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Ordinal patterns-based methodologies for
distinguishing chaos from noise in discrete time
series
Massimiliano Zanin 1,2✉ & Felipe Olivares 1,2

One of the most important aspects of time series is their degree of stochasticity vs. chao-

ticity. Since the discovery of chaotic maps, many algorithms have been proposed to dis-

criminate between these two alternatives and assess their prevalence in real-world time

series. Approaches based on the combination of “permutation patterns” with different

metrics provide a more complete picture of a time series’ nature, and are especially useful to

tackle pathological chaotic maps. Here, we provide a review of such approaches, their the-

oretical foundations, and their application to discrete time series and real-world problems.

We compare their performance using a set of representative noisy chaotic maps, evaluate

their applicability through their respective computational cost, and discuss their limitations.

One of the challenges underpinning the study of many real-world systems is that the
mechanisms governing their behaviour are not easily accessible and can only indirectly
be observed through their visible dynamics; making a parallelism with genetics, the

phenotype should be used to infer the genotype. One of the most basic questions that can be
made is whether observed time series are generated by stochastic processes or are instead the
result of a deterministic dynamics. In the latter case, models can be used to forecast the evolution
of the system with an arbitrary precision, something not possible for a stochastic process, and
ultimately, to completely describe the system under study. On the other hand, a stochastic
dynamics may indicate that the observable under study is not the most appropriate one.
Answering to such question can nevertheless be a daunting task. First of all, the extracted time
series are usually a combination of both aspects, i.e. the observations we perform on a system are
most probably polluted by some kind of observational or systemic noise. Second, real-world
systems can only be described by finite, and usually short, time series: the answer may then vary
according to the used methods and parameters1–3. Third, it is long known that some deter-
ministic systems produce time series that are (almost) indistinguishable from noise: chaotic
systems. Chaotic systems can be defined as a class of dynamical systems displaying three
properties: sensitivity to initial conditions, topologically transitiveness, and presence of dense
periodic orbits4. Finally, noise and chaos are two intermingled concepts, as for instance the
former can induce the latter5.

Given a time series, determining its stochastic or deterministic nature is in theory simple and
involves measuring two quantities. On one hand, the maximum Lyapunov exponent (λ),
describing the sensitivity to initial conditions; and the Kolmogorov–Sinai entropy per unit time
(hKS) on the other hand, i.e. the amount of information the system is generating. Yet, these two
measures can only be calculated in infinitely long time series; the answer is thus not readily
available for real, and hence finite, observations. Not surprisingly, many other methods have
been proposed, e.g. based on finite-size Lyapunov exponents6, power spectra7, non-linear
forecasts8–10, recurrence networks11,12 or visibility graphs13,14.
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A promising approach is the one yielded by the concept of
permutation patterns, introduced in 2002 by Bandt and Pompe15.
Given a time series xt, this is partitioned in (usually, but not
always, overlapping) subsets of consecutive values (xt, xt+τ,…, xt
+τd); d, i.e. the number of values composing each subset, is called
the embedding dimension, and is usually set between 3 and 7; and
τ is the embedding delay, or the time between consecutive points,
usually set to 1. A permutation pattern (also called order and
ordinal pattern interchangeably in the literature) πt is then
associated with each subset, i.e. the permutation that has to be
applied to the subset to obtain an increasing set of values—see
Fig. 1a. Once this process is repeated for all subsets of values,
statistics can be calculated over the resulting permutation pattern
distribution, to obtain e.g. entropies15–17 or irreversibility18–20, or
to discriminate the nature of the underlying systems21–25. When
compared to other time series metrics, this approach has several
major advantages: it is almost parameter-free, in that symbols (i.e.
the permutation patterns) naturally emerge from the time series;
it has low sensitivity to noise and is invariant under monotonic
transformations of the values; is computationally inexpensive;
and, possibly the most important point, naturally takes into
account the causal order of elements. The interested reader will
find several reviews on the concept of permutation entropy26–28,
and many works discussing specific aspects of it29–34, as e.g. the
choice of the best embedding dimension.

Given the success of permutation patterns and permutation
entropy in characterising time series, a natural question is whe-
ther they can be used to assess their chaotic or stochastic nature.
Many approaches leveraging on this idea have been proposed,
both using variants of the permutation entropy alone and by
combining it with other time series metrics. In this review, we
provide an in-depth analysis of the theoretical foundations and
the applicability of such methods to time-discrete systems,
organised into three categories: individual metrics based on the
permutation patterns idea; combination of metrics yielding plane
representations; and pipelines, i.e. decision trees like algorithms35.
These metrics are then compared using a set of synthetic time
series, to assess both their discriminative performance and their
computational cost. We further discuss some preliminaries on the
use of such metrics, including their applicability to continuous
systems, and their associated theoretical limits. This review will
therefore serve as a guide, both to the practitioner new to this
topic who wants to analyse real-world time series and to the
experienced researcher looking for new venues of investigation.

Some preliminary practical considerations on evaluating
permutation patterns
Before digging into the study of the individual algorithms based
on permutation patterns, we here discuss three preliminary issues
that can cause problems to the researcher new to this topic. Note

that we suppose the reader to already be familiar with the concept
of permutation entropy; otherwise, we invite him/her to refer to
several comprehensive reviews available in the literature26–28.

● Labelling of permutation patterns. There are two ways of
naming permutation patterns, which have vastly been used
in the literature in an interchangeable way. Let us consider
the case of the pattern associated with values x= {8, 3, 6}.
On one hand, this pattern may be defined as the sequence
of ranking positions of the individual elements, in
ascending order; the first element of the ranking would
then be 3, followed by 6 and 8. Substituting the values by
the respective ranking, one gets π= (3, 1, 2). On the other
hand, the pattern can be created by combining the indexes
of the elements giving the correct ascending order. In the
previous example, the smallest element is the second,
followed by the third and the first; the resulting pattern is
then π= (2, 3, 1). This difference in labelling does not affect
any result, as what is important is the relative frequency of
patterns.

● Naming convention. Parameters used in the calculation of
permutation patterns and the corresponding results have
been denoted by different symbols in the literature—see
Fig. 1b for a list of the most common variants. Special
attention should be paid in those case in which the same
symbol represents two different things, as e.g. L being both
the embedding delay36 and dimension37.

