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Gauge-dependent topology in non-reciprocal
hopping systems with pseudo-Hermitian symmetry
Xintong Zhang 1, Ke Xu1, Chunmin Liu1, Xiaoxiao Song1, Bowen Hou1, Rui Yu2✉, Hao Zhang 1✉, Dan Li3 &

Jing Li 1✉

Energy conservation is not valid in non-Hermitian systems with gain/loss or non-reciprocity,

which leads to various extraordinary resonant characteristics. Compared with Hermitian

systems, the intersection of non-Hermitian physics and topology generates new phases that

have not been observed in condensed-matter systems before. Here, utilizing the designed

two-dimensional periodical model with non-reciprocal hopping terms, we show how to obtain

both the ellipse-like or hyperbolic-like spectral degeneracy, the topological boundary modes

and the bulk-boundary correspondence by the protection of time-reversal symmetry and

pseudo-Hermitian symmetry. Notably, the boundary modes and bulk-boundary correspon-

dence can simultaneously appear only for specific selection of the primitive cell, and we

explored the analytical solution to verify such gauge-dependent topological behaviors. Our

topolectrical circuit simulation provides a flexible approach to confirm the designed prop-

erties and clarify the crucial role of pseudo-Hermiticity on the stability of a practical system.

In a broader view, our findings can be compared to other platforms such as meta-surface or

photonic crystals, for the purpose on the control of resonant frequency and localization

properties.
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Non-Hermitian systems which possess gain/loss or non-
reciprocal hopping terms, have attracted great attention
due to their fantastic resonant characteristics1,2. For

example, the spectral degeneracy is always along with the
reduction of eigenstates, which is the so-called exceptional point
(EP)3–7, distinctive from the Dirac point or Weyl point in Her-
mitian systems. The intersection of non-Hermitian physics and
topology can also lead to novel phenomenon, such as the non-
Hermitian skin effect that all the delocalized eigenstates become
localized at the boundary or the corner when the periodical
boundary condition (PBC) changes to the open boundary con-
dition (OBC)8–12, resulting in the breakdown of bulk-boundary
correspondence13. These properties, realized in diverse systems
such as mechanical metamaterials14, quantum walk systems15,
photonic systems7,16, acoustic systems17, and electrical
circuits18–23, have created opportunities to achieve significant
enhancement of the sensitivity for sensors24,or perfect absorption
of the input wave25.

To investigate the spectral degeneracy characteristic in the
higher dimension, recent works have extended the exceptional
point to exceptional ring (ER)26–30 or exceptional surface
(ES)31,32, theoretically. In addition, when combining the non-
Hermitian systems with topological behaviors, the topological
invariants defined in Hermitian systems cannot predict the
existence of the boundary modes any more33. Several methods
have been proposed to solve this issue10,33–37, but the limitation
manifests as the particular precondition that point gap or line gap
should exist under PBC38.

In this study, we utilized an uncomplicated two-dimensional
(2D) non-reciprocal hopping model, and extended the spectral
degeneracy characteristic into exceptional elliptical rings and
exceptional hyperbolic lines. We show how to design the excep-
tional rings, the topological boundary modes and the bulk-
boundary correspondence, by the protection of time-reversal
symmetry and pseudo-Hermitian symmetry. We found that the
selection of the primitive cell influences the appearance of
boundary modes, which is the so-called gauge-dependent topo-
logical behaviors, and can be predicted by the well defined
topological invariant successfully even for the condition that no
gap exists under PBC. Attentively, the skin effect and the
breakdown of bulk-boundary correspondence cannot occur in
our model due to the pseudo-Hermitian symmetry38–40, verified
by the transfer-matrix method10 as well. Furthermore, to extend
the theoretical model in a practical system easily, we designed a
2D non-reciprocal hopping topolectrical circuit lattice, and con-
firmed the spectral degeneracy characteristic and topological
behaviors through circuit simulation, which even can be com-
pared to other platforms such as photonics, acoustics, mechanics
and meta-surface.

