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Hidden network generating rules from partially
observed complex networks
Ruochen Yang1, Frederic Sala2 & Paul Bogdan 1✉

Complex biological, neuroscience, geoscience and social networks exhibit heterogeneous

self-similar higher order topological structures that are usually characterized as being mul-

tifractal in nature. However, describing their topological complexity through a compact

mathematical description and deciphering their topological governing rules has remained

elusive and prevented a comprehensive understanding of networks. To overcome this chal-

lenge, we propose a weighted multifractal graph model capable of capturing the underlying

generating rules of complex systems and characterizing their node heterogeneity and pair-

wise interactions. To infer the generating measure with hidden information, we introduce a

variational expectation maximization framework. We demonstrate the robustness of the

network generator reconstruction as a function of model properties, especially in noisy and

partially observed scenarios. The proposed network generator inference framework is able to

reproduce network properties, differentiate varying structures in brain networks and chro-

mosomal interactions, and detect topologically associating domain regions in conformation

maps of the human genome.
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M ining the topological complexity of networks must go
beyond estimating statistical network metrics (e.g.,
degree1,2, clustering coefficient3, path-length distribu-

tion) or measuring the network’s geometric4–6 properties.
Instead, we must elucidate the underlying hidden heterogeneous
rules that govern the emergence and dynamics of complex net-
works. For instance, the interactions between brain regions or
neurons (topological structures) generate cognitive functional
states, but challenges remain in understanding the brain wiring
mechanism and the rules related to cognitive processes in net-
work neuroscience7. Furthermore, topological analysis of yeast
chromatin maps reveals a transition from intra- to inter-
chromosomal interactions when the yeast undergoes different
growing states8, but fails to identify the network generators or
rules corresponding to this transition. Moreover, multifractal
topological analysis reveals that chromosomal interactions are
bifractal9. While these multifractal network analysis efforts can
detect subtle conformational changes among complex network
components (e.g., chromosomes in human stem cells), they fail to
explain the emergence and evolution of networks, identify their
general set of hidden network generators, and explain how small
changes to these generators can lead to exhibited or enhanced
complex behavior. Aside from chromosomal interactions, it has
also been proven that various real networks possess a hier-
archically organized (self-similar) community structure which
grows recursively and copies themselves10–15. For example,
neuronal culture networks16 and protein interaction networks17

also possess complex multifractal behaviors.
Multifractality has been studied as a topological feature with

box covering/box counting methods4,18. The scaling behavior is
examined by a renormalization process which coarse-grains the
network into boxes6,19. However, commonly used approaches,
like renormalization group-inspired algorithms (such as box
covering, sandbox) fail to illustrate the network emergence20.
Various graph models have been proposed to model the growing
scale-free properties and multifractal degree distribution by self-
repeatably inheriting and adding nodes and connections21,22.
Nevertheless, the multifractality that exists on a topological level
cannot uncover the hidden community structure or the
generator rules.

Unlike exploring and measuring the multifractality of various
topological structures, we focus on identifying the underlying
network generating functions and developing a general mathe-
matical framework together with efficient algorithms to mine the
multifractality encoded in the node attributes and the weighted
interactions among nodes. The network generating function can
provide high level and condensed description of complex systems.
Uncovering the generating rules will enable us not only to gen-
erate synthetic graph structures with different topological prop-
erties, but also reproduce and mine their topological complexity
and heterogeneity. The probabilistic description of the generating
function should also help to explore the validity of links in a noisy
graph and apply to various scenarios. To the best of our knowl-
edge, a robust and general framework of multifractal generating
model along with comprehensive analysis is lacking. Although the
multifractal network generators23 can generate networks with
multifractal properties and any given graph metrics, the
simulated-annealing based parameter estimation is not robust
and the model is limited to binary graphs. The stochastic kro-
necker graph model10,24,25 is also capable to capture self-simi-
larity, but the network size is required to be related to the model
and the heterogeneity in node attributes is neglected. The mul-
tiplicative attribute graph model generalizes the two aforemen-
tioned models and characterizes the node attributes in social
networks26,27. Though the model formulation is general, the
estimation algorithm targets only binary node attributes.

To address these research gaps and better understand the
complexity and multifractality of real-world networks, one must
address the following major challenges: (1) How can we construct
a general multifractal network generating model capable of not
only capturing the observed multifractal characteristics, but also
provide mathematical tools for efficiently investigating and
engineering their macroscopic properties? (2) How can we effi-
ciently and correctly reconstruct the underlying network gen-
erator model? (3) Can we recover the weighted multifractal
network generative model from incomplete (partial) observations
and noisy or adversarial data/influences? (4) Do such techniques
scale up to real-world networks and enable us to study whether
multifractality appears in real-world applications such as the
brain connectomes and chromosomal interactions?

To answer these questions, here we propose a weighted mul-
tifractal graph model (WMGM) constructed recursively from
generative measures of linking probabilities and capable to cap-
ture the multifractality and weighted heterogeneity of functional
interactions. To clarify the difference between characterizing the
multifractality in topological structure and in the network gen-
erating model, we specify that the functional level and model level
terms refer to analyzing networks through their reconstructed
generative model. In contrast, the graph level term means that we
are examining the properties of the network topology. To effi-
ciently learn the parameters of the network generating model, we
provide a rigorous variational inference framework capable of
reconstructing the underlying multifractal network generator for
partially observed networks. This inference method can deal with
networks of arbitrary sizes and any attribute cardinality; it also
offers a robust parameter estimation. We examine our proposed
approach on both synthetic and real-world networks. We show
that the proposed model can characterize and reproduce many
graph properties (i.e., degree, clustering coefficient, weight dis-
tribution). We present the efficiency and robustness of the pro-
posed model and inference method against incomplete and noisy
observations. By applying the network generator inference fra-
mework to real-world datasets (e.g., brain networks, chromatin
interactions), we reveal the hidden structure of complex systems
at the functional level. The results indicate that the WMGM is
capable of differentiating between various structures in brain
networks and in chromatin interactions. We further show that
the proposed inference algorithm can help to detect topologically
associating domains (TADs) in chromosomal interaction maps.

Results
Weighted-multifractal graph model. We propose the weighted
multifractal graph model (WMGM). It is meant to serve as a
generalized network generating rule that captures the observed
multifractal properties associated with node attributes and the
heterogeneity in weights (intensities of pairwise interactions).
Building on measure theory concepts, the crux of this multifractal
network generating model is to construct a series of probabilities
that we associate with the side lengths of rectangles that are
recursively built up by repeatedly splitting a unit square. This
ensures a heterogeneous self-similar network structure. These
probabilities are then used to generate the node attributes and
edges for the network.