● Equal values in the time series. When analysing real-world
time series, it is not uncommon to find equal values,
something especially frequent when dealing with low-
resolution time series, as e.g. weak biological signals. Note
that this is not compatible with the previous definition of
permutation patterns, which requires values to be uniquely
sorted. The two main solutions were already proposed in
the original paper of Bandt and Pompe15. First, one can
disregard equal values by e.g. converting the inequality
x1 < x2 < x3 to x1 ≤ x2 ≤ x3; second, one can numerically
break equalities by adding small random perturbations, e.g.
a normally distributed noise of low amplitude. A third
solution entails mapping the equal values onto the same
symbols38; to illustrate, the time series x= {6, 6, 82} is
transformed in the permutation pattern π= (1, 1, 3).
However, this latter strategy does not lead to a uniform
distribution for a totally random sequence, i.e. for white
noise. The impact of equal values is still a matter of debate
in the scientific community. It has been shown that
spurious temporal correlations can not only be introduced
by repeated values31 but also that they have a small or even
negligible impact in real-world time series with a decent
resolution34. In any case, the reader should be aware of this
limitation and eventually pre-process the data accordingly.

Fig. 1 Mapping time series to ordinal patterns. a Example to illustrate the methodology of mapping a time series into a set of overlapped ordinal patterns,
for an embedding dimension d= 3 and an embedding delay τ= 1. Each pattern is obtained by substituting the original values by the respective ranking. For
instance, the second value if the smallest of the first three and is thus mapped to number 1 in the first pattern. Note that different symbols have been used
to denote the main parameters used in permutation patterns analysis; b reports the symbols used in this work and common variants in the literature.
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Finally, as previously introduced, this review is mainly focussed
on the analysis of time-discrete systems. Still, the methods here
presented have been the foundation for extensions covering
irregularly sampled and continuous time series. Regarding the
former case, Kulp et al.39 analysed for the first time irregularly
sampled time series, i.e. when data are missing or a time jitter is
present. In both cases, a low degree of irregularity does not
prevent missing patterns (introduced in section “Individual
metrics”) to detect determinism. The interested reader can also
explore subsequent works40,41. On the other hand, several studies
have focussed on continuous systems39,42–45 and on continuous
systems with delay46,47. The reader should nevertheless be aware
that (at times, hidden) assumptions of these approaches is that
the sampling frequency is the correct one to describe the
underlying dynamics, something which can be estimated using
classical tools like the Nyquist frequency, and that the embedding
delay τ is fixed to one, even though multi-scale analyses are
possible and beneficial48,49.

Individual metrics
Missing ordinal patterns. The first proposal for a metric able to
discriminate stochastic from deterministic dynamics using per-
mutation patterns and entropy was formulated back in 2006 by
Amigó and co-workers50. They started from realising that, while
some chaotic maps are able to produce time series much
resembling random noise, at the same time they cannot repro-
duce all ordinal patterns. To illustrate, consider the case of the
well-known logistic map f(x)= 4x(1− x); it is easy to show that
the pattern π= (2, 1, 0) can never appear, as well as the general
pattern π= (�; 2; �; 1; �; 0; �) (where � denotes any other ranking
position), as the succession f2(x) < f(x) < x can never occur. This,
in turns, triggers an avalanche of longer forbidden patterns, which
also cannot occur50. Given one time series, one can then suspect
the presence of a deterministic dynamics if at least one permu-
tation pattern never shows up.

This approach nevertheless presents a caveat: when analysing
short time series, i.e. in many real applications, patterns may be
missing just because of a statistical effect, i.e. not enough
dynamics has been observed to allow all patterns to emerge.
These are the so-called false missing patterns. Amigó et al.51

showed that the minimum time series length to avoid such effect
is (d+ 1)!, with d being the length of the patterns. Alternatively,
one can analyse how the number of forbidden patterns decays as
a function of the time series length, being such decay faster in
deterministic maps51.

A more quantitative statistical test was subsequently proposed
by the same authors52. Suppose a time series on which
permutation patterns of size d are extracted using sliding
windows overlapping at a single point (i.e. the last point of a
window is the first point of the next one). The total number of
resulting subwindows is denoted by K. Next, one counts the
number of times a specific permutation pattern i is observed and
denotes it as νi, with i= {1, 2,…, d!}. The deterministic nature of
the time series can be tested through a χ2 test with statistic:

x2 ¼ ∑
d!

j¼1

ðνj � K=d!Þ2
K=d!

: ð1Þ

In other words, the aim is to compare the observed distribution
of pattern frequencies with the one expected in a completely
random time series—which, by definition, is uniform. The
advantage of this test is that not only it detects cases of missing
permutation patterns but also situations in which their relative
frequency is unbalanced.

Going back to the concept of missing patterns, an additional
method based on it was proposed in 2019 by Olivares and co-
workers45. This method is first based on dividing the original time
series into sliding, nonoverlapping windows of size w. The
number of unobserved (i.e. missing) ordinal patterns is then
counted within each one of these windows, and the average
number hNðw; dÞi is calculated—note that this number is given as
a function of w and of the embedding dimension d. Finally, the
decay of the missing patterns is modelled with a stretched
exponential function:

hNðw; dÞi ¼ Ae�Bwγ

; ð2Þ

where A is a constant, B is the characteristic decay rate and γ is
the stretching exponent. The estimated B and γ can then be used
to classify the time series; specifically, stochastic time series are
characterised by B < 10−2 and γ > 0.6 when using d= 6, while
chaotic systems (even polluted by additive noise) have larger
values of B and smaller values of γ.

Being the concept of missing or infrequent ordinal patterns the
foundation of all methods here presented, a review of all real-
world applications would exceed the scope of the present work.
The interested reader can nevertheless refer to the many reviews
on the topic26–28,53,54.

Permutation spectrum test. Kulp and Zunino proposed in 2014
a method that can be seen as an evolution of what previously
described, and which is based on the idea of the permutation
spectrum test. If the method of Amigó et al.52 was based on
reconstructing and studying the shape of the probability dis-
tribution created by permutation patterns, Kulp and Zunino55

shift the focus to the variability of such distribution.
As usual, let us suppose a time series, which is here divided in

non-overlapping windows of length l. The probability distribution
of permutation patterns, here called spectrum55, is then
calculated, i.e. how many times each pattern appears in each
window. Finally, the standard deviation of the probability
associated with each pattern is calculated. The key to distinguish
between different types of dynamics resides in those standard
deviations. For instance, all patterns will have no variability at all
(i.e. a standard deviation of zero) for periodic signals—as the
same permutations will appear over and over without any
variation. Conversely, stochastic time series will be characterised
by a positive variability for all permutation patterns. Finally,
chaotic signals will lie in the middle, with some patterns (i.e. the
forbidden ones) having zero standard deviation.

This approach has a remarkable advantage: by studying
subwindows of the original time series, it is able to detect
intermittent dynamics, provided a suitable value of l is chosen.
On the other hand, all patterns have to appear, and l must be
large enough—using the standard rule proposed by Amigó
et al.51, l≫ (d+ 1)!, with d being the embedding dimension;
hence, the time series should globally be much larger than l, in
order to have enough values for the calculation of the standard
deviation. All in all, this could be a problem in real-world
applications, where the length of the time series is limited.

