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The emergence of heterogeneous scaling in
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Research institutions provide the infrastructure for scientific discovery, yet their role in the

production of knowledge is not well characterized. To address this gap, we analyze inter-

actions of researchers within and between institutions from millions of scientific papers. Our

analysis reveals that collaborations densify as each institution grows, but at different rates

(heterogeneous densification). We also find that the number of institutions scales with the

number of researchers as a power law (Heaps’ law) and institution sizes approximate Zipf’s

law. These patterns can be reproduced by a simple model in which researchers are pre-

ferentially hired by large institutions, while new institutions complimentarily generate more

new institutions. Finally, new researchers form triadic closures with collaborators. This model

reveals an economy of scale in research: larger institutions grow faster and amplify colla-

borations. Our work deepens the understanding of emergent behavior in research institutions

and their role in facilitating collaborations.
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Scientific innovation and training require efficient and robust
infrastructure. This infrastructure is provided by research
institutions, a category that includes universities, govern-

ment labs, industrial labs, and national academies1–5. Despite the
long tradition of bibliometric and science of science research6, the
focus has only recently shifted from individual scientists7,8 and
teams9–11 to how institutions affect researcher productivity and
impact12,13. Many gaps remain in our understanding of the role
of institutions in the production of scientific knowledge, and
specifically, how they form, grow, and facilitate scientific colla-
borations. These questions are important, because collaborations
are increasingly prevalent in scientific research1,9,10 and produce
more impactful and transformative work10,14. Collaboration
allows scientists to cope with the increasing complexity of
knowledge15 by leveraging the diversity of expertise16 and per-
spectives offered by collaborators from different institutions17

and disciplines18.
To understand the evolution of research institutions and col-

laborations, we analyze a large bibliographic database spanning
many decades and multiple scientific disciplines. The database
contains millions of publications from which the names of
authors (collaborators) and their affiliations (research institu-
tions) have been extracted for each paper. Analysis of these data
reveals strong statistical regularities. We find that collaborations
scale superlinearly with institution size, i.e., faster than institu-
tions grow, consistent with densification of growing
networks19–21. However, the scaling law is different for each
institution, and as a result, different parts of the collaboration
network densify at different rates. We also find that institutions
vary in size by many orders of magnitude with an approximately
power-law distribution, also known as Zipf’s law22. The number
of institutions, in contrast, scales sublinearly with the number of
researchers, thus following Heaps’ law23,24. The sublinear scaling
implies that, even as more institutions appear, each institution
gets larger on average, but this average belies an enormous
variance.

Finally, we create a stochastic model that helps explain how
institutions and research collaborations form and grow. In this
model, a researcher appears at each time step and is preferentially
hired by larger institutions (e.g., due to their prestige or funding),
which leads to the rich-get-richer effect creating Zipf’s law. With
a small probability, however, a researcher joins a newly appearing
institution. The arrival of this new institution then triggers yet
more new institutions to form in the future, which explains
Heaps’ law25. Finally, once hired, researchers make connections
to other researchers and their collaborators with an independent
probability to explain collaborations scaling superlinearly with
institution size. Despite its simplicity, the model reproduces a
range of empirical observations, including the number and size of
research institutions, and how pockets of increasingly dense
structures form in collaboration networks.

These empirical results demonstrate universal emergent pat-
terns in the formation and growth of research institutions and
collaborations. Our model demonstrates that new institutions are
critical to absorbing extra capacity by collecting researchers who
do not join large institutions. At the same time, large institutions
offer an economy of scale: they grow faster and provide more
collaboration opportunities compared to smaller institutions.

Results and discussion
As the first step towards characterizing the complexity of institu-
tion scaling, we collect data from Microsoft Academic Graph26 to
capture how millions of collaborations evolve over time. Figure 1
shows the collaboration network at the institution level in the field
of sociology. Figure 1a demonstrates a remarkable diversity of

institution size and growth, both in terms of the number of
researchers (node growth) and collaborations between institutions
(edge growth). Collaborations are clustered, with clear groups of
interacting institutions. Research collaborations within an institu-
tion are equally complex. Figure 1b highlights the largest con-
nected component of the collaboration network within Harvard.
Individual researchers vary widely in the number of collaborators,
with new collaborations appearing in clusters.

