not contain
the same elements. It is defined as follows: let ‘jk be the list of the
top k elements in ℓj, for j= 1, 2. Then, the top k intersection
similarity between ℓ1 and ℓ2 is

isimkð‘1; ‘2Þ ¼ 1� 1
k
∑
k

t¼1

j‘1tΔ‘2t j
2 t

;

here j‘1tΔ‘2t j denotes the number of elements in the symmetric
difference between ‘1t and ‘2t . When the ordered sequences
contained in ℓ1 and ℓ2 are completely different, then the intersection
similarity between the two is minimum and it is equal to 0, whereas,
the intersection similarity between ℓ1 and ℓ2 is equal to 1 if and only
if the two ordered sequences coincide.

As already observed for the case of the sunflower hypergraph,
the ‘linear’ and ‘log-exp’ models may assign very different node
centrality scores. This effect is also highlighted in Table 1 where
we report the top ten nodes with the highest centrality for the
three models for the math stackexchange datasets. For this dataset
nodes are the tags that posts receive on the math-stackexchange
website.

A similar comparison is illustrated in Fig. 4 where we scatter-
plot the edge centrality of the three models with their edge
weights. We see that, especially for the ‘linear’ and ‘max’ versions,
larger edge weights do not correspond to greater importance in
this spectral sense.

Conclusion
Centrality measures give useful information in a range of net-
work science settings. In the study of on-line human behaviour,
such measures are relevant to targeted advertising33, and to the
detection of fake news generation34 and other negative

Fig. 2 Scatter plots of node and edge centralities. Scatter plots comparing node and edge centrality scores obtained with the "linear'', "log-exp'', and "max''
centrality models on the Math stackexchange co-tags and the Walmart trips hypergraphs. Each dot in the panels represents either a node or a hyperedge, with
coordinates (x, y) corresponding to the centrality value assigned to that node or hyperedge by two different models, as specified by the axis' labels.
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behaviours such as the spread of viruses and cyberbullying35.
They have also proved useful in the physical world; for example
in predicting (or vaccinating against) disease outbreaks36,
extracting biologically relevant features from neural con-
nectivity data37, and quantifying the attack robustness of power
networks38.

Taking the classical network view, where all nodes and
pairwise connections play the same structural role, typically
requires us to trade-off some fine detail for the sake of elegance
and simplicity. By moving to higher-order interactions, we are
able to re-introduce some of this detail. Of course, in doing so
we must understand the costs and benefits in terms of both the
computational expense of the new algorithms and the ease with
which results can be assimilated. Our aim in this work was to
show that the widely-used spectral approach to centrality
measurement can be extended rigorously and at very little cost
to the general hypergraph setting in order to quantify the
importance of both nodes and hyperedges. As shown in

Theorem 2.2, there is a sound underlying theory behind the
resulting constrained eigenvalue problems. Further, as shown in
Theorem 2.3, the measures can be computed by an efficient and
globally convergent iteration (Algorithm 1) that is built on
matrix-vector products.

Methods
This section provides the proof of our three main theorems.

Proof of Theorem 2.1. First note that with f= id and g(x)= x1/(p+1) and N= I,
from Eq. (2) we get λp+1xp+1= BWy and μy= ψ(B⊤φ(x)) which together imply
that αxp+1= BWψ(B⊤φ(x)) for some α > 0. Now, as every edge e contains exactly k
nodes, we can write e= {i1,…, ik}, yielding

ψðB>φðxÞÞe ¼ exp ∑
j2e

ln ðxjÞ
� �

¼ xi1 � � � xik :

Furthermore, for any i1∈V and any y 2 Rm we have ðBWyÞi1 ¼ ∑e:i12ewðeÞye .
Thus, if A is the adjacency tensor of H (defined by Ai1 ;¼ ; ik

¼ wðeÞ if
e= {i1,…, ik} ∈ E and Ai1 ;¼ ; ik

¼ 0 otherwise) we get

½BWψðB>φðxÞÞ�i1 ¼ ∑
e:i12e

wðeÞψ�B>φðxÞ�e ¼ ∑
i2 ;¼ ; ik

Ai1 ;¼ ; ik
xi1 � � � xik :

This shows that if x solves Eq. (2) then x must be such that

∑
i2 ;¼ ; ik

Ai1 ;i2 ;¼ ; ik
xi1xi2 � � � xik ¼ α x pþ1

i1
:

Finally, as x is positive we can divide the previous identity by xi1 , which reveals that
x solves the tensor eigenvalue problem in Eq. (4). □