The permutation spectrum test has been applied to several real-
world time series, including the pressure signal acquired from a
turbulent combustor with bluff-body and swirler as flame holding
devices56, measures of flame fronts in a lean swirling premixed
flame generated by a change in gravitational orientation57 and
ocean ambient noise58.

Complementing permutation entropy with cylinder sets. One
theoretically simple way of discriminating chaotic from stochastic
processes is by calculating their KS entropy hKS, which represents
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the entropy required to characterise the evolution of
trajectories59. In other words, and given an initial value x0, hKS
tells us how the precision of our prediction for value xn decreases
with n. As such, it has been proven that there is a relationship
between hKS and the Lyapunov exponents of the system60. A test
is then easy to define: hKS= 0 for stable systems; chaotic systems
are characterised by finite (positive) Lyapunov exponents, and
hence finite (yet, greater than zero) hKS; finally, for stochastic
systems, as the future cannot be forecasted at all, hKS diverges to
infinity. This is nevertheless not simple from an applied point of
view, as the computation of hKS can only be done in an
approximate way61. A solution may come from the permutation
entropy. Specifically, it has been shown that eP is equal to hKS for
one-dimensional (1D) and 1D-like maps62,63. Note that here eP is
the time derivative of the permutation entropy, i.e. eP= [EP(d+
1)− EP(d)]/T, d being the embedding dimension and T the time
resolution (or the length of the time steps) of the series. Yet, what
about more complex chaotic systems?

Politi proposed an elegant solution64. First of all, he defines
σi(j) as the dispersion of xi(j) (with 1 ≤ j ≤ d), i.e. of all the values
in the jth position of the ith ordinal pattern. σi(j) thus tells us how
much uncertainty we have about the value of the time series, if we
know that such value appears in the jth position of the ith ordinal
pattern. As the system evolves over time, the largest value of σi(j)
will always be found for j= d, and hence the important value is
σi(d). This value is then used to define a relative permutation
entropy, as ~EpðdÞ ¼ EpðdÞ þ Dhlog ðσ iðdÞÞi. Note that 〈⋅〉
denotes the average, while D is the fractal (information)
dimension of the system. Finally, he demonstrates that ~epðdÞ ¼
½~Epðd þ 1Þ � ~EpðdÞ�=T yields a reliable estimation of hKS.

A final issue has to be solved: how can one calculate ~epðdÞ when
D is not known? D can be estimated through the Kaplan–Yorke
formula65, but this in turns requires knowing the Lyapunov
exponents of the system. The solution entails substituting D with
an unknown parameter δ, yielding ~epðd; δÞ—note that the
standard permutation entropy is recovered for δ= 0. When
δ <D (δ >D), ~epðd; δÞ will converge to the asymptotic value hKS
from above (respectively, from below). Therefore, D can be
estimated as the value of δ such that ~epðd; δÞ is independent of d.

This approach, although theoretically powerful, presents two
important drawbacks. First of all, it is theoretically complex and
requires a deep understanding of dynamical systems. Second, it
requires long time series, as ~epðdÞ is given by an asymptotic
process for large values of d—which leads back to the condition
l≫ (d+ 1)!51. These are probably the reasons why, to the best of
our knowledge, this approach has never been applied to the study
of real-world time series.

Successions of permutation patterns. If all previous methodol-
ogies were based on the analysis of the appearance of permutation
patterns taken in an isolated way, another possibility is available:
consider how they follow one another. Specifically, let us consider
a time series xt, and the corresponding sequence of permutation
patterns πt. Transitions between patterns can be evaluated as the
number of times (or the probability) that a given permutation
pattern is followed by a second one. To illustrate, the time series
x= (1, 2, 3, 4) will have the pattern πt=1= (1, 2, 3) followed by
πt=2= (1, 2, 3). This can then be mapped into a ordinal patterns
transition graph Gπ, whose element gi,j is the probability that
pattern j follows pattern i.

A few observations have to be made on this mathematical
object. First of all, it is associated with an important increase in
the dimensionality of the problem, i.e. one moves from having d!
patterns (where d is the embedding dimension) to d!2 transitions.

This allows for a much richer description of the system’s
dynamics but also implies that longer time series are needed, in
order to achieve reliable results. Second, elements of Gmay not be
independent. To illustrate, let us consider the time series
x= (1, 2, 3, y), where y can be any value. Independently on the
value of y, the second pattern will never be π= (3, 2, 1), i.e. a
monotonic decreasing pattern, as the last part of the previous
pattern (i.e. (2, 3)) constrains the initial part of the second one.
This can easily be solved through two different strategies. First, by
considering non-overlapping patterns, such that, for an embed-
ding dimension of d, only patterns πt, πt+d, πt+2d,… are analysed.
Second, by using an embedding delay τ > 1, to also ensure that
consecutive patterns are calculated over different data. On the
other hand, the calculation of this transition graph inherits the
main advantages of the permutation pattern methodology: its
conceptual simplicity, the reduced computational cost, especially
when compared to other graph-based techniques13,66–68, and its
robustness against noisy data.

The concept of transitions has first been proposed by Small in
201344 and consisted in identifying those permutation patterns
that followed each other. Note that the resulting structure (i.e. a
network) was undirected and unweighted, that is, pattern
transitions probabilities were disregarded. Different dynamical
systems, including chaotic maps and stochastic systems, were
then identified by calculating the ordinal pattern length that
maximised the amount of information in the network.

Transitions were then exploited by Borges et al.48, who
specifically focusses on the probability of self-transitions—i.e.
when a pattern is followed by the same one. Authors propose a
metric assessing the probability of self-transitions, i.e.

pst ¼ pðπi; πiÞ ¼ ∑
i
gi;i: ð3Þ

pst is trivially equal to 1/d! for completely random time series
(provided τ > 1 and the time series is long enough), as a
permutation pattern can be followed by any other one with the
same probability. Nevertheless, pst increases with the determinism
of the time series, making it easy to detect different types of
coloured noise and chaotic systems. This is used to construct a
discrimination model, based on the application of support vector
machines on the parameters of a fit of the evolution of pst as a
function of τ, giving excellent classification scores48.

Leveraging on a similar idea, Olivares et al.69 propose to look at
the local and global dynamics of transition patterns. Specifically,
they propose the use of two metrics. The first one is the minimum
pattern entropy, where the entropy of each pattern is calculated
through the distribution probability of the patterns following it.
The second metric is the conditional permutation entropy of the
whole transition matrix, calculated as the sum of each pattern
entropy weighted by its stationary distribution. Note that the
former metric described the local (i.e. pattern-centric) dynamics,
while the latter the global one. Additionally, by leveraging on the
similarity with the concept of networks, both metrics are also
called node and network entropies. The final result is a pair of
values for each time series, which can then be represented in a bi-
dimensional plane—an approach that will largely been exploited
in the next section.