Results and discussion
Non-reciprocity and spectral degeneracy. Compared with on-
site gain/loss systems, systems with non-reciprocal hopping terms
provide more freedom on the flexible realization of different types
of spectral degeneracy in 2D non-Hermitian systems. For sim-
plicity and without loss of generality, we started with a 2 × 2 tight-
binding model described by H(k)= d0σ0+ dxσx+ dyσy+ dzσz in
the momentum space, where d0= ε0, dz= 0, and

dx ¼ t0 þ ∑
α¼x;y

t1α cos kα þ i ∑
α¼x;y

γ1α sin kα;

dy ¼ iγ0 þ ∑
α¼x;y

t2α sin kα þ i ∑
α¼x;y

γ2α cos kα:
ð1Þ

σx,y,z are Pauli matrices for the spin degree of freedom, and σ0
represents the identity matrix. According to the real-space

Hamiltonian described in Supplementary Note 1, ε0 represents
the on-site energy, t1α/2α represents the reciprocal part of the
hopping terms, while γ0, γ1α/2α represent the non-reciprocity of
intra-cell interaction and inter-cell interaction between the
nearest cells, respectively.

The existence of exceptional ring relies on a sufficient
condition that t2α= 0 and γ1α= 0, as proved in Supplementary
Note 2, thus the resulted Hamiltonian is protected by time-
reversal symmetry and pseudo-Hermitian symmetry, as follows,

T H�ðkÞT �1 ¼ Hð�kÞ; T T � ¼ ± 1;

ηHðkÞη�1 ¼ HyðkÞ;
ð2Þ

where T is a unitary operator, and η is a Hermitian invertible
operator41, which is system-specific in the non-Hermitian context
(see Supplementary Note 3). These two symmetries restrict that, if
Ψþ ¼ ðΨA;ΨBÞT is an eigenvector of the Hamiltonian with
energy ε0+ ε1, then Ψ� ¼ ðΨA;�ΨBÞT or ð�ΨA;ΨBÞT is an
eigenvector with energy ε0− ε1 (ε1 2 R or iR). Therefore,
spectral degeneracy characteristic occur with coalescent eigenva-
lues E±= ε0 and coalescent eigenstates Ψ±= (1, 0)T or (0, 1)T, if
and only if

ðt1x ± γ2xÞ cos kx þ ðt1y ± γ2yÞ cos ky ¼ �ðt0 ± γ0Þ: ð3Þ
The solutions to Eq. (3) give various spectral degeneracy
behaviors, i.e., hyperbolic lines or elliptical rings, relying on
whether the coefficients of cos kx and cos ky have opposite signs.
For example, as shown in Fig. 1a, two exceptional rings cross with
each other, while as shown in Fig. 1b, a pair of exceptional
hyperbolic lines intersect with an exceptional ring.

For the purpose to reveal the interesting physics of spectral
degeneracy, we simplified the model by only considering the non-
reciprocity of the intra-cell interaction and assumed that t1x= t1y
= t1. The resulted Hamiltonian can be written as,

Hðkx; kyÞ ¼
ε0 t0 þ t1 cos kx þ t1 cos ky þ γ0

t0 þ t1 cos kx þ t1 cos ky � γ0 ε0

 !
:

ð4Þ
Without loss of generality, assuming t0/t1 and γ0/t1 are positive,
we classified the parameter space into four phases by the distinct
forms of ER, and the detailed range is illustrated in Table 1. As
shown in Fig. 1c-f, phase I and phase II both possess a single ER
locating at cos kx þ cos ky ¼ �ðt0 � γ0Þ=t1 with Ψ±= (1, 0)T, but
encircle (π, π) and (0, 0) respectively. Phase III and phase IV both
possess two ERs, locating at cos kx þ cos ky ¼ �ðt0 ± γ0Þ=t1 with
Ψ±= (0, 1)T and (1, 0)T, where the former encircle (0, 0) and (π, π),
while the latter encircle (π, π) and (π, π).