This dataset helps us capture how the number of collaborations
scale with an institution’s size, n. Figure 2a, b shows the number
of internal and external collaborations versus n across four dif-
ferent disciplines: computer science, physics, math, and sociology.
While each institution follows a scaling law c ~ nα (R2 is close to
1.0, see Supplementary Note 6), the exponents α differ sub-
stantially between institutions. This is shown in the insets of
Fig. 2a, b where we collect scaling exponents across thousands of
institutions and notice that their distribution stretches between
zero (in which institutions do not gain any collaborations) to two
(collaborations are extremely dense). In the thermodynamic limit,
exponents cannot be larger than two, therefore values above two
are due to finite-size effects.

To show that the scaling exponents of all institutions are dif-
ferent, we create a null model (see Supplementary Note 3) in
which all institutions follow the same scaling law. In this null
model, residuals of each institution’s fitted scaling relation are
reshuffled and added as noise onto a single scaling relation.
Differences between fitted exponents in this model are due to
statistical noise rather than different scaling laws. We find that
the variance of the scaling laws across all institutions is much
higher than this null model. We therefore reject the hypothesis
that all the exponents within a field are the same within statistical
error. We explore the dependence of scaling on final institution
size in Supplementary Note 6, and find the scaling exponents are
superlinear (approximately 1.2 on average) and do not depend
strongly on the final size of the institution. Different parts of the
collaboration network therefore densify at different rates, which
extends on previous work that uncovered densification for many
networks at the aggregate level19.

We find weak evidence that higher scaling exponents corre-
spond to institutions with greater impact. In physics, the Spear-
man rank correlation, s, between mean paper impact after five
years and internal collaboration scaling exponents is 0.09 (bor-
derline significant, p-value= 0.06) and for external collaboration
is 0.27 (p-value < 10−5). Similarly, in sociology, the correlation is
0.19 (p-value= 0.03) between impact and internal collaboration
exponents, and the same correlation value is found for external
collaboration exponents. For all other fields, however, the corre-
lations are not statistically significant (p-value ≥ 0.20). Impact, a
proxy of institution research quality, cannot fully explain why
collaborations grow faster in some institutions and not others, but
can give some insight into reasons for this diversity. These results
suggest that highly impactful institutions seem to form colla-
borations more easily as they grow. Nonetheless, almost all
institutions benefit from being larger, as the number of colla-
borations per person typically grows with size (Fig. 2a, b inset).

The superlinear scaling of collaborations cannot be explained
by researcher productivity. The scaling exponents of output, i.e.,
the cumulative number of papers published by researchers
affiliated with that institution at a given year, are centered around
1.0 (see Supplementary Note 4). Paper output per researcher is
therefore approximately independent of institution size. The
average team size per institution, however, increases with insti-
tution size (see Supplementary Note 5), which may help explain
the scaling of collaborations. Namely, as institutions grow, they
form larger teams for each paper. This, in turn, creates more
collaborations (which are proportional to the team size squared).
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We also find that the distribution of institution sizes (as of
2017) follows Zipf’s law (Fig. 2c), similar to the observed heavy-
tailed distribution of city sizes22,27. In Supplementary Note 1 and
Supplementary Data 1, we show that while the largest institutions
are intuitive, such as Harvard, the smaller institutions tend to be
for-profit colleges, community colleges, and institutions without a
formal department in the field of interest (e.g., an engineering
school with papers in sociology). In addition, the number of
institutions grows sublinearly with the number of researchers in
each field (Fig. 2d). This feature, known as Heaps’ law, implies
that quadrupling the number of researchers in a field roughly
doubles the total number of institutions associated with that field.
Exact scaling law values for each field can be found in Table 1,
where Heaps’ laws are calculated for the total number of
researchers in each field, N, greater than twenty and Zipf’s law is
calculated for institution size, n, greater than ten.