We first define an initial generating measure θð1Þ ¼ lð1Þ; pð1Þ
� �

on a unit square. The rationale for considering a unit square is to
ensure that the probability mass function of node attributes sums
to 1. Next, the unit square is divided into M2 rectangles, where

flð1Þi g
M

i¼1 are the side lengths of each rectangle. To these rectangles,

we assign the probabilities fpð1Þij g
M

i;j¼1. We consider symmetric p(1)

terms in this work, but as an extension, we could permit the
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asymmetric case which can model directed networks. Along the
same lines as in the multifractal network generator20,23, the self-
similar WMGM θðKÞ ¼ lðKÞ; pðKÞ

� �
is formulated recursively from

this unit square θ(1) with interval length l(K)= l(K−1)⊗ l (1) and
linking probability p(K)= p(K−1)⊗ p(1). Here⊗ denotes the
Kronecker product.

An undirected weighted graph is then generated by the following
procedure: (1) N nodes are spread into MK classes with prior
probabilities l(K). The indicator variable ϕuq denotes the label
indicating whether a node u has attribute q. Note that ϕuq= 0 or

1, ∑MK

q¼1 ϕuq ¼ 1. The attributes follow the categorical distribution

Pfϕuq ¼ 1g ¼ lðKÞq , q= 1…MK. (2) The edges between nodes u and v
are generated with a linking probability p(K). Let fwðrÞg1r¼0 denote the
predefined weight distribution, where w(0)= 0 and wðrÞ� �

is
monotonically increasing. The probability that an edge between node
u and v has weight w(r) is given by Pfeuv ¼ wðrÞjϕuq ¼ 1;

ϕvh ¼ 1g ¼ pðKÞqh

� �r
1� pðKÞqh

� �
. For simplicity, we denote it as

pðKÞqh ðruvÞ, where ruv is the weight category r of the edge between node

u and v. Here, the probability that an edge does not exist is pðKÞqh ð0Þ ¼
1� pðKÞqh and the chance that an edge (regardless of the weight) exists

is∑1r¼1 p
ðKÞ
qh ðrÞ ¼ pðKÞqh . It naturally satisfies∑1r¼0 p

ðKÞ
qh ðrÞ ¼ 1 and can

be easily mapped to unweighted graphs. In contrast to20, where the
linking probabilities p(1)(r) are determined for each weight level r, we
design the edge distribution Pfeuv ¼ wðrÞjϕuq ¼ 1; ϕvh ¼ 1g as the
geometric distribution with pð1Þqh identical to all weights. The rationale

is that smaller weights are more common. We also aim at using fewer
parameters to capture the heterogeneous graph structure.

The multifractality of the model emerges from the recursive
construction. The derivation of the partition function and the
multifractal metrics are presented in the method section Multi-
fractal analysis of WMGM. Special cases of the proposed model
correspond to several related models. When MK=N, the
proposed weighted multifractal graph model retrieves the
Kronecker model10 as a particular case. When the weight is
neglected (i.e., total weight level R= 1), the proposed model
reduces to the multifractal network generator23.

Figure 1a shows the numerical example of the model building
procedure and graph generation. The model θ(2) in the middle is
constructed by θ(1) shown on the left-hand side at the first
iteration. In the simulated graph, the colors of nodes represent the
attributes generated by l(2) and the weights of the links are
generated by p(2). Figures 1b and c show two different models
which generate networks with different community structures. In
the generating model θ(K), the linking probability p(K) approx-
imates the connection rules and community structure. Larger
value of pðKÞqh leads to denser connection between nodes in

community q and h. If pðKÞqh is even across different q, h, it suggests

relatively ambiguous heterogeneity (Fig. 2a). When pðKÞqh ! 1,
each pair of nodes in community q and h has a connection and
thus it creates a fully connected subgraph (Fig. 2b). When
pðKÞqh ! 0, no connection may exist between category q and h,
leading to an m-partite structure (q= h, Fig. 2c) or a community
structure (q ≠ h, Fig. 2d).

To overcome the challenges related to mining large-scale
complex systems (e.g., heterogeneity in weights, scale-dependent
higher order interactions), we investigate how the proposed
WMGM can decipher the hidden rules that govern their complex
topological architecture and functionality. Indeed, mapping a
large network to a generative model can contribute to losing some

intricate details of subnetworks and their interactions. However,
reconstructing a function level model can compress unnecessary
redundant information and allow us to deal with incomplete or
noisy data, which is common in real-world datasets. Conse-
quently, the WMGM can learn the hidden rules that govern
structures in complex systems such as brain networks (e.g.,
understanding and interpreting the emergence of neuronal
computation in brain networks), biological systems (e.g., under-
standing the emerging genotype-phenotype relationships) and
social networks. To investigate the benefits and limitations of the
WMGM, we evaluate its capabilities in reconstructing the
network generating models from scarce noisy observations on a
series of artificially generated and real-world networks. First, we
validate our method on synthetic data in terms of convergence
and estimation error. Next, because real-world networks
are usually only partially observed and often noisy, we investigate
the robustness of our approach to such factors. We also apply our
method to three real-world complex networks, namely the brain
connectome of Drosophila, the chromosome interactions of yeast
cells undergoing different growth states, and the conformation
maps of replicated human chromosomes. The results show that
our method can reproduce and elucidate important properties of
real-world complex systems.

Learning the hidden network generators (rules) from partial
and noisy observations of synthetic networks. To validate the
ability of the proposed WMGM framework to reconstruct the
ground-truth generators and to understand its estimation error,
we examine three synthetic network case studies, from least to
most challenging: (i) Clean fully observed networks, (ii)
Threshold-varying partially observed networks, and (iii) Noisy
networks with spurious edges. In the case of fully observed net-
work setting, we demonstrate that our model can successfully
reconstruct the ground-truth generator and reproduce the graph
properties of the synthetic network. We also show that the
WMGM inference is robust up to a certain level of missing
observations in the case of partially observed networks, and can
handle noise by distinguishing between spurious and true links in
the last case.