Gauge-dependent non-Hermitian topology. As we know, the
behavior of real systems is often sensitive to the boundary con-
ditions, and the open boundary condition sometimes introduces
the localized modes at the boundary or the corner. The inter-
section of non-Hermitian physics and topology also brings out
new phases. For simplicity, we imposed OBC along x direction
and PBC along y direction in the lattice model, and the system
can be understood as the effective one-dimensional chain para-
metrized by the transverse momentum ky (see Supplementary
Note 4.1). Two kinds of OBC are proposed for comparison. OBC1

requires that the hopping terms between the first and the last cells
are removed from the periodic lattice, as shown in Fig. 2a. For
OBC2 shown in Fig. 2b, the difference from OBC1 is the selection
of the primitive cell, which can be regarded as the gauge trans-
formation that H0ðkx; kyÞ ¼ S�1Hðkx; kyÞS with S ¼ diagðeikx ; 1Þ,
which possesses the same symmetry and spectrum as H(kx, ky)
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under PBC, but leads to the distinct difference in topological
behaviors.

The numerical results for OBC1 and OBC2 spectra are shown
in Fig. S3 in Supplementary Note 4.1 and Fig. 3a, d respectively,
which reveal that the former is trivial, while the latter generates
topological boundary modes at the on-site energy ε0, which is the
so-called topological non-triviality. For example, using the
parameters belonging to phase I, the OBC2 spectrum is shown
in Fig. 3a, where the bulk modes are denoted by gray lines, and
the topological boundary modes denoted by orange lines can exist
for any ky∈ (0, 2π). Correspondingly, the normalized amplitude
of the localized wave function is shown in Fig. 3b.

To investigate the underlying mechanism of the existence or
non-existence of topological boundary modes, we followed a
convenient criterion applied for one-dimensional systems35.
Generally, by polynomial factorization and rescaling the overall
constants to unity without changing the topology, the

Hamiltonian can be rewritten as,

HðzÞ ¼ 0 aðzÞ
bðzÞ 0

� �
¼ 0 z�qaΠ

pa
i ðz � aiÞ

z�qbΠ
pb
i ðz � biÞ 0

 !
;

ð5Þ

where the on-site energy is set to zero, and z ¼ eikx , kx 2 C. qa, qb
count the numbers of poles locating at z= 0, and
fa1; :::; apag,fb1; :::; bpbg are the complex roots of a(z)= 0,
b(z)= 0 respectively. The topological boundary modes exist if
and only if 9R 2 Rþ;WaðRÞWbðRÞ<035, where the winding
number Wg(=a/b)(R) is defined as 1

2πi

H
jzj¼Rdðlog gð¼a=bÞðzÞÞ, which

counts the number of zeros minus the number of poles encircled
by the contour ∣z∣= R. Through the calculation on winding
numbers (see Supplementary Note 4.2), the criterion of the
topological non-triviality can be reformulated as the fundamental

Fig. 1 The real and imaginary parts of the energy spectra under periodical boundary condition. The blue and purple parts represent the eigenvalues E+
and E− respectively, where E ± ¼ ε0 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx

2 þ dy
2

q
, and the red lines denote the spectral degeneracy that E+= E−= ε0. For simplicity and without loss of

generality, the on-site energy ε0 is set as zero, and the hopping parameters are set as t1x= t1y= t1. a, b The energy spectra defined by E ± ¼
±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt0 þ t1 cos kx þ t1 cos kyÞ2 � ðγ0 þ γ2x cos kxÞ2

q
with hopping parameters t0/t1= 1, γ0/t1= 0.2, γ2x/t1= 0.4 in (a), and t0/t1= 1, γ0/t1= 0.6, γ2x/t1= 1.2

in (b), which can exhibit exceptional rings and hyperbolic lines respectively. c–f The energy spectra defined by E ± ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt0 þ t1 cos kx þ t1 cos kyÞ2 � γ0