In spite of the conceptual simplicity of this approach, few real-
world applications have been proposed. Beside the examples
included in the original papers44,48,69, the interested reader can
also refer to the use of permutation pattern transitions to
characterise electrocardiogram data70.

When permutation patterns meet other metrics
If the entropy and variability of the distribution associated with
permutation patterns have proven to be useful, there is also a
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natural limit in the amount of information that can be conveyed
by a single metric. A natural evolution is then to consider
multiple (complementary) metrics at the same time and represent
them as points in a plane (or a space). In this section, we review
the planes that have been proposed in the literature, starting
from the celebrated complexity–entropy plane.

The original complexity–entropy plane. The first example of a
complexity–entropy plane was proposed by O. Rosso and co-
authors71. Time series are characterised by two values, which are
used to position them in a bi-dimensional plane. The first one is
the classical permutation entropy, normalised in the interval
[0, 1]: ES[P]= S[P]/Smax, where P is the distribution created by
the permutation patterns, S the classical Shannon entropy, and
Smax ¼ log 2N . (Note that the original work71 uses natural loga-
rithms, as opposed to logarithms in base 2 common in infor-
mation theory.) The second metric is the intensive statistical
complexity measure CJS[P], defined as:

CJS½P� ¼ QJ ½P; Pe�ES½P�: ð4Þ
QJ is a measure of disequilibrium, i.e. of how far away is the
distribution created by permutation patterns to an uniform dis-
tribution Pe, as is calculated through the well-known
Jensen–Shannon (JS) divergence72,73:

QJ ½P; Pe� ¼ Q0 S½P þ Pe

2
� � S½P�

2
� S½Pe�

2

� �
; ð5Þ

with Q0 being a normalisation constant. QJ is thus greater than
zero is some permutation patterns are “privileged”, in the sense
that they appear with a frequency higher than expected. It is
important to note that this complexity measure goes beyond a
simple entropy, as it assesses both the randomness and the cor-
relation structures within the time series. Thanks to this, multiple
values of CJS can be obtained for each value of ES, as was pre-
viously demonstrated74.

When time series are located in the CJS–ES plane, several
patterns are observed. First, chaotic systems have entropies
between 0.45 and 0.7, and complexities close to maximum, owing
to their internal correlation structures. Second, time series of
white noise have maximum entropy and minimum complexity, as
one may expect. Finally, coloured noises position themselves in
the middle, with medium complexity and medium–high entropy
values. A graphical representation of these regions is reported in
Fig. 2, along with two additional dynamics not included in the
original work71. It is worth noting that, besides these prototypical

examples, the position of a dynamical system in the plane will
depend on the characteristics of the associated time series. To
illustrate, let us consider the case of stochastic oscillations: the
position will be dictated by the interaction between the sampling
frequency and the multiple scales of the dynamics. At high
sampling frequencies, what are observed are oscillations, which
will be located in the bottom left corner of the plane; on the other
hand, for samplings close to the main frequency of the system, the
result will appear as noise, located in the bottom right corner.
Varying the sampling frequency between these two extrema will
give rise to complex movements in the plane42.

Besides being the foundation of the other methods described in
this section, the complexity–entropy plane has buttressed a huge
number of real-world analyses, owing to its theoretical and
computational simplicity. These include applications in economy
and finance, including stock22,75, bond76,77, cryptocurrencies78,79

and commodity market analyses80; characterisation of lasers
dynamics46,47,81; of plasma and solar wind82–86; turbulence
phenomena87; stream flows88–90; the study of the dynamics of
the brain91 and of its cells92,93; of the dynamics of blood cells94;
the characterisation of ocean ambient noise95; flame front
dynamics57 and of vehicle behaviour96. It has even been applied
to problems in image recognition97,98 and art99.

The Fisher-entropy plane. Olivares et al.100 proposed a modified
version of the previously seen complexity–entropy plane by
substituting the complexity by the discrete and normalised ver-
sion of the Fisher’s Information Measure (FIM)101. This latter is
defined as:

F½P� ¼ F0 ∑
N�1

i¼1
½ðpiþ1Þ1=2 � ðpiÞ1=2�

2
; ð6Þ

where F0 is a suitable renormalisation coefficient. While related to
the Shannon’s entropy, FIM presents an important difference: it is
defined as a function of the difference in probability between
consecutive elements of the distribution, as opposed to their raw
value—or, in other words, as the distance between two contiguous
probabilities. FIM is thus zero when all probabilities p are the
same, and maximal when one single p= 0—i.e. essentially the
opposite of what would be expected in the case of the Shannon’s
entropy. When compared to the original complexity–entropy
plane, this new plane allows for a better characterisation of the
dynamical changes induced by modifications in the system’s
parameter, and it is able to distinguish between different types of
chaotic dynamics100.

The idea introduced by Olivares and co-workers100 has seen
real-world applications in several works, spanning from neural
networks92 and electroencephalography (EEG) signal102,103

analysis, ecosystems’ dynamics104, status of mechanical
machines105 and image recognition98 It is also worth noting that
the Fisher-entropy plane has inspired the so-called Fisher–DisEn
plane106, which uses the dispersion entropy107 instead of the
classical Shannon’s one.

Multi-scale planes. In all the previous methods, the embedding
delay τ is considered as a fixed value, and in most applications it
is assumed that τ= 1. This assumption is valid provided that the
system is temporally discrete (i.e. we observe the system at dis-
crete time moments) and that the observation frequency is cor-
rectly tuned to the system dynamics. It is nevertheless difficult to
fulfil these conditions for some real and numerical systems. One
may consider, for instance, the case of the human brain: while
EEG data are usually recorded at 250 or 500 Hz, they present
multiple characteristic time scales that are condition

Fig. 2 Graphical representation of the complexity–entropy plane.
Graphical representation of the plane as proposed by Rosso et al.71, and of
the approximate position of chaotic systems, and coloured and white
noises. Dynamics in parenthesis (i.e. non-linear stochastic and regular
oscillations) were not included in the original work.
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dependent108,109. Analysing the raw data with a fixed τ may
therefore lead to incomplete, or even misleading, results.

A solution to this problem was proposed through the definition
of a multi-scale complexity–entropy plane42. Given a system, the
two metrics of complexity CJS and entropy ES of the standard
complexity–entropy plane are calculated as a function of τ, which
is no longer fixed. The result is a parametric curve
complexity–entropy plane, characterising the system through
the two metrics with the embedding delay as parameter. In the
case of most real-world applications, this implies calculating
CJS(τ) and ES(τ) for τ= [1, 2,…]; on the other hand, when the
system under analysis is time continuous, τ can assume any
fractional value greater than zero. A similar analysis was later
performed43, fixing τ but varying the sampling time in low-
dimensional continuous chaotic systems.