Network generator reconstruction. We first examine the network
generator reconstruction accuracy and the ability of the WMGM
to recover simulated graph properties. We use a synthetic
graph Gsyn of 500 nodes generated by l(1)= [0.7, 0.3],
p(1)= [0.8, 0.5; 0.5, 0.4] with hyperparameters M= 2, K= 3 and a
predefined weight set wðrÞ ¼ r

� �
. We implement the variational

expectation maximization (EM)-based estimation method
(described in the Methods section Parameter estimation of
WMGM) on the fully observed simulated network with the step
length γ= 10−7 of the gradient methods in M-step. The algorithm
stops when the increment of the objective function (lower bound
of log-likelihood) after one EM iteration is smaller than 0.1. Fig-
ures 3a and b show the convergence of the lower bound of the log-
likelihood LQðθ;RÞ and the reconstructed parameters as the EM
iteration proceeds, respectively. We note that the lower bound
exhibits a fast convergence within the first 20 EM iterations and
later slightly increases and converges after 120 iterations. The
relative absolute error of the reconstructed lower bound LQðθ;RÞ
and the true log-likelihood LsynðRÞ of the synthetic graph Gsyn is
jðLQðθ;RÞ �LsynðRÞÞ=LsynðRÞj ¼ 0:0022, which shows the
recoverability of the proposed WMGM framework. Meanwhile,
the estimated parameters show a similar trend and converge to the
ground-truth values. Figure 3c presents the mean relative absolute
error (RAE) per parameters as a function of the EM iterations. It
shows that the error decreases fast within the first 20 EM
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iterations, and when the small increment of the log-likelihood
lower bound emerges at 100 EM iterations in Figure 3a, the error
begins to drop sharply again. After 120 EM iterations, it achieves
the minimum error of 0.013 (1.3% error per parameter), and when
the algorithm terminates, the error is 0.032 (3.2% error per
parameter). Figure 3b shows that the value of the recovered pð1Þ22
(yellow line) crosses the ground truth 0.4 at 120 EM iterations and
then decreases by a small quantity. This suggests that we can early
terminate the algorithm when the objective function starts to
converge and achieve the best performance.

We also investigate the recoverability of the network structures
through the proposed WMGM framework. In Fig. 3d–f, we
compare the simulated and reconstructed network properties
including the clustering coefficients, degree distribution, and
weight distribution. The simulated distributions (blue lines) are
directly calculated from the synthetic network Gsyn and the

reconstructed results are calculated from a network Grecon

generated by the recovered WMGM. We observe that the
proposed estimation method can successfully reproduce the
network properties of synthetic networks. In Supplementary
Note 5 we further quantify the dissimilarity of the simulated and
reconstructed graph properties, while in Supplementary Note 3
we include null models as comparison to show the efficiency of
the estimation algorithm.

No guarantee exists that the EM algorithm converges to the
maximum likelihood estimator. If the objective function is non-
convex, the algorithm may terminate at or near a local optimum.
The estimation accuracy is also related to the size of the network
and its density. Consequently, we investigate the dependency
between mean relative absolute error and the multifractal
spectrum width of the model and other key properties in Fig. 4e.
We select different levels of randomness in the model with

Fig. 1 Model illustration and examples. a Illustration of weighted multifractal graph model (WMGM) and graph generation for initial model size
M= 2, model iteration K= 2. The initial generating measure θ(1) is given by node attribute probability l(1)= [0.4, 0.6] and linking probability
p(1)= [0.2, 0.25; 0.25, 0.15]. Model θ(2) obtained after 1 iteration reads: l(2)= [0.16, 0.24, 0.24, 0.36] and p(2)= [0.04, 0.05, 0.05, 0.0625; 0.05, 0.03,
0.0625, 0.0375; 0.05, 0.0625, 0.03, 0.0375; 0.0625, 0.0375, 0.0375, 0.0225]. Height of each 3D bar corresponds with the value of linking probability.
We use different color to differentiate diverse regions in the model block. The graph on the right is generated by θ(2). Color of node in the right graph
represents the hidden node attribute. For example, the circled blue-colored node has attribute indexed by 4 and is generated under node attribute
probability lð2Þ4 ¼ 0:36. The pair of nodes circled on this graph represent two nodes of attributes indexed with 1 and 4, respectively. Their corresponding link
is generated by linking probability pð2Þ14 ¼ 0:0625. b and c Different models generate networks with different topological structures. The model in b has high
intra-attribute linking probability and low inter-attribute linking probability. This model leads to a two community structure network. In contrast, the linking
probability in c is relatively closer and the community structure is ambiguous. Here the superscript refers to the number of iteration when building the
model. Subscripts refers to the attribute index.

Fig. 2 Networks generated by different linking probability p in the weighted multifractal graph model (WMGM). By choosing p, the WMGM can control
the topology of generated networks. a p= [0.5, 0.5; 0.5, 0.5]. b p= [1, 1; 1, 1]. c p= [0.01, 0.2; 0.2, 0.01]. d p= [0.8, 0.02; 0.02, 0.8].
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varying positions of the multifractal spectrum, generate a graph of
200 nodes, then recover the model with same model initialization
and measure the mean relative absolute error per parameter. We
consider three cases: all parameters are randomly generated (in
blue asterisks); pð1Þ12 ¼ pð1Þ21 ¼ 0:5 with random pð1Þ11 , p

ð1Þ
22 , l

ð1Þ
1 , lð1Þ2 (in

green dots); and lð1Þ1 ¼ lð1Þ2 ¼ 0:5, pð1Þ12 ¼ pð1Þ21 ¼ 0:5 with fixed
center of multifractal spectrum (in red circles). The multifractal
spectrum width is calculated as in Methods section Multifractal
analysis of WMGM. Figure 4e shows that the random cases make
such local minima particularly prominent.

Reconstruction of network generator from partial observations.
Complex networks are usually partially observed. This situation
has many causes, including the following scenarios: (1) the net-
work is still growing and new nodes can join in the future; (2) it is
computationally expensive or technologically impossible to
examine the whole network (e.g., all neurons in the human brain).
Therefore, we investigate the ability of successfully reconstructing
the ground-truth WMGM from partial observations.

For the partially observed experiments, we use a synthetic
graph with N0= 100, 000 nodes generated by l(1)= [0.7, 0.3],
p(1)= [0.8, 0.5; 0.5, 0.4], M= 2, K= 3. At each time, we randomly
select N of N0 nodes and take the connections among the selected
N nodes as incomplete data. We repeat this process 10 times for
each N and measure the recovered parameters. The mean and
standard deviation of recovered parameters and error are shown
in Fig. 4a, b against the number of nodes observed N. We find
that the model is correctly recovered with low standard deviation
at N= 200 or more nodes observed, where the mean relative
absolute error (RAE) per parameter with N= 200 is 3.1% and the
standard deviation is 0.5%. We conclude that the proposed
WMGM and the inference method is robust against missing
components in the system.