A Model of Institution Growth. We now describe a stochastic
growth model of institution formation that elucidates how
institutions and collaborations jointly grow. We model institution
formation and growth with a Pólya’s urn-like set of mechanisms
described in ref. 25, and we model the growth of collaborations
with a network densification mechanism20,21. Unlike existing
models of network densification19–21, however, our model
reproduces the heterogeneous densification of internal and
external collaborations, and the non-trivial growth structure on
institutions. This is complimentary to a very recent model on
heterogenous exploration28, in which Polya’s urn models vary as
a function of a node’s position on a (static) network.

We imagine an urn containing balls of different colors. The
balls can be thought of as the resources given to each institution,
where each color represents a different assigned institution, as
shown in Fig. 3a. Balls are picked uniformly at random with
replacement, with each pick representing a newly-hired

researcher, and the ball color is recorded in a sequence to
represent what institution hires the researcher. Afterwards, ρ balls
of the same color are added to the urn to represent the additional
resources and prestige given to a larger institution, known as
reinforcement (left panel of Fig. 3a)25. If a previously unseen
color is chosen, then ν+ 1 uniquely colored balls are placed into
the urn, a step known as triggering (right panel of Fig. 3a)25. The
new colors represent institutions that are able to form because of
the existence of a new institution. This triggering, also known as
adjacent possible25, does not imply causality per se, e.g., the cause
of the University of California Merced’s creation was not strictly
because of previously established institutions. Instead, these
institution-specific causes are represented as stochastic noise, a
remarkable simplification that does not remove the observed
statistical regularities. Triggering, however, agrees with anecdotal
evidence, making it an intuitive factor behind the creation of
institutions. For example, UC Davis was spun out of UC Berkeley,
and USC Institute for Creative Technology was spun out of USC
Information Sciences Institute, which itself was founded by
researchers from the Rand Corporation. The model we describe is
known as Polya’s urn with triggering25, and predicts Heaps’ law
with a scaling relation ~Nν/ρ and Zipf’s law with scaling
relation ~ n−(1+ν/ρ)25. In our simulations, we arbitrarily chose ρ
to be 4 and ν to be 2, which agrees well with the data shown in
Fig. 2.

Next, we explain the heterogeneous and superlinear scaling of
collaborations through a model of network densification. Building
on the work of20,21, we have each new researcher, represented as a
node, connect to a random researcher within the same institution,
as well as an external researcher picked uniformly at random (left
panel of Fig. 3b). New collaborators are then chosen indepen-
dently from neighbors of neighbors with probability pi, where pi is
unique to each researcher’s institution (right panel of Fig. 3b). We
let pi be a Gaussian distributed random variable with mean,

Fig. 1 Network visualization of the collaborations in the field of sociology in 2017. a Collaborations between institutions. Each node represents a research
institution, and institutions with more researchers are represented by larger nodes. Each link represents collaborations between researchers at different
institutions and more collaborations are represented by thicker lines. Darker nodes represent faster-growing institutions (defined as the number of new
researchers added between 2012 and 2017), and darker links represent faster-growing collaborations (defined as the number of new inter-institution
collaborations between 2012 and 2017). Links with fewer than 10 collaborations are removed, as are isolated nodes. A few major universities are labeled:
Peking University, Oxford University, Harvard University, Massachusetts Institute of Technology (MIT), and the University of Southern California (USC). b
The largest connected component of collaborations within Harvard University. Each node represents a researcher. Dashed lines represent new
collaborations added between 2012 and 2017, while open circles represent new researchers added between 2012 and 2017. The highest degree node is
Ichiro Kawachi, a highly cited sociologist.
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μ= 0.6, and standard deviation, σμ= 0.25 and truncated between
0 and 1. Lambiotte et al.,21 show that their equivalent to μ, when
greater than 0.5, produces densification. We therefore choose
μ= 0.6 to ensure the network densifies. We show separately that pi
directly controls the heterogeneity we observe in internal
collaboration scaling, but the heterogeneity in external collabora-
tion scaling is an emergent outcome of this model29.