2
q

.
The parameter space is classified into phase I-IV by the distinct forms of the exceptional rings. c Phase I with t0/t1= 1.85, γ0/t1= 0.25. d Phase II with
t0/t1= 1.2, γ0/t1= 2.5. e Phase III with t0/t1= 0.5, γ0/t1= 0.75. f Phase IV with t0/t1= 0.75, γ0/t1= 0.5.

Table 1 Illustration to the phase diagram of the tight-binding model. The parameter space (t0, t1, γ0) is classified into phase I-IV
according to the distinct locations and centers of the exceptional ring (ER) in the momentum space (kx, ky). Phase I and phase II
both possess a single exceptional ring, but encircle (π, π) and (0, 0) respectively. Phase III and phase IV both possess two
exceptional rings, where the former encircle (π, π) and (0, 0), while the latter encircle (π, π) and (π, π).

Phase Parameters Location of ER Center of ER

I (t0+ γ0)/t1∈ (2,∞)&(t0− γ0)/t1∈ (0, 2) cos kx þ cos ky ¼ �ðt0 � γ0Þ=t1 (π, π)
II (t0+ γ0)/t1∈ (2,∞)&(t0− γ0)/t1∈ (− 2, 0) cos kx þ cos ky ¼ �ðt0 � γ0Þ=t1 (0, 0)
III (t0+ γ0)/t1∈ (0, 2)&(t0− γ0)/t1∈ (− 2, 0) cos kx þ cos ky ¼ �ðt0 þ γ0Þ=t1 (π, π)

cos kx þ cos ky ¼ �ðt0 � γ0Þ=t1 (0, 0)
IV (t0+ γ0)/t1∈ (0, 2)&(t0− γ0)/t1∈ (0, 2) cos kx þ cos ky ¼ �ðt0 þ γ0Þ=t1 (π, π)

cos kx þ cos ky ¼ �ðt0 � γ0Þ=t1 (π, π)
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principles that,

ðiÞ for OBC1;maxfja1j; ja2jg<minfjb1j; jb2jgormaxfjb1j; jb2jg<minfja1j; ja2jg;
ðiiÞ for OBC2;minfjb1j; jb2jg<maxfja1j; ja2jg;

ð6Þ
where {a1, a2, b1, b2} are the solutions to Det HðzÞ ¼ 0 for both
OBC1 and OBC2. For example, for the case belonging to phase I,
{∣a1∣, ∣a2∣, ∣b1∣, ∣b2∣} curves are shown in Fig. 3c, which demon-
strates that, criterion (i) is impossible to be satisfied, verifying the
non-existence of topological boundary modes for OBC1. How-
ever, criterion (ii) can be satisfied for OBC2, where the colored
regions satisfy the condition thatWa(R) and Wb(R) have opposite
signs, confirming the existence of topological boundary modes.
The winding number W(R) is defined as [Wa(R)−Wb(R)]/2, and
the zero value of this topological invariant represents the non-
existence of topological boundary modes. The case for phase IV is
shown in Fig. 3d–f, where the topological boundary modes can
appear only when cos ky<1� ðt0 þ γ0Þ=t1, which also can be
verified by the criterion(ii) in Eq. (6).

We also explored the distribution properties of the topological
eigenstates, in accordance with the biorthogonal bulk-boundary
correspondence theory13,42–44 (see Supplementary Note 5). For
example, as shown in Fig. 3b, when ∣a2∣ < 1, ∣b2∣ < 1, two
topological eigenstates are localized at both ends along x direction
with penetration length �1=ln jb2j (n= 1, on A sites) and
�1=ln ja2j (n=N, on B sites). In addition, when ∣a2∣ < 1, ∣b2∣=
1, two topological modes are identical to each other and both
localized at n=N along x direction, on B sites, with penetration
length �1=ln ja2j. Furthermore, the relevant biorthogonal
polarization was calculated to predict the appearance of
topological modes, consistent with the results derived from
winding numbers.