We repeat the experiments with different full original network
sizes N0= 103, 5 × 103, 104, 5 × 104, 105 and the same N. We
calculate the mean RAE and report the minimum fraction of
observed nodes f to achieve a small certain error in Fig. 4c. Both
axes are in log scale. The blue dots represent mean RAE smaller
than 0.035 (3.5%) and red asterisks represent mean RAE smaller
than 0.050 (5.0%). They are well fitted by power laws (shown as
solid lines). The regression for error smaller than 0.035 is f ¼
332 ´N�1:040 and for error less than 0.050 is f ¼ 95 ´N�0:970 . It
shows that the required size of observation to achieve a certain
small error is decreasing and follows a power law as the original
network size grows. Figure 4d shows the relationship of the
average error of 10 experiments with combinations of
N= 50, 100,…, 500 and N0= 103, 5 × 103, 104, 5 × 104, 105. The
axis of N0 is set as log scale. The underlying generating model is
recoverable when the partial observation contains more than 200
nodes, regardless of the original network size N0. This is critical,
as in real-world complex systems, only partial observation
without full monitoring and detection is possible. Since we use
the WMGM as the generating rule and we assume the networks
are partially but evenly observed, reconstruction with partial
observation (a subgraph) can achieve good performance while
saving on computational cost. It suggests that when dealing with
very large networks, it is possible to correctly estimate the hidden
generating rules even using a small subset of the network with
only 200 nodes. We further perform more individual experiments
to show the robustness in Supplementary Note 7.

Reconstructing the network generators from noisy observations and
quantifying the reconstructed link reliability. We test the proposed
WMGM and the estimation algorithm on noisy networks with
spurious links. For this noisy setting, we first generate a synthetic
binary graph with the same model as in section Reconstruction of

Fig. 3 Model reconstruction, graph metrics and estimation error.We investigate the estimation algorithm on a synthetic network of 500 nodes generated
by the weighted multifractal graph model (WMGM) with model parameters: node attribute probability l(1)= [0.7, 0.3], linking probability
p(1)= [0.8, 0.5; 0.5, 0.4], initial model size M= 2 and model iteration K= 3. We show the objective function (lower bound of log-likelihood) in a, the
reconstructed parameters in b and the mean relative absolute error (RAE) per parameter in c as a function of the number of the expectation maximization
(EM) iterations. The ground-truth parameters are shown in the legend of plot in b. The objective function converges and the parameters also converge to
the ground-truth values. The mean RAE at the last iteration is 0.032 (3.2%). Clustering coefficients d, degree distribution e and weight distribution f of the
simulated and the reconstructed graph. The reconstructed graph is generated by the recovered WMGM. Degree and clustering coefficients distributions
are calculated after binarizing the simulated and the reconstructed graphs.
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network generator from partial observations. In the binary ver-
sion, weights are neglected. Any edge in the weighted graph with
euv ≠ 0 is considered as an edge in the binary version G0 of the
graph. Next, spurious links are randomly added with probabilities
p= 10−3, 3 × 10−3, 10−2, 3 × 10−2, 10−1, 3 × 10−1 between pairs
of nodes where no edges exist in the original network, producing
a noisy graph Gn. For each noise level p, we individually run the
experiments 10 times. We call links that exist in the synthetic
graph G0 and the noisy graph Gn as true positives, and links
added in Gn are false positives. We aim at differentiating true
positive and false positive links in noisy graphs. We first recon-
struct the generative model θn from the noisy observation Gn. We
define the link reliability of an edge euv in the noisy network with
its likelihood given by the reconstructed model as
LRuv ¼ logPðeuvjGn; θnÞ. The link reliability of the link between
node u and node v can be estimated as follows:

LRuv � ∑
qh
τuqτvhlogP

ðKÞ
qh ðruvÞ þ∑

q
τuqlog l

ðKÞ
q þ∑

h
τvhlog l

ðKÞ
h :

ð1Þ
Figure 5a shows the cumulative distribution of link reliability for
different labels, true positive and false positive, with relative
noise level p= 10−1. Spurious links (false positive) have lower
reliability than true ones (true positives) in their distributions.
The average link reliability of false positives is also smaller than
the one with true positives. The distinctness implies that the
WMGM is able to detect noise in observations and therefore can
help to denoise graphs. We validate the ability of graph
denoising and its application in Supplementary Note 1.

Figure 5b, c shows the reconstructed model parameters and the
estimation error for different noise levels p. More spurious links
(noise) are added to the network when the noise level p
increases. As a consequence, recovered parameter error also
increases as the noise level grows. The curve shows that the
estimation error is smaller than 0.05 (5%) with low noise level
p < 10−1. The estimations are also robust (with low variance of
reconstructed parameters and error) when p ≤ 10−1. Though the
estimation error is relatively large (10%) when p= 10−1, Fig. 5a
shows that even with relatively high-level noise, our model is
still capable of distinguishing noise links and true links in the
network. We also perform more repetitions to show the
robustness in Supplementary Note 7.

Learning the hidden network generators (rules) of biological
networks. To demonstrate the capabilities and benefits of the
proposed WMGM inference framework, we investigate and learn
the network generators (rules) of the following three biological
networks: (i) the neuronal connections in adult Drosophila cen-
tral brain28, (ii) the chromatin interactions of yeast genome8, and
(iii) the conformation maps of replicated human chromosomes29.
We show that the WMGM enables us to reveal important
properties of these biological datasets such as recovering their
topological network properties, differentiating growing states,
identifying specific features of brain structures in different
regions, and detecting TADs. We also conduct experiments on
various social networks. The results of social networks can be
found in Supplementary Note 2.