To summarize, our model has four parameters: ρ (reinforce-
ment), ν (triggering), and two parameters to explain collaboration
densification heterogeneity, μp and σp. In the main text, we let ρ
equal 4, ν equal 2, μp equal 0.6, and σp equal 0.25. These are
arbitrarily chosen parameters meant to create statistical patterns
that are qualitatively similar to empirical data. Namely, μp > 0.5
ensures collaboration densification21, and σp > 0 ensures that
densification scaling exponents vary between institutions. Inter-
estingly, this model’s Zipf’s and Heaps’ laws can be exactly
calculated, as discussed by Tria et al.25, with Zipf’s law exponent
equal to−1− ν/ρ and Heaps’ law equal to ν/ρ. This model
qualitatively reproduces Zipf’s and Heaps’ laws (Fig. 2c, d and
Table 1) and the heterogeneous scaling of internal and external
collaborations shown in Fig. 2a, b. While other plausible
mechanisms for Zipf’s law30–32, Heaps’ law24, or densification19

exist, the current model describes these patterns in a cohesive
framework and explains the heterogeneous scaling we discover in
the data. While this heterogeneity is built into our internal scaling
laws, the external scaling heterogeneity is an emergent property
within the model29.

The model also reproduces qualitative trends of cross-sectional
analysis. Specifically, the scaling exponents of internal collabora-
tions produced by the model when measured at a specific point in

Fig. 2 Institutions densify at different rates but their size and frequency follow universal patterns. a Internal and (b) external collaborations versus
institution size for three arbitrarily chosen institutions with more than 103 cumulative researchers in each field or simulation. Circle markers correspond to
simulation data; solid lines, medium dashed lines, long dashed lines, and short dashed lines correspond to data from the fields of computer science (CS),
physics, math, sociology, respectively. Dash-dotted lines report linear scaling, showing that institutions' scaling laws are super-linear. Insets: distribution of
exponents across thousands of institutions (cf. Supplementary Note 1). c The distribution of researchers in each institution as of 2017 (Zipf’s law), and (d)
the number of unique institutions versus the total number of researchers in each field (Heaps' law). Closed circle markers correspond to simulation data;
open circles, squares, diamonds, and triangles correspond to computer science (CS), physics, math, sociology, respectively. In addition, light dash-dotted
lines indicate empirical trends while darker dashed lines indicate theoretical scaling law exponents−1− ν/ρ and ν/ρ for (c) and (d) respectively25.
Simulation data in (a) and (b) are collected from four realizations and in (c) and (d), from fifteen realizations (individual realizations show similar trends).
Simulation parameters are ρ equals 4, ν equals 2, μp equals 0.6, and σp equals 0.25.

Table 1 Zipf’s law and Heaps’ Law exponents for research
fields and simulation.

Discipline Heaps’ Law Exponent Zipf’s Law Exponent

Comp. Sci. 0.554 ± 0.004 − 1.470 ± 0.005
Physics 0.501 ± 0.007 − 1.474 ± 0.006
Math 0.549 ± 0.008 − 1.516 ± 0.006
Sociology 0.622 ± 0.005 − 1.603 ± 0.009
Simulation 1/2 − 3/2

Each fit is a linear regression on log-scaled x and y axes for the number of researchers in each
field above 100. Errors are standard errors of linear regression coefficients. Simulation scaling
laws are theoretical exponents calculated for Polya’s urn model with triggering with coefficients
ρ= 4 and ν= 225. See Results and Discussion for details of the mechanism coefficients.
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time, i.e., in a cross-sectional setting, vary in time and are larger
than scaling exponents of external collaborations and decrease
over time (Supplementary Note 6), unlike what we see in data
(Supplementary Fig. 3). These results are robust to stochastic
variations of the densification mechanism (Supplementary
Note 7). As a final comparison with data, we compared the
growth of institutions and the ways links form to the model
mechanisms and found broad agreement29.