Both OBC1 and OBC2 systems exhibit the conventional bulk-
boundary correspondence and non-existence of skin effect, where
the bulk modes under OBC are consistent with those under PBC.
It should be noted that, symmetry plays a significant role in our
non-reciprocal hopping model. Restricted by the pseudo-
Hermiticity, the bulk Hamiltonian is generally insensitive to the
boundary conditions, because the wave numbers are real even in
the generalized Brillouin zone38, thus the bulk modes are
delocalized. To further investigate the connection between the
non-existence of the non-Hermitian skin effect and the restora-
tion of the bulk-boundary correspondence, we followed the
transfer-matrix method10, and found that j detTj ¼ 1 for our
model (see Supplementary Note 6).

Topolectrical circuit lattice. To clarify the previous results and
explore the crucial role of pseudo-Hermitian symmetry in a
practical system, we designed a 2D topolectrical circuit to map the
tight-binding model. As shown in Fig. 4a, following the method
described by Yu et al.20, the A/B site in the tight-binding model
corresponds to the A/B junction in the circuit lattice, and the
reciprocal hopping term between sites corresponds to the capa-
citor which connects the junctions, while the non-reciprocal
interaction is realized by the operational amplifier which operates
as a voltage follower. Furthermore, the 2D circuit lattice contains
80 sub-circuits, and each sub-circuit contains 20 unit cells
arranged along y direction. The connection between the two sub-
circuits is illustrated in Fig. 4b. Followed by the Kirchhoff’s Laws
described in Methods, the effective Hamiltonian He for the circuit
lattice is given by

Heðkx; kyÞ ¼
CA þ Cγ þ Cm þ 4Ct �2Ctðcos kx þ cos kyÞ � Cm � Cγ

�2Ctðcos kx þ cos kyÞ � Cm CB þ Cm þ 4Ct

 !
;

ð7Þ
where Cm=− (t0− γ0), Ct=− t1/2 and Cγ=− 2γ0 and CA+ Cγ

= CB, by comparing with the model Hamiltonian. The resonant
frequency ω corresponds to the eigenvalue E with the relation of
ω ¼ 1=

ffiffiffiffiffiffi
EL

p
, where L represents the inductor value. Therefore,

various phases can be realized in topolectrical circuits through
tuning the values of capacitors. The voltage signals V(r, t) of the
2N2(N= 40) junctions can be extracted after the transient ana-
lysis of the circuit simulation, and then through Fourier trans-
formation, the amplitude of eigenstates V(f) in the frequency
domain can be calculated.

We carried out the simulation to realize the frequency response
of phase I and phase IV for both PBC and OBC2, because (t0− γ0)/
t1 > 0 should be satisfied to avoid negative values of capacitors. As
shown in Fig. 5a, for phase I under PBC, the simulated frequency
response colored by gray is consistent with the ideal spectra, and the
single ER which locates at cos kx þ cos ky ¼ �Cm=ð2CtÞ ¼ �1:6,
is shown in Fig. 5b. The results of the OBC system are shown in
Fig. 5c, d, which reveals that, when stimulated by the on-site
frequency, both of the bulk modes and the topological boundary
modes exist, and the combined modes are localized at the left side
of the circuit lattice, if the source is only placed at the left boundary
to avoid signal divergence. Similarly, as shown in Fig. 5e-h, the ERs
of phase IV locate at cos kx þ cos ky ¼ �Cm=ð2CtÞ ¼ �0:5 and
cos kx þ cos ky ¼ �ðCm þ CγÞ=ð2CtÞ ¼ �1, and the combined
modes stimulated by the on-site frequency are localized at the left
side as well. Owing to the pseudo-Hermitian symmetry, in spite of
the negative imaginary part of the frequency, the system is still
stable in time domain, which can be used as reference for further
experimental maneuverability. As mentioned above, the eigenstates
Ψþ ¼ ðVAðkÞ;VBðkÞÞT is always paired with Ψ� ¼
ð�VAðkÞ;VBðkÞÞT or ðVAðkÞ;�VBðkÞÞT under PBC, thus the
voltage signal is approximately equal to jΨþje�Im½ω�teiRe½ω�t . There-
fore, the amplitude of the voltage cannot diverge seriously within
several time periods.