Fig. 4 Model reconstruction from incomplete observations. a Reconstructed parameters of the network generator as a function of the number of nodes
observed from the ground-truth network. The simulated graph with N0= 100, 000 nodes is generated by parameters shown in the legend. N nodes are
randomly chosen and only the links among them are used to reconstruct the weighted multifractal graph model (WMGM). We repeat the experiment 10
times with every N= 50, 100,…, 500. The mean value of each parameter and error is shown in solid lines and shaded area represents the standard
deviation. b Mean relative absolute error (RAE) as a function of the number of observed nodes from the entire network. The network generative model can
be correctly estimated with low variance when the number of observed nodes exceeds 200. c Fraction of observed nodes needed to achieve a mean RAE
less than 0.035 (3.5%) and 0.05 (5%) with the full original network size N0= 103, 5 × 103, 104, 5 × 104, 105. Dots and asterisks are the empirical results,
and the solid lines are fitted by power law distributions. The curve is in log-log scale and shows a power law relationship. d 3D plot of the observation size
N, the full network size N0 and the mean error of 10 experiments per (N, N0). It shows that the hidden generating rule can be recovered (error < 4%) with
partial observation of 200 nodes or more, regardless of the original network size. The WMGM is non recoverable when observation size is smaller than
200 nodes (gray area). e The dependency between the mean RAE per parameter and multifractal spectrum width with different properties of the
generative model (blue: all parameters are random; green: fixed linking probability pð1Þ12 ¼ pð1Þ21 ¼ 0:5 with all other parameters randomly generated; and red:
fixed center of multifractal spectrum). In general, introducing randomness can increase the estimation error.
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Revealing the network generators of Drosophila brain connectome.
We use the largest synaptic-level connectome obtained through a
three photon microscopy from fruit fly brain28. Chemical
synapses between neurons are detected and the numbers of
synapses are calculated as the intensity of neuron connections.
The original Drosophila connectome G0 of the left alpha lobe in
the mushroom body consists of 10,790 neurons (nodes) and 6444
identified synaptic connections (edges). We delete neurons
without connections and use the connected 693 nodes to con-
struct a network G with the full 6444 connections and reconstruct
the WMGM. We neglect the isolated nodes to avoid the extra
computational cost and construct a relatively denser network to
achieve better model estimation performance. When the network
is large and sparse, the estimation tends to be unstable and
inaccurate because we have very limited link observations. In
Supplementary Note 9 we show the results with different node
and edge sampling size. Note that the method of sampling nodes
could influence the network topological structure and the
reconstructed model. In the future, we will also investigate and
develop strategies that allow us to select the minimum number of
nodes required to accurately reconstruct the WMGM model
obeying different network properties and for different network
sizes. Also, we can always involve the sparsity to the recovered
WMGM by adding a negative bias to each linking probability
parameter p(1) when the variational EM algorithm process is
finished. We discretize the network G with 2r ≤ w(r) < 2r+1− 1
and then use it as the input to the proposed estimation algorithm.

Figure 6 shows the estimation and reconstruction results.
Figure 6a, b show the convergence of the lower bound of log-
likelihood and parameters with EM iterations. Figure 6c illus-
trates the reconstructed WMGM. The colors in the square
represent the values of p(K) probabilities, and the interval lengths
reflect l(K). The brain connectome in the alpha lobe is sparse,
therefore most regions in the square model have small linking
probability values. The exception is on the right-bottom diagonal,
which has the value pðKÞ88 ¼ 0:5213. Its presence is due to the
appearance in the connectome of a group of very strong
interactions among around 20 neurons. Figure 6d–f presents
the clustering coefficients, degree distribution and the cumulative
weight distribution of the empirical and reconstruced brain
networks. The blue line is the empirical distribution directly
extracted from the brain connectome. The red line is the result
calculated from a synthetic network generated by the recon-
structed WMGM. The yellow dash line represents a null network
which is generated by the Erdos-Renyi model30 with average

linking probability. We also show the distribution in log scale in
Supplementary Note 8. The empirical and reconstructed
distributions are close to each other, showing that the WMGM
and the proposed inference approach can also reconstruct the
statistical properties of real networks. In the scenarios of brain
connectome and neuronal connections, it is extremely hard to
detect and monitor all neurons or the full functional connectivity
due to its complex three dimensional structure and the unknown
physico-chemical interactions. In the Reconstruction of network
generator from partial observations section, we discussed the
recoverability of the WMGM with limited observations. There-
fore, the proposed model can enable neuroscientists to estimate
hidden rules and learn topological properties of brain networks
even if only limited and partial observations are available.

Brain networks in different brain regions have varying
topological structures and features. We exploit our proposed
WMGM inference framework to examine the structure and
connectivity in four regions with different functionalities of the
Drosophila optical lobe: Medulla, Accessory Medulla, Lobula and
Lobula Plate. Recall that the brain connections are sparse and
tend to appear in a small subset. Therefore, we select the most
connected 200 nodes in these brain regions and binarize them as
the input to the WMGM inference algorithm. For reconstruction
accuracy, we run the inference algorithm 50 times on each
brain network and calculate their mean and standard deviation.
For the Medulla connectome, we obtain an average network
generator with the following parameters l(1)= [0.63, 0.37],
p(1)= [0.18, 0.26; 0.26, 0.92]. For the Accessory Medulla connec-
tome, the parameters of the average network generator are as
follows: l(1)= [0.48, 0.52], p(1)= [0.07, 0.14; 0.14, 0.34]. For the
Lobula connectome, the parameters of the average network
generator read: l(1)= [0.46, 0.54], p(1)= [0.41, 0.42; 0.42, 0.95].
For the Lobula Plate connectome, we obtain the following
average network generator model: l(1)= [0.42, 0.58],
p(1)= [0.12, 0.21; 0.21, 0.82]. The standard deviation for each
parameter in each network is smaller than 10−10. The inference
results p(1) and l(1) are visualized as colors and side lengths of the
yellow-green squares in Fig. 7. We further show the clustering
coefficients and degree distribution of the four brain networks in
Supplementary Note 10. It is impossible to obtain a concise
description for each network while encoding all their properties.
We conclude that the reconstructed network generator models
can be easily distinguished and our WMGM can be used to
differentiate scale-dependent brain regions with different func-
tionalities. Moreover, we can exploit the WMGM to define the

Fig. 5 Model reconstruction from noisy observations. a Cumulative distribution of link reliability with different labels, true positive and false positive. Fake
links are added to a synthetic graph with spurious linking probability p= 10−1 (noise level) and the model is estimated from this noisy graph. The portion of
spurious links with low reliability is larger than the portion of true connections. b Reconstructed parameters with different noise level (spurious linking
probability p= 10−3, 3 × 10−3, 10−2, 3 × 10−2, 10−1, 3 × 10−1). The estimations run 10 times with each noise level p and the mean and deviation are shown
as lines and shaded areas respectively. The ground-truth parameters are presented in the legend. It shows that the estimated parameters increase as the
noise level grows because more spurious links are added to the the original network. c Estimation errors with different noise level. Mean and standard
deviation of the mean relative absolute error (RAE) are shown in the plot. The error is low (smaller than 5%) when the noise level p ≤ 3 × 10−2.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00701-5 ARTICLE

COMMUNICATIONS PHYSICS |           (2021) 4:199 | https://doi.org/10.1038/s42005-021-00701-5 |www.nature.com/commsphys 7

www.nature.com/commsphys
www.nature.com/commsphys


regional cognitive functionality using the reconstructed generat-
ing rule θ= (p, l). This enables us to measure and quantify the
neural behaviors and cognition divergence.

Inferring the network generators of chromosomal interactions of
yeast genome in different growing states. The chromosome con-
formation capture analysis (also known as Hi-C technique)
reveals the topological structure of the genomic sequences29,31

and allows scientists to examine the chromatin’s 3D structure. It
measures the contacts between any pair of genomic loci31. In the
chromosomal interaction matrix built by the Hi-C technique, the
nodes represent the genomic loci and pairwise edge indicates the
interaction frequency between two loci in the genome32.