As an example of an application, Zunino et al.42 resorted to the
well-known Mackey–Glass equation, a paradigmatic time-delay
system110; the embedding delay for which the complexity CJS(τ) is
maximal corresponds to the characteristic temporal scale of the
equation, i.e. the minimally required sampling rate to capture all
the information related to the non-linear correlations. Zunino
et al.42 also applied this multi-scale plane to several real-world
examples, including laser, river flow, geophysical, climate and
financial data. Other examples include turbulence analysis87,111,
stream flows89, flame front dynamics57 and laser beam
wandering112. Still, one has to note that the line dividing this
multi-scale approach from the standard complexity–entropy
plane is fuzzy, as many works using the latter include some
analysis on the sensitivity to the embedding delay τ.

Finally, it is worth noting that the work of Zunino and
colleagues42 inspired a modification of the plane, called the multi-
scale weighted complexity entropy causality plane17,113, in which
permutation patterns probabilities are weighted according to the
amplitude of the signals generating them.

Additional mono-parametric complexity–entropy curves. What
was introduced by Zunino et al.42 and previously discussed can be
seen as a parametrisation of the complexity and entropy metrics,
specifically as a function of the embedding delay τ. Yet, more
parametrisations are possible114. Specifically, Ribeiro and co-
workers propose to substitute the Shannon entropy with a
monoparametric entropy, and specifically with the Tsallis q
entropy115, defined as:

SqðPÞ ¼ ∑
d!

j¼1
pjln q

1
pj
: ð7Þ

In the previous equation, pj is the appearance probability of
pattern j, q is a real parameter and, finally, ln q is the q logarithm:
ln qx ¼ R x

1 t
�qdt. In a similar way, the JS divergence of Rosso

et al.71 is substituted by a generalisation of Kullback–Leibler
divergence defined as: KqðPjRÞ ¼ �∑piln qri=pi.

Instead of a single point, time series are now described by a
curve, which displays an interesting feature: for stochastic time
series it form loops, while this does not happen for chaotic time
series in all embedding dimensions. The absence of a loop is a
consequence of the absence of some patterns; therefore, this
approach can be seen as a more complete variant of the missing
pattern one50. Beyond this, the characterisation of the curves in
the plane can also be used to extract other properties of the time
series, most notably the Hurst exponent114.

Ribeiro et al.114 applied this approach to several real-world
time series, including laser dynamics, crude oil prices, sunspot
index, heart dynamics and Earth’s magnetic activity. Other
applications include the study of the dynamics of a real estate
market116 and the analysis of EEG signals117.

Similarly to the Tsallis entropy case, another generalisation has
been proposed118, based on substituting the Shannon’s entropy
for the Rényi’s one. This is defined as:

SrðPÞ ¼
1

1� r
log ∑

n

i¼1
pri ; ð8Þ

where r is the so-called entropic index119. Due to the monotonic
nature of Sr, curves in the Rényi complexity–entropy plane do not
form loops. Still, their curvature is able to discriminate between
stochastic, chaotic and period time series.

It is finally worth noting that both approaches have been
merged under the form of three planes based on combining
Tsallis and Rényi’s complexity and entropy metrics120. Never-
theless, as the underlying distributions are obtained through the
power spectrum of the signal and not through permutation
patterns, this approach is not further described here.

The Tarnopolski plane. In 2016, M. Tarnopolski introduced a
plane to characterise time series that, while having been devel-
oped independently, is still indirectly based on the concept of
permutation patterns121. This plane is defined by two metrics:

1. The Abbe value A, i.e. half of the ratio of the mean square
successive difference to the variance122,123:

A ¼ n
2ðn� 1Þ

∑n�1
i¼1 ðxiþ1 � xiÞ2
∑n

i¼1 ðxi � �xÞ2 ; ð9Þ

with �x being the mean of xi
� �

. A quantifies the smoothness
of the time series, spanning between zero (perfectly
smooth) to one (white noise).

2. The probability T of finding a turning point, i.e. when, in
three consecutive observations, the middle value xi is lower
or higher than the two surrounding ones (xi−1 and xi+1).
Note that T can easily be interpreted in the light of
permutation patterns, as it is equivalent to the probability of
four of the six possible patterns for d= 3.

While only the relation between the position in this A� T
plane and the Hurst exponent was originally studied121, Zunino
et al.124 builds on this to show that the plane is also capable of
discriminating between different types of complex time series.
Additionally, the authors of this last paper introduced a multi-
scale version of the A� T plane, based on downsampling the
original time series using subwindows and on calculating the
position on the plane as a function of the subwindow size. In spite
of the simplicity of this approach, it has been applied to the study
of few real-world time series, including the analysis of stock
markets, electroencephalography and heart dynamics124, and of
stellar variability125.

Building a full pipeline. All the previous discussed methodolo-
gies for detecting chaotic dynamics are based on the assumption
that a researcher is controlling the process and thus that
uncommon situations are manually discarded. To illustrate, a
periodic dynamics will probably present missing (or less frequent)
permutation patterns and may thus be classified as chaotic; yet, a
simple graphical representation would discard this option. A final
question may therefore be: can a fully automated pipeline be
constructed, able to discriminate between stochastic, chaotic and
periodic dynamics without external intervention?

Toker et al.126 proposed a solution to this question under the
form of a decision tree35. As a first step, they propose to exclude
the possibility of stochasticity by comparing the permutation
entropy of the original time series with that of two sets of
surrogates: the Amplitude Adjusted Fourier Transform127 and the
Cyclic Phase Permutation128. If the permutation entropy falls
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within one of these two distributions, then the time series is
classified as stochastic. If this is not the case, a few additional
steps are executed. The signal is denoised, through the Schreiber’s
algorithm129, and downsampled if an oversamplig is detected.
Finally, a modified version of the 0–1 test130,131 is applied, and
the time series is classified as either chaotic or periodic. With the
exception of a few free parameters, which are calibrated using a
large collection of test time series, this pipelines allows to classify
signals without any expert judgement.

Comparison of performance and cost
To compare the performance of all methodologies addressed in
this review, we have considered three discrete chaotic dynamics
and a linearly correlated stochastic process:

● Chaotic logistic map. Paradigmatic example usually
employed as a testing ground to illustrate new concepts
in the treatment of dynamical systems. It is a polynomial
mapping of degree two132: xn+1= r xn(1− xn). We here
consider its chaotic regime when r= 4.

● Linear congruential generator. 1D map, xn+1= A xn+ B
mod(C), normally used to produce pseudo-random
integers in the range 0 < Xn < C, which makes its classifica-
tion a challenging task. Here we consider A= 7141,
B= 54773 and C= 259200133.