Conclusions
In conclusion, we have proposed the general form of the two-
dimensional non-reciprocal hopping model protected by time-
reversal symmetry and pseudo-Hermitian symmetry, which
exhibits exceptional elliptical rings or exceptional hyperbolic lines
under PBC. The simplified form is mainly discussed, and the
parameters space is classified into phases I-IV, according to the
distinct forms of exceptional rings. Through the suitable selection
of the primitive cell, the topological boundary modes can appear
for all four phases, which is verified by the non-zero winding

Fig. 2 Schematic views of the two-dimensional tight-binding model under
open boundary condition (OBC) along x direction. The gray and white
circles represent the two sites A and B, and the yellow blocks indicate the
selection of the primitive cell. The non-reciprocal hopping terms with
parameters t0 ± γ0 are denoted by orange and green lines with arrows,
while the reciprocal hopping terms with parameter t1/2 are denoted by gray
lines. a Lattice model under OBC1. b Lattice model under OBC2.
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numbers, and the penetration lengths of the topological boundary
modes are analyzed through the biorthogonal bulk-boundary
correspondence method. In addition, in the presence of pseudo-
Hermitian symmetry, our non-Hermitian model behaves like the
Hermitian system under OBC, where the bulk-boundary corre-
spondence exists and the non-Hermitian skin effect vanishes,
verified by j detTj ¼ 1. Finally, we designed the proposed phase I

and phase IV in the topolectrical circuits, and the simulation
results not only correspond to those in the model, but also
demonstrate the crucial role of pseudo-Hermitian symmetry in a
practical system. In a broader view, our findings can be compared
to other platforms such as photonics, acoustics, mechanics or
meta-surface, for the purpose on the control of frequency
response and localization properties.

Fig. 4 Schematic illustration of the two-dimensional topolectrical circuit. a Two unit cells in the circuit lattice. The reciprocal hopping terms are realized
by capacitors Cm, and the non-reciprocal hopping terms are realized by the operational amplifiers and capacitors Cγ, where current flow can exist between
A sites and the output of the amplifier, but cannot exist between B sites and the input of the amplifier. The LC-circuits which connect the A/B sites and the
ground provide the on-site frequency response. b The 40 × 40 lattice contains 80 sub-circuits, and each sub-circuit contains 20 unit cells, arranged along y
direction. The schematic view shows the connection between two sub-circuits along x direction, where An, Bn denote the sites of the nth unit cell inside the
sub-circuit, and the connection between the unit cells is the same as (a).

Fig. 3 Topological behaviors of the effective one-dimensional tight-binding model under open boundary condition. a–c Show the results for phase I
with hopping parameters t0/t1= 1.85, γ0/t1= 0.25, and (d-f) show the results for phase IV with t0/t1= 0.75, γ0/t1= 0.5. a, d The absolute values of the
energy spectra ∣E∣ for ky∈ (0, 2π) with on-site energy ε0= 0, where gray and orange lines denote bulk modes and topological boundary modes,
respectively. b, e The absolute values of the normalized amplitude of the localized topological boundary modes with N= 60 unit cells (2N sites) along
x direction. c, f ∣a1∣, ∣a2∣, ∣b1∣, ∣b2∣ curves are colored by red, light red, dark green and light green, respectively, where a1;2 ¼ �½ðt0 þ γ0Þ=t1 þ cos ky� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðt0 þ γ0Þ=t1 þ cos ky�2 � 1

q
and b1;2 ¼ �½ðt0 � γ0Þ=t1 þ cos ky� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðt0 � γ0Þ=t1 þ cos ky�2 � 1

q
, and the colored regions marked by the non-zero winding

numbers W(R) satisfy the condition of topological boundary modes.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00668-3 ARTICLE