During the various growing states, the yeast genome exhibits a
complex topological reorganization8. To mine this topological
complexity, we infer the WMGMs emerging from the chromo-
some interaction data8,32. For each chromosomal interaction

matrix, we first downsample the 12,048-by-12,048 matrix to 503-
by-503 and then discretize it with 200 ≤ w(r) < 200+ 100r.

Figure 8a, b illustrates the reconstructed WMGM θ(K) from the
chromosome interactions of the yeast genome in the exponential
growth and quiescence states, respectively. We fix l(1) in both
growing states to be identical such that we can compare the
linking probabilities. The value of p(K) in the major sub-blocks are
shown in the figures. Figure 8a shows that the linking
probabilities on the diagonals of exponentially growing yeast
cells are larger compared to cells in quiescence state shown in
Fig. 8b, while the non-diagonal elements are relatively smaller
than the ones in quiescence state. This suggests that when the
yeast is growing, the inter-chromosomal interactions become
weaker (∑i≠jp

ðKÞ
ij lðKÞi lðKÞj changes from 0.2217 to 0.1758) and intra-

chromosomal interactions become stronger (∑i¼jp
ðKÞ
ij lðKÞi lðKÞj

changes from 0.1201 to 0.1516). This conclusion is consistent

Fig. 6 Network generator reconstruction for a brain connectome. a Convergence of lower bound of log-likelihood in the weighted multifractal graph
model (WMGM) estimation with expectation maximization (EM) iteration. b Convergence of WMGM parameters. c Reconstructed network generator
model θK visualized as a square. Here the model construction iteration is K= 3. The values of node attribute probability lK are presented as the side lengths
of sub-block. Linking probability pK are visualized as the sub-block colors. The value can be read with the colorbar on the right. Empirical clustering
coefficient d, degree distribution e and cumulative weight distribution f the in brain connectome (empirical), a synthetic network generated by the
reconstructed network generator model (reconstructed), and a network generated by the Erdos-Renyi mode (null).

Fig. 7 Network generator inference for a Drosophila connectome in different regions of the optical lobe. The regions are a Medulla, b Accessory
Medulla, c Lobula, and d Lobula Plate. The reconstructed initial models θ(1) are visualized as the squares. The inference results linking probability p(1) and
node attribute probability l(1) are presented as color and side length of sub-blocks in the yellow-green squares. Yellower sub-block represents relatively
larger linking probability. The reconstructed network generator models can be easily distinguished by comparing the color and side length of the sub-
blocks.
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with the analysis in8, where the authors measure the intra-
chromosomal distances between two sites on one chromosome.
Figure 8c shows the cumulative weight distribution of the
chromosome contact maps. The difference in the recovered
model is clearer when comparing with the statistical properties of
the network weights. We note that the WMGM enables us to
identify these properties and our model can therefore help to
distinguish between different growth states.

Network generator inference and analysis for the conformation
maps of replicated human chromosomes. Chromosome con-
formation capture analysis (also known as Hi-C technique)
reveals topological structure of the genomic sequences29. TADs
detection identifies the highly self-interacting chromatin regions.
TADs emerge as square blocks whose centers locate at the diag-
onal of the interaction matrices. Though TADs emerge as critical
features to characterize the high intradomain contacts, an
unambiguous definition is still evolving31. We infer the WMGM
from a binarized Cis sister contact maps from29 and show that
our model can help to detect the TADs in Hi-C matrices.

In the variational EM based estimation method (see Methods
section on Parameter estimation of WMGM), we introduce the
variational parameters τuq to calculate the lower bound of the log-
likelihoodLQðθ;RÞ in Eq. (3). For each node u, fτuqgq¼1¼MK can

be viewed as soft assignments regarding the probability that node
u has attribute q. They are also estimators of node attribute
distribution parameters l(K) and each node is assigned with one τ.
We calculate the entropy of the variational estimator τu with each

node u as HðuÞ ¼ �∑MK

q¼1 τuqlog τuq. Figure 9a shows the

binarized Hi-C interaction matrix of the human chromosome
21 Cis sister contacts. For the best reconstruction of the WMGM,
we downsample it to a 483-by-483 matrix and apply the proposed
inference algorithm. TADs are circled with orange and green
rectangles. The node attribute entropy H(u) is shown in Fig. 9b,
where low entropies are close to zero and are circled. We find that
the positions (node index) with zero entropies are in correspon-
dence with the region where TADs emerge. We conclude that
nodes in TADs have high intra-interactions and tend to have low
entropy (where the WMGM has high confidence). This suggests
that our WMGM can also help to detect TADs in Hi-C data
analysis.

Discussion
Exploring topological features in complex networks has the
potential to enhance our understanding of the behavior of natural
and social phenomena. Among massive topological features, we
focus on multifractality, an important property that widely exists
in complex systems from numerous domains, including biology,
sociology, neuroscience, and geology. Analyzing the multi-
fractality of complex systems enables scientists to measure the
multi-scale interactions among components in large-scale com-
plex networks5.

Network multifractality is commonly studied and analyzed at
the graph level, where the structure of connections among nodes
are considered as self-similar6,19. However, past approaches suffer
from a number of limitations. Renormalization group-inspired
algorithms, capable of estimating the multifractality of graphs fail
to explain the emergence and evolution of networks and cannot
decipher the hidden generating rules. The stochastic Kronecker

Fig. 8 Weighted-multifractal graph model (WMGM) inference for the yeast genome in different growing states. a Reconstructed WMGM θK from
chromosomal interactions of exponentially growing yeast with model iteration K= 3. We visualized the reconstructed model with the square block. The
interval length on square side (x, y axis) is divided by node attribute probability lK and the linking probability value pK of each block is represented by the
yellow-green color. Several linking probability values are shown on the block. b Reconstructed WMGM of yeast cell in quiescence state. c Cumulative
weight distribution of the interaction maps.