● Sinai map. Two-dimensional attractor, defined as xnþ1 ¼
xn þ yn þ δ cosð2πynÞ mod(1), yn+1= xn+ 2yn mod(1).
Here we consider δ= 0.1, for which a totally developed
chaotic dynamics is obtained133.

● Noises with 1/fk power spectrum. Starting from a pseudo
random variable with Gaussian distribution probability
function, the desired power spectrum is obtained by the
Fourier filtering method127. Note that the degree of long-
term correlations is directly proportional to k.

For the systems listed above, we have generated 10 indepen-
dent realisations of 105 data samples, after discarding the first 105

iterations of the chaotic maps to avoid any transient behaviour.
Each realisation started with different random initial conditions.
The following analyses report the mean value over the realisations
of the different metrics. Additionally, a noisy chaotic environ-
ment is generated by adding white Gaussian noise of zero mean
to the original noise-free chaotic sequences. Different noise levels
σ, defined by the ratio between the standard deviation of the noise
and the original data, were considered. Ordinal patterns were
evaluated with D= 5 and lag τ= 1, except for estimating the
probability of self-transitions for which τ > 1 is required (as dis-
cussed in the section “Successions of permutation patterns”).

First, when seeking the presence of forbidden ordinal patterns
we found that logistic chaotic dynamics and the x coordinate of
the Sinai map are the only sequences that present forbidden
patterns, on average 89 and 0.7, respectively. In fact, a minimum
pattern length D is necessary to detect forbidden patterns in a
noise-free deterministic dynamics134. This drawback is the source
of misclassifications of the underlying dynamical nature of the
congruential map and the y coordinate of the Sinai map. Fur-
thermore, a distinction between different correlation degrees for
the k-noises cannot be achieved, since no forbidden patterns are
observed for these stochastic processes. As previously seen, a
more quantitative approach involves characterising the decay in
the number of unobserved (forbidden or missing) ordinal pat-
terns as a function of the sequence length. The corresponding
results are depicted in Fig. 3a–e. As the weight of the noise
component increases, all noisy chaotic maps locate in the same
curve approximating to the bottom right corner, B ~ 10−2 and

γ ~ 1—parameters corresponding to an uncorrelated dynamics.
Notably, decay rate allows identifying determinism even when the
dynamics is noisy, with the noisy logistic map and the x-Sinai
identified as chaotic up to noise levels 0.5 and 0.2, respectively—
see Fig. 3b, d. On the other hand, the noisy congruential map and
the y-Sinai share planar location with k-noises for all noise levels
considered. However, for the y-Sinai sequence, temporal corre-
lations are found for low noise contaminations—see Fig. 3e.
Moreover, a quantification of the long-term correlations of k-
noises are characterised by different planar locations.

Since a deterministic map may have no forbidden ordinal
patterns for a given pattern length, another option is to focus on
the shape of the distribution of visible ordinal patterns through χ2

test with statistics given by Eq. 1. Figure 3f shows the distribution
of χ2 for 104 independent realisations. The rejection threshold of
the null hypothesis H0 (ordinal patterns are independent and
identically distributed) at level α= 0.05 is χ2119;0:05 ¼ 145:46. It is
observed that, for the noisy logistic map and the Sinai map, χ2 test
rejects H0 for all considered noise levels (except for the y-Sinai
with σ ~ 1) with a high degree of confidence. On the other hand,
for the congruential map, χ2 test rejects H0 only for the noise-free
case. Lastly, for k-noises with k < 0, χ2 test rejects H0, as can be
seen in Fig. 3f. In synthesis, this approach is able to identify the
determinism of all chaotic maps even in a noisy environment,
except for the noisy congruential map. Yet, it lacks a distinction
between chaos and stochastic dynamics.

Leaving the shape of the ordinal pattern distribution behind, it is
now time to focus on its variability by applying the permutation
spectrum test. The corresponding results are reported in Fig. 4. Free-
noise chaotic maps exhibit substantial variability in the standard
deviation of the spectrum. Particularly, the logistic map and the x-
Sinai have ordinal patterns with zero deviation, due to the presence of
forbidden/missing patterns—see Fig. 4a, c. On the contrary, the
congruential map and the y-Sinai show some patterns with higher or
lower standard deviation in comparison with the average, which
demonstrate, at least, temporal correlation in the data—although a
deterministic nature cannot be guaranteed, as can be seen in Fig. 4b,
d. Linear correlated processes show a symmetric variability with no
null values—see colour arrows in Fig. 4e–h. This symmetry reflects
the reversibility of these linear processes. For k= 0, the standard
deviation presents no variability, except for the first and last ordinal
patterns. All ordinal patterns have the same probability of appear-
ance, leading to a constant standard deviation. For studying a pol-
luted chaotic dynamics, we have focussed on the noisy logistic map as
it gives a more clear spectrum—see Fig. 4i–l. Noise contamination
eliminates all forbidden patterns, but the “profile” of the standard
deviation maintains robust. Even for high noise levels, some devia-
tions are higher than the average—see black arrows in Fig. 4i–l. In
synthesis, the permutation spectrum test, while quite sensitive, is
rather qualitative in discriminating chaos from stochasticity, i.e. it
requires a visual inspection of the results.

Following the structure of the previous part of the work, transi-
tions between ordinal patterns are next, and specifically self-
transitions pst. The evolution of pst has been analysed as a function
of τ (τ∈ [2, 50]); after estimating the fitting parameters β0, β1 and its
error R2, as proposed by Borges et al.48; the k-mean clustering
algorithm of MATLAB© was used to classify the dynamical nature of
the noisy chaotic maps and the k-noises. Figure 5a depicts the
clustering obtained by the triplet {β0, β1,R2}. Only two mis-
classifications, k-noises with k= 0 and 0.2, are observed, leading to
an accuracy of 96.61%. The drawback of this (at first) excellent dis-
crimination is that the Gaussian white noise is classified as chaotic.
Note that the projection in the plane β0 versus β1 delivers a quan-
tification of the degree of long-term linear correlations of the k-
noises. The second option using transitions involves characterising
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the local and global features of the transition matrix of all ordinal
transitions, by plotting the minimum pattern entropy versus the
conditional permutation entropy69. This representation plane places
all chaotic maps below the k-noises, the latter ones locating near the
diagonal—see Fig. 5b. As noise level increases, the positions of
chaotic systems get closer to the linear stochastic one. This char-
acterisation identifies the presence of forbidden patterns with null
value of the minimum pattern entropy, as the case of logistic map.

Note that the determinism of the congruential map is appropriately
contrasted with linear stochastic dynamics by its location.