COMMUNICATIONS PHYSICS |           (2021) 4:166 | https://doi.org/10.1038/s42005-021-00668-3 |www.nature.com/commsphys 5

www.nature.com/commsphys
www.nature.com/commsphys


Methods
Derivation of the effective Hamiltonian for circuit lattice. As shown in Fig. 4a,
the non-reciprocal interaction is realized by the operational amplifier which
operates as a voltage follower. Ideally, when working at the linear region, the
operational amplifier can amplifies the difference of voltage between the two
inputs, and the output voltage is given by Vout= β(V+− V−), where β is the
open-loop gain, and V± is the voltage of the non-inverting/inverting input.
Therefore, if the inverting input is connected to the output and the non-inverting
input is connected to junction B, which means V−= Vout, V+= VB, thus
Vout ¼ β

βþ1VB. Since β is generally large enough for amplifiers, the voltage

of the output of amplifier equals to VB and no current flows through the two
inputs.

Based on Kirchhoff’s Law that, the sum of current into a junction equals the
sum of current out of the junction, the currents through junction A and B can be
written as

IA ¼ iωCAð0� VAÞ þ
1
iωL

ð0� VAÞ þ iωCmðVB � VAÞ þ iωCtðVBe
ikx � VAÞ þ iωCtðVBe

�ikx � VAÞ
þ iωCtðVBe

iky � VAÞ þ iωCtðVBe
�iky � VAÞ þ iωCγðVB � VAÞ ¼ 0;

IB ¼ iωCBð0� VBÞ þ
1
iωL

ð0� VBÞ þ iωCmðVA � VBÞ þ iωCtðVAe
ikx � VBÞ þ iωCt ðVAe

�ikx � VBÞ
þ iωCtðVAe

iky � VBÞ þ iωCtðVAe
�iky � VBÞ ¼ 0:

ð8Þ
Rewriting the equation above into a matrix form, the effective Schrödinger’s
equation for the periodic circuit lattice is given by,

He

VA

VB

� �
¼ 1

ω2L

VA

VB

� �
; ð9Þ

where the voltage VA/VB at A/B junctions corresponds to the wave function ΨA/ΨB,
and the resonant frequency ω corresponds to the eigenvalue E with the relation of
ω ¼ 1=

ffiffiffiffiffiffi
EL

p
. The effective Hamiltonian He for the circuit lattice is given by Eq. (7).

Simulation details. Transient analysis and Fourier transformation were carried
out to simulate the frequency response of the designed topoelectrical circuit. First,
the amplifiers, capacitors and inductors were selected as ideal elements, and the
values of the components are chosen to limit that the resonant frequency ranges
from 105 to 106 Hz, for further practical consideration. Secondly, the source of the
lattice is set as pulse-excitation with 6 μs width, 0.1 μs rising edge and 0.2 μs falling
edge. For OBC, the source was placed at the left of the circuit lattice, while for PBC,
the source can be placed at any position of the lattice. Third, to satisfy the Nyquist
sampling theorem, the total time of the transient analysis is set as 12 μs for both
PBC and OBC with time step 10 ns, and the frequency step was set as 10 kHz when
operating the Fourier transformation.

Data availability
The data that support the plots within this paper are available from the corresponding
author on reasonable request.

Code availability
The computer codes used to generate the data presented in the manuscript are available
from the corresponding author on reasonable request.
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