Fig. 9 Conformation maps of replicated human chromosomes. a Visualization of the binarized chromosome 21 Cis sister contacts. X and Y axis are the
locations of genomic loci. Topologically associating domains (TADs) are circled with orange and green squares. b Entropy of the soft assignments τu at
each position. Small entropy are marked with orange and green squares in correspondence with the squares in a. We summarize that TADs are in
correspondence with low entropy of node attribute distributions.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00701-5 ARTICLE

COMMUNICATIONS PHYSICS |           (2021) 4:199 | https://doi.org/10.1038/s42005-021-00701-5 |www.nature.com/commsphys 9

www.nature.com/commsphys
www.nature.com/commsphys


graph model25 captures self-similarity by building a probabilistic
model with Kronecker products. However, it requires the graph
and model size to be the same, limiting applications to arbitrary
scale and partially observed networks. In20,23, the authors propose
multifractal network generators, but they reconstruct the model
parameters by fitting graph metrics via a simulated-annealing
procedure. The simulated-annealing algorithm is unstable and
can return various sets of unrelated parameters. This makes it
difficult to interpret the generator’s physical meaning. The
majority of network models also neglect the importance of
weights characterizing the interactions in complex networks.

To decipher the hidden network generators (rules) governing
the complex systems dynamics at the functional level, we pro-
posed the weighted multifractal graph model (WMGM). It is
capable of capturing their heterogeneity and varying degrees of
self-similarity. The proposed WMGM serves as a function that
maps and compresses the large graph onto a model. The network
generating function can also provide high-level and condensed
description of complex systems, which integrates varying graph
metrics such as degree and clustering coefficient. To efficiently
infer the model parameters, we develop a variational EM infer-
ence framework for reconstructing the underlying network gen-
erating function encoded in complex networks. We investigate
the ground-truth recovery and the robustness of the model
inference against incomplete data and noisy observations. The
provided mathematical tools can help to investigate network
(topological) features by describing large-scale complex systems
through functional approaches. Uncovering the generating rules
enables us not only to generate synthetic graphs with different
properties, but also reproduce the topological complexity and
heterogeneity of real-world systems. The proposed WMGM fra-
mework is applied to several real-world networks – neuronal
connections and chromosomal interactions. The recovered
WMGMs demonstrate the potential of the WMGM framework to
capture and reproduce the topology structures of real networks.
The probabilistic description of the generating function also helps
to explore the validity of links in a noisy graph and denoise the
system. The reconstructed generator is also able to distinguish
different functional regions in the brain and yeast growing states,
as well as to detect the boundaries of TADs.

In this work, we assume the distribution of node category is the
same across nodes and communities. Generalizing the topological
scales as the authors show in33 can improve the ability of the
proposed method to capture the heterogeneity embedded in the
topological structure of real-world complex systems such as brain
networks. For example, instead of using one rule Pfϕuq ¼ 1g ¼
lðKÞq to generate the node attribute, we can introduce a hetero-
geneous distribution where the value of K is varied across nodes
in different community. The category (community) of each node
u is assigned by ϕu � categoricalðlðkuÞÞ. The heterogeneity is
introduced as the random variable ku (scale of node u, which is a
positive integer between 1 and K under distribution f(ku). The
linking probability between nodes u and v given the community
ϕu, ϕv and scale ku, kv can be calculated as ∑q;hp

ðKÞ
qh , where the

summation over q, h satisfies ∑ql
ðKÞ
q ¼ lðKuÞ

ϕu
and ∑hl

ðKÞ
h ¼ lðKvÞ

ϕv
.

In the future, we will also investigate the effect of various
methods to sample the networks (as we have performed in the
Drosophila connectome and social networks case studies) and
develop strategies that will provide consistent WMGM generating
model across various subgraphs with different sizes and proper-
ties. Moreover, future applications of the proposed WMGM
framework includes inferring the WMGM models that corre-
spond to partially observed neuronal activity and quantifying how

the identified WMGM models evolve and self-optimize during
the observed cognition activities. A crucial question in neu-
roscience is, how can we measure, identify and compare higher
order topological characteristics of neuronal behaviors and
activities under different (cognitive) circumstances. On the spike
train level, it is difficult to compare the spiking behavior of dif-
ferent recording lengths and varying number of neurons in the
neuronal systems during non-stationary brain activity. Different
network sizes are hard to compare at the neuronal network level.
In the future, we will propose an approach to mine the neuronal
activity that focuses on identifying the compressed WMGM
models and quantifying their evolution and the distances among
various WMGM models corresponding to cognition tasks. More
precisely, we can first reconstruct the generating measure from
observed neuronal networks exhibiting or performing different
cognitive behavior and quantify the changes in generators pro-
gramming the neural behaviors through modifications in the
model parameters θ. Subsequently, we can calculate the distance
between two cognitive behaviors as a distance between the
parameters between two WMGM models. Another important
future work includes an implementation aimed at networks that
are very sparse and the application of the WMGM to detect
hierarchical community structures in complex systems such as
cyber-physical systems. With the aid of the proposed WMGM, we
are also looking into quantifying cognition given neuronal
behaviors and neuron-glia (astrocyte) metabolic coupling and
information processing under different cognitive tasks. In the
future, when real-time brain activity monitoring is available, the
WMGM can be extended to analyze time-varying complex net-
works generators of label free real-time imaging of neuron-glia
activity. This could represent a major step towards a compre-
hensive understanding of non-Markovian learning and decision
making and other brain cognitive functions. With respect to the
4D Nucleome networks, future work will focus on constructing
more robust strategies for identifying the TADs with applications
to Hi-C analysis.

Methods
Parameter estimation of WMGM. In this section, we discuss how to recover the
parameters for the WMGM via a variational approach. We first provide a prob-
abilistic description of a weighted network within the WMGM framework. Let R
denote the N-by-N adjacency matrix of the weight category in the graph. Recall that
ϕ is the latent node attribute indicator. The probabilistic description of nodes and

edges are given by pðϕ; lÞ ¼QN
u¼1
QMK

q¼1 lðKÞq

� �ϕuq
and

pðRjϕ; pÞ ¼ Qu< v

QMK

q;h¼1 pðKÞqh ðruvÞ
� �ϕuqϕvh

. Here, we focus on undirected graphs

without self-loops. Directed graphs and graphs containing self-loops can also be
expressed by changing the summation condition over u, v. In this work, we view M
and K as hyperparameters; they are selected prior to the inference procedure.