Global and local features of the stationary ordinal pattern
distribution can be characterised by the complexity–entropy and
Fisher-entropy planes, respectively—see Fig. 6. In the former
plane, the noisy logistic dynamics is distinguished from k-noises
up to approximately 0.4 of noise level, as evidenced in Fig. 6ai–ei.
However, the rest of the chaotic maps overlap with the stochastic

Fig. 3 Unobserved and distribution of visible ordinal patterns methodologies. a Characteristic decay rate B versus the stretched exponent γ for k-noises
with k∈ [0, 3] with step 0.2 (solid brown triangles) and logistic map (solid blue circles), congruential map (solid green squares), x-Sinai (solid magenta
diamonds) and y-Sinai (solid cyan stars) with additive noise with σ∈ [0, 1] with step 0.05. b–e Zoom of individual maps near the stochastic zone (B ~ 10−2

and γ ~ 1). f Distribution N(χ2) of χ2 for 104 independent realisations of all the noisy chaotic maps with additive noise with σ= 0.25, 0.5, 0.75 and 1, and k-
noises with k= 0, 0.5, 1, 1.5 and 2. Dashed red line indicates the threshold χ2D!�1;α, for D= 5 and α= 0.05. k: correlation degree and σ: intensity of the noise
contamination.

Fig. 4 Standard deviation permutation spectrum. Standard deviation of the permutation spectrum estimated from 200 windows of size l= 103 and for a
the logistic map, b the linear congruential generator, c x and d y coordinate of the Sine map. k-noises for e k= 0, f k= 1, g k= 2 and h k= 3. i–l Noisy
chaotic logistic map with additive noise with σ= 0.25, 0.5, 0.75 and 1, respectively. Red dashed line indicates zero standard deviation and arrows point out
characteristic ordinal patterns. k: correlation degree and σ: intensity of the noise contamination.
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curve, even for noise-free sequences. When local aspects of the
distribution are taken into account by the Fisher information, we
found a clearer contrast between different dynamics, even for
high observational noise pollution—see Fig. 6aii–eii. Both planes
characterise the congruential map as slightly correlated dynamics.
Another way of incorporating local features is through the q-
parametric curves in the q-complexity–entropy plane.
Figure 7a–d shows the loops formed by the k-noises, the hallmark
of stochasticity. The absence of a loop is only found for the noise-
free logistic map and the x-Sinai—see Fig. 7e, g. Since a closed q-
curve is based on the existence of forbidden patterns, this
methodology fails to detect determinism in the chaotic sequences
that materialise all ordinal patterns for a given D, as is the case of
the congruential map, the y-Sinai and the noisy logistic map, as
observed in Fig. 7f, h. Lastly, we found that the Tarnopolski plane
delivers a quite good quantification of the long-term correlations

of k-noises, especially for small values of k, as can be seen in
Fig. 7i. Nevertheless, the contrast between an uncorrelated
dynamics and a noisy chaotic dynamical is rather confused. This
lies in the fact that a pattern length of D= 3 is not long enough to
unveil determinism in a sequence.

As a last point, and with the aim of comparing the computational
cost of all methodologies, we have calculated their running times
when a totally uncorrelated Gaussian sequence of 106 data points is
analysed using D= 3, 4 and 5, and τ= 1 in a MATLAB© imple-
mentation. Figure 8 shows the comparison between the running
time averaged over 10 independent runs. The evaluation of the q-
parametric curve in the entropy–complexity plane corresponds to
the highest computational cost, since a large range of q values is
needed to obtain the curves—see Fig. 7. The fitting procedure to
estimate certain parameters of the corresponding model together
with multi-scale analysis place the decay of the number of

Fig. 5 Ordinal transition approaches. a Clustering representation of the triplet {β0, β1, R2} (β0 and β1 being parameters of the model applied to pst(τ)
defined in ref. 48 and R2 stands for the error of the fitted model) and b minimum pattern entropy versus conditional permutation entropy for k-noises
(k∈ [0, 3] with step 0.2) and chaotic maps with additive noise with σ∈ [0, 1] with step 0.05. Results in b were obtained by using 106 data points to have a
reliable contrast. Noise-free sequences (solid symbols). Noisy sequences (open symbols). k: correlation degree and σ: intensity of the noise contamination.

Fig. 6 Global versus local representation planes. Localisation of the k-noises (k∈ [0, 3] with step 0.2) and chaotic maps in the ai permutation
complexity–entropy plane and aii Fisher-entropy plane. Additive noise with σ∈ [0, 1] with step 0.05 is been depicted. Noise-free sequences (solid
symbols). Noisy sequences (open symbols). Zoom of individual maps near the stochastic zone: bi, bii logistic map, ci, –cii congruential map, di, dii x-Sinai
and ei, eii y-Sinai. k: correlation degree and σ: intensity of the noise contamination.
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unobserved ordinal patterns and the self-probability approach as the
second and third most costly algorithms, respectively. This is due to
the fact that the former considers several sequence sizes, while the
latter covers a wide range of values of τ (τ∈ [2, 50]). The rest of the
algorithms have similar running times.

The limits of permutation patterns
Throughout this review, we have seen that permutation patterns
and metrics from them derived can help distinguishing chaos
from stochasticity in a wide array of conditions. Does this mean

that permutation patterns can be the universal panacea? Unfor-
tunately, this is not the case, and the researcher should always be
cautious about discarding a chaotic behaviour just on the basis of
a single test. To illustrate this point, we here show how a simple
map can ad hoc be built that is deterministic and sensitive to
initial condition but still have permutation patterns compatible
with a stochastic dynamics.

The main idea is to disentangle the sequence of permutation
patterns from the values creating them, for thus generating a time
series with a custom distribution of patterns. To illustrate, let us
consider the permutation patterns for d= 3, as shown in Fig. 9a.
Any sequence of three values [x(t), x(t+ 1), x(t+ 2)] will be
associated with a permutation pattern, which in turn constrains
the next possible pattern. For instance, if the pattern is (1, 2, 3)
(i.e. x(t) < x(t+ 1) < x(t+ 2)), the following one can only be
(1, 2, 3), (1, 3, 2) or (3, 1, 2). It is then possible to create a matrix
with all the possible transitions between permutation patterns
and a periodic sequence visiting all patterns with equal frequency
—see Fig. 9b. Starting from one pattern, values have to be added
to the time series according to the limits imposed by the next
pattern. Therefore, if x(t) < x(t+ 1) and the pattern to be fulfilled
is (1, 2, 3), the following value has to be in the range (x(t+ 1),
lsup], where lsup is the maximum value of the map. As an example,
we are here using a logistic map y(t+ 1)= 4y(t)[1− y(t)], with
y(0)= x(0) the initial condition of the map. Going back to the
previous example, the third value used to fulfil the pattern (1, 2, 3)
will be x(t+ 2)= x(t+ 1)+ [1− x(t+ 1)]y(t+ 1).