Conclusion
We identify strong statistical regularities in the growth of research
institutions. The number of collaborations increases superlinearly
with institution size, i.e., faster than institutions grow in size,
though the scaling is heterogeneous, with a different exponent for
each institution. Therefore, each institution has its own universal
scaling, i.e., regardless of its size, it will always have the same
percentage of new collaborations for each percentage increase in
size. The super scaling is not explained by the increased pro-
ductivity of researchers at larger institutions the number of
papers per researcher is roughly independent of institution size.
Instead, the growing collaborations are associated with bigger
teams at larger institutions. The diversity in collaboration scaling
exponents is partly explained by variations in institution impact.
Institutions with higher impact papers also tend to have a larger
scaling exponent. This provides evidence that a higher colla-
boration scaling exponent allows for collaborations to form more
easily, and that in turn creates higher-impact papers. Further
analysis is needed to test this hypothesis in the future.

When these observations are incorporated into a minimal sto-
chastic model of institution growth, we are able to reproduce the

surprising regularity of research institution formation, growth and
the heterogenous densification of collaboration networks. That said,
there is still room for improvements to this model, given quantitative
differences between the model and data, such as the constant shift
difference between the Heaps’ laws (Fig. 2c), or the difference in the
collaboration scaling law exponents (insets of Fig. 2a, b).

These findings support the idea that academic environments
differ in their ability to bolster researcher productivity and
prominence12, and also demonstrate that institution size and ability
to facilitate collaborations as a potential factor explaining differ-
ences in academic environments. Additional research is needed to
identify other factors that contribute to an institution’s success.

Methods
Data. We use bibliographic data from Microsoft Academic Graph (MAG), from
which researcher names (authors), their institutional affiliation, and references
made to other papers have been extracted26,33. MAG data has disambiguated
institutions and authors for each paper, allowing us to consider all authors with the
same unique identifier to be the same researcher, and similarly for each institution.
In these data, authors typically have only one affiliation at any time (see Supple-
mentary Note 1). We focus on four fields of study: computer science, physics, math
and sociology. After data cleaning, we have almost ten million papers published
between 1800 and 2018 (see Supplementary Note 1). Our computer science data
includes early research in topics relating to computers, including electrical engi-
neering, and therefore stretches back to before 1900.

We define institution size in a given year as the number of authors who have
been ever been affiliated with that institution up until that year. Collaborations are
defined as two researchers who have co-authored a paper up until that year. We
distinguish between internal collaborations (co-authors at the same institution) and
external collaborations (co-authors affiliated with different institutions). Finally, to
understand the relation between collaborations and institution size, we define
output as the cumulative number of papers from researchers affiliated with an
institution in a particular year.

Analysis. We use cumulative statistics to reduce statistical variations and to better
compare to a stochastic growth model of institution formation. To check the
robustness of results, we compare to an alternate yearly definition of institution size
and collaborations (see Supplementary Note 2). We find all qualitative results are
the same, in part because both definitions are highly correlated.

We present scaling results for longitudinal analysis, which tracks how
collaborations evolve as individual institutions grow34–36. This contrasts to cross-
sectional analysis applied in previous work on city scaling37,38 and institution
scaling2–4,39, which measures collaborations as a function of the size of all
institutions at a given point in time. We find that cross-sectional analysis identifies
scaling laws that are not representative of the growth of most institutions (see
Supplementary Note 7), and while simulations and empirical data give scaling
exponents that are fairly constant in time for each institution, cross-sectional
scaling exponents vary in time for both data and simulation. For these reasons, we
focus on longitudinal scaling analysis in this paper, although scaling laws derived
by either analysis method strongly relate to each other36,40.

Data availability
Microsoft Academic Graph data can be accessed via the following link: https://
www.microsoft.com/en-us/research/project/microsoft-academic-graph/26. Replication
data collected from Microsoft Academic Graph are available in the following repository:
https://github.com/KeithBurghardt/HeterogeneousScalingCode/tree/master/output.
Sample raw data for small institutions are available in Supplementary Data 1.

Code availability
Code for this study is available in the following repository: https://github.com/
KeithBurghardt/HeterogeneousScalingCode.
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