Proof of Theorem 2.2. The proof follows directly from the Perron–Frobenius
theorem for multihomogeneous mappings24. Below we highlight the main steps.
Let F : Rn ´Rm ! Rn ´Rm be the mapping

Fðx; yÞ ¼ g BWf ðyÞ� �
;ψ B>NφðxÞ� �� �

:

A simple computation shows that F is order-preserving and multihomogeneous
with homogeneity matrix

M ¼ 0 jαβj
jγδj 0

� �
ð7Þ

and a solution of Eq. (2) coincides with the multihomogeneous eigenvalue equation
F(x, y)= (λx, μy). As the spectral radius of M coincides with

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jαβγδj

p
, the thesis

follows directly from [24, Thm. 3.1] under assumption P1. Assume now P2 holds.

Fig. 3 Similarity between the node and edge centralities. Intersection similarity, Kendall-τ correlation, and Spearman correlation similarities between top k
nodes, for k∈ {1,…, 100}, on the Math stackexchange co-tags and the Walmart trips hypergraph datasets. Nodes are ranked according to the "linear'', "log-
exp'', and "max'' centrality models and are paired as specified in the legend.

Table 1 Top ten nodes in the math stackexchange co-tags
hypergraph.

Linear Max Log-exp

Calculus Calculus Linear algebra
Real analysis Real analysis Probability
Integration Linear algebra Calculus
Sequences and series Probability Real analysis
Limits Abstract algebra Complex analysis
Analysis Integration Algebra precalculus
Derivatives Sequences and series General topology
Linear algebra Matrices Differential equations
Multivariable calculus General topology Combinatorics
Definite integrals Combinatorics Geometry

Top ten nodes in the math stackexchange co-tags hypergraph, according to the “linear”, “log-
exp”, and “max” centrality models, as specified in the top row of the table.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00704-2

8 COMMUNICATIONS PHYSICS |           (2021) 4:201 | https://doi.org/10.1038/s42005-021-00704-2 | www.nature.com/commsphys

www.nature.com/commsphys


Since the mappings f, g, φ, ψ act entry-wise, are homogeneous and order preserving,
we have that the graph GðFÞ, as per [24, Def. 5.1], coincides with the bipartite graph

with adjacency matrix
0 BW

B>N 0

� �
. Thus, by [24, Thm. 5.2] there exist positive

solutions to Eq. (2). Now let (u, v) > 0 be any such solution and let DF(u, v) be the
Jacobian matrix of F evaluated at (u, v). Since f, g, φ, ψ are positive and homo-
geneous, the nonzero pattern of DF(u, v) coincides with the nonzero pattern of the

matrix
0 BW

B>N 0

� �
. Therefore, the thesis for assumption P2 eventually follows

from [24, Thm. 6.2].

Proof of Theorem 2.3. This proof follows almost directly from the case of tensor
eigenvectors, discussed in [26, Thm. 3.3]. We tailor the main ideas of that argument
to our hypergraph eigenvalue problem in Eq. (2). Consider the mapping
G : Rn ´Rm ! Rn ´Rm , defined by

Gðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xg BWf ðyÞ� �q

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yψ B>NφðxÞ� �q� �

;

where all the operations are intended entrywise, and let M be the homogeneity
matrix defined in Eq. (7). It is not difficult to verify that G is order-preserving
and multihomogeneous, with homogeneity matrix eM ¼ 1

2 ðM þ IÞ and that, if F is
defined as in the proof of Theorem 2.2, then (x, y) is such that F(x, y)= (λx, μy),
for positive λ and μ, if and only if Gðx; yÞ ¼ ðeλx;eμyÞ, with eλ;eμ> 0. Moreover, a
direct computation shows that the Jacobian matrices DF(x, y) and DG(x, y) of F
and G, respectively, are such that

DGðx; yÞ ¼ 1
2
Diag Gðx; yÞ� ��1=2�

Diag Fðx; yÞ� �þ Diag ðx; yÞ� �
DFðx; yÞ�; ð8Þ

where Diag(v) is the diagonal matrix with diagonal entries given by the elements
of v. As observed in the proof of Theorem 2.2, for a positive vector (x, y) the
matrix DF(x, y) is irreducible. Thus, from Eq. (8), DG(x, y) is primitive and the
thesis eventually follows from [24, Thm. 7.1].

Data availability
All data used in this work is publicly available via the online repository https://
github.com/ftudisco/node-edge-hypergraph-centrality

Code availability
All code used in this work is publicly available under CCBY 4.0 licence via the online
repository https://github.com/ftudisco/node-edge-hypergraph-centrality.
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