The resulting time series x has some interesting properties.
First of all, it is a completely deterministic map, as x(t+ 1) is fully
defined by x(t) and y(t), which are in turn fully defined by x(0),
i.e. by the initial condition. Second, the map inherits the strong
sensitivity to initial conditions of the logistic map. Finally, and

Fig. 7 q-parametrisation of the complexity–entropy plane and Tarnopolski plane. Entropy-complexity plane with q∈ [10−4, 1] ∪ [1, 103] with steps 10−3

and 10−2, respectively, for k-noises with a k= 0 and 0.2, b k= 0.4, 0.6, 0.8 and 1, c k= 1.2, 1.4, 1.6, 1.8 and 2, d k= 2.2, 2.4, 2.6, 2.8 and 3, e logistic map
with additive noise with σ∈ [0, 1] with step 0.05, f linear congruential map, g x and h y coordinate of the Sinai map. i Turning point probability T versus the
Abbe number A for k-noises (k∈ [0, 3] with step 0.2) and chaotic maps with additive noise with σ∈ [0, 1] with step 0.05. Inset plot shows zoom near the
stochastic zone (T ¼ 2=3 end A ¼ 1). Noise-free sequences (solid symbols). Noisy sequences (open symbols). k: correlation degree and σ: intensity of
the noise contamination.

Fig. 8 Computational cost. Comparison between the computational cost of
each methodology when analysing an uncorrelated Gaussian sequence of
106 data points using D= 3, 4 and 5, and τ= 1 (except for pst, for which
τ∈ [1, 50]). The averages over ten independent realisations are reported.
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most importantly here, it has a perfectly balanced distribution of
permutation patterns, as by construction all of them are visited
with equal frequency. This implies that any method based on
single permutation patterns (i.e. not on transitions), e.g. on
counting missing patterns, will wrongly classify this time series as
stochastic. Similarly, any other measure based on patterns, as, for
instance, irreversibility ones18,19, will be misled. Note that this
reconstruction method can easily be extended, for instance, to
ensure that pattern transitions have equal probabilities.

Figure 9c reports an example of the resulting time series;
Fig. 9d, an histogram of the value appearance probability, cal-
culated over a time series with 106 points; and Fig. 9e, the dis-
tribution of the difference between the values of two time series,
as a function of the number of iterations, when the initial values
differ by 10−3.

In synthesis, any method designed to discriminate between
stochastic and chaotic time series is based on one or more
hypotheses; in the case here considered, all methods assume that
the chaotic nature of the underlying system manifests as an
imbalance in the permutation patterns. While this is a reasonable
assumption in most real-world systems, one must be cautious, as
the presence of such imbalance is a sufficient but not necessary
condition for a chaotic dynamics.

Conclusions and outlook
As shown in this review, many tests based on permutation pat-
terns have been proposed to assess the chaotic versus stochastic
nature of time series; whether one of them is clearly better than
the other ones is nevertheless a complex question, with several
aspects influencing the answer. Generally speaking, almost all
methods are misled by the presence of observational noise, and
this is especially relevant in the case of methods relying on the
existence of forbidden ordinal patterns. These latter techniques,

including the classical entropy–complexity plane and its q-para-
meterised version, misclassify noise-free chaotic dynamics that
materialise all ordinal patterns for a given value of D. Similarly,
the permutation spectrum test yields a debatable characterisation
for such kind of sequences. On the contrary, the decay of
unobserved—forbidden or missing—ordinal patterns as a func-
tion of the sequence length gives a better characterisation, in the
sense that allows quantifying the degree of linear correlations of
stochastic processes and distinguishing them from noisy chaotic
sequences. On the other hand, transitions between ordinal pat-
terns unveil a sort of dynamical permutation hallmarks that
differentiate, up to medium noise levels, linear stochastic pro-
cesses from chaotic sequences, even for those having no forbidden
patterns. This is the case of the representation plane defined by
the minimum pattern entropy versus the conditional permutation
entropy; still, this method also presents the drawback of requiring
longer time series to obtain reliable results, which could be a
major limitation in real-world applications. Ordinal pattern
distribution-based methodologies, such as χ2 test introduced by
Amigó and co-workers, are extremely robust against noise con-
tamination, yet are only able to reject or accept the null
hypothesis that the sequence is independent and identically dis-
tributed. Lastly, when considering highly polluted chaotic
sequences, the Fisher-entropy plane stands out as the best option
to contrast them from linearly correlated stochastic systems.

In spite of generally remarkable results, we believe that two
barriers are preventing permutation patterns to be regarded as the
gold standard in the detection of chaos. First of all, all methods
here presented are implicitly based on the hypothesis that chaos
reflects in an imbalance of permutation patterns, which in turn
indicates the presence of a non-linearity135. This can nevertheless
not be the case, as shown in the section “The limits of permu-
tation patterns”. Most of our knowledge about permutation
patterns and derived metrics comes from numerical experiments.

Fig. 9 Synthetic map. Constructing a synthetic chaotic map with a perfect distribution of permutation patterns. a Labelling of the six permutation patterns
for d= 3. b Matrix representing the allowed transitions between permutation patterns and example of a possible periodic sequence of patterns. c Example
of the time series that can be obtained from the previous sequence of permutation patterns. d Probability distribution of values for the resulting time series.
e Sensitivity to initial conditions, calculated as the difference between two values of the resulting time series as a function of the number of iterations
separating them. The solid black line indicates the median value, and dark and light grey bands, respectively, one and two standard deviations. The
horizontal blue dotted line represents the expected value of the difference in a random time series with the same probability distribution.
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Yet, from a stricter theoretical perspective, permutation entropy is
not directly measuring chaos, nor permutation patterns represent
temporal causal structures; even the relationship between this and
the KS entropy is known only for a limited number of dynamical
systems16,62. A more complete theoretical foundation is clearly
needed.

Second, the success hitherto achieved by permutation patterns
will be the drive behind the development of even more sensitive
tests. We speculate that this will be attained through two com-
plementary paths. On one hand, novel tests will shift towards
micro-scale analyses, e.g. towards the study of the dynamics of
individual patterns and sequences thereof. This will only be a
prolongation of the historical trend, which has already moved
from initial macro-scale approaches (including entropies and
missing patterns) to more localised ones (like transition prob-
abilities). Focussing the attention to one or few permutation
patterns will bring several benefits, including the reduction of the
computational cost, hence the possibility of analysing structures
at longer temporal scales; and eventually the creation of a cata-
logue of “chaotic fingerprints”. On the other hand, a second path
may entail the combination of multiple and heterogeneous
approaches into single tests, an option that only recently started
to appear in the literature126,136.

Data availability
No data sets were generated or analysed during the current study.
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