Given an observed weighted network, we seek to estimate the underlying
network generating function θ(1) by maximizing the likelihood function LðθÞ on
the left of the following:

LðθÞ ¼ log pðR; θÞ ¼ log ∑
ϕ
QðϕÞ pðR; ϕ; θÞ

QðϕÞ ¼ logEQ
pðR; ϕ; θÞ
QðϕÞ

� 	
≥EQ log

pðR; ϕ; θÞ
QðϕÞ

� 	
ð2Þ

However, the summation over ϕ makes the log-likelihood LðθÞ intractable.
Therefore, instead of maximizing the log-likelihood, we alternatively aim to

maximize the evidence lower boundEQ log pðR;ϕ;θÞ
QðϕÞ

n o
(the right-hand side above). In

order to minimize the gap between the log-likelihood and its lower bound, which is
the Kullback–Leibler divergence from P(ϕ∣R; θ) to Q(ϕ), we choose the distribution

over ϕ to be QðϕÞ ¼ QN
u¼1
QMK

q¼1 τuq
ϕuq , where the variational parameters τuq

measure the soft assignments of node u, ∑MK

q¼1 τuq ¼ 1 for u= 1…N. This is known
as the mean-field approach in variational inference34. Therefore, the lower bound of
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LðθÞ can be computed as

LQðθ;RÞ ¼ ∑
ϕ
QðϕÞlogPðϕ; lÞ þ∑

ϕ
QðϕÞlogPðRjϕ; pÞ �∑

ϕ
QðϕÞlogQðϕÞ

¼ ∑
N

u¼1
∑
MK

q¼1
τuqlog ðlðKÞq Þ þ ∑

u< v
∑
MK

q;h¼1
τuqτvhlog pðKÞqh ðruvÞ

� �
� ∑

N

u¼1
∑
MK

q¼1
τuqlog ðτuqÞ:

ð3Þ

Algorithm 1: Reconstructing the WMGM through a variational EM algorithm

input: N, M, K and adjacency matrix R in weight category
output: p(1), l(1)

parameter sweep: M= 1, 2, 3 and K= 1, 2, 3, 4
initialization: p(1), l(1), τ
repeat

E-step: update τ by p(1) and l(1)

repeat

τuq  λul
ðKÞ
q exp ∑v≠u ∑h τvhlog pðKÞqh ðruvÞ

� �n o
until τ converges;
M-step: update p(1) and l(1) by τ

lð1Þi ¼ 1
NK ∑u;q τuq ∑

K
k¼1 1 qðkÞ ¼ i

� �
repeat

∂LQðθÞ
∂pð1Þij

¼ 1

pð1Þij
∑q;h ∑u≠v

(
τuqτvh ruv �

pðKÞqh

1� pðKÞqh

 !

´ ∑K
k¼1 1 qðkÞ ¼ i; hðkÞ ¼ j

� �)

pð1Þij  pð1Þij þ γ
∂LQðθÞ
∂pð1Þij

until p(1) converges;
until log-likelihood converges;

The inference procedure is then performed via variational expectation
maximization (EM), as shown in Algorithm 1. In the E-step, given the parameters
l(1) and p(1), we maximize Eq. (3) with respect to τ. We update τuq by a fixed point
iteration following a similar strategy as in34. λu is the normalization factor to satisfy

the constraint ∑MK

q¼1 τuq ¼ 1 in Algorithm 1. In the M-step, with τ obtained from
the E-step, we maximize LQðθ;RÞ with respect to the parameters l(1) and p(1). In
Eq. (3), the terms regarding l and p are written separately. Therefore, they are
independently updated. lð1Þi can be analytically computed by setting the partial

derivatives to zero. Moreover, the pð1Þij are numerically computed by the gradient
method with step length γ. q(k) and h(k) are the kth index of decomposing q and h
(a ‘reverse’ process of taking the Kronecker products).

qðkÞ ¼ b q�1
Mk�1cmod M

� �
þ 1. To avoid confusion between θ(1) and θ(K), we use i

and j for indices in θ(1) and q, h in θ(K). Finally, we also note that in this section, all
summations over nodes u and v are taken from 1 to N. Summations of i, j are from
1 to M and summations of q, h are taken from 1 to MK. Note that M, K are
considered as hyperparameters in the variational EM framework. We perform
more analysis on the choice of best hyperparameters M, K in Supplementary
Notes 4 and 6.

Multifractal analysis of WMGM. Next, we use our proposed WMGM to analy-
tically compute the statistical physics inspired and multifractal metrics, such as the
partition function, the Lipschitz-Hölder exponent, and the multifractal spectrum.

For simplicity, we first reshape the linking probabilities pð1Þij
n o

i;j¼1:M
in θ(1) as

pi
� �

i¼1:M2 . We also reshape the area of each sub-rectangle in the unit square

lð1Þi lð1Þj
n o

i;j¼1:M
as ai
� �

i¼1:M2 . Following20,35, the partition function of the model at

an average sub-block size ϵ ¼ ð 1MÞ
2K can be written as

ZϵðqÞ ¼ ∑
kj

� �
j¼1:M2

K

k1 ¼ kj ¼ kM2

 ! YM2

i¼1
½aipi�ki

( )q

¼ ∑
M

i;j¼1
ðlð1Þi lð1Þj pð1Þij Þ

q

 �K

: ð4Þ

In Eq. (4),
K

k1 ¼ kj ¼ kM2

� 
is the number of sub-blocks which have the same

area
QM2

i¼1 ai
ki and linking probability

QM2

i¼1 pi
ki . ki
� �

i¼1:M2 is subjected to

∑M2

i¼1 ki ¼ K .
QM2

i¼1 ½aipi�ki is the proportion of edges which are generated under
linking probability in those sub-blocks.

In the multifractal analysis, multifractal metrics are calculated based on the
partition function Zϵ(q), where q is the order of the moment. The mass exponent is

given by

τðqÞ ¼ logZϵðqÞ
log ϵ

¼ K
log ϵ

log ∑
M

i;j¼1
ðlð1Þi lð1Þj pð1Þij Þ

q
� 	

ð5Þ

The Lipschitz–Hölder exponent (refer to coarse Hölder exponent or singularity
index in some other scientific works) is defined as αðqÞ ¼ dτðqÞ

dq . The multifractal

spectrum reads f(α)= α(q)q− τ(q). Here, we provide the expression for the
Lipschitz–Hölder exponent:

αðqÞ ¼ 1
ZϵðqÞlog ϵ

K ∑
M

i;j¼1
lð1Þi lð1Þj pð1Þij

iqh �� 	K�1
∑
M

i;j¼1
lð1Þi lð1Þj pð1Þij
h iq

ln lð1Þi lð1Þj pð1Þij
h i( )

:

ð6Þ
When the values of the order of the moment q takes q=−q0: dq: q0, the width

of the multifractal spectrum can be defined and calculated as
dα= α(q)max− α(q)min= α(q0)− α(−q0). The center of the multifractal spectrum
is located at αcenter= α(0).

Data availability
The data supported the results in the study is from public dataset Drosophila
connectome https://www.janelia.org/project-team/flyem/hemibrain and Hi-C
chromosomal interaction https://aidenlab.org/juicebox/.

Code availability
Source code is available at https://github.com/ruocheny/Weighted-Multifractal-Graph-
Model.
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