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Resonating dimer–monomer liquid state in a
magnetization plateau of a spin-12 kagome-strip
Heisenberg chain
Katsuhiro Morita1,2✉, Shigetoshi Sota3 & Takami Tohyama 1

Highly frustrated spin systems such as the kagome lattice are a treasure trove of new

quantum states with large entanglements. Herein, we study the spin-12 Heisenberg model on a

kagome-strip chain, which is a one-dimensional kagome lattice, using the density matrix

renormalization group method. Calculating the central charge and entanglement spectrum for

the kagome-strip chain, we find a gapless spin liquid state with doubly degenerate entan-

glement spectra in a 1/5 magnetization plateau. We also obtain a gapless low-lying con-

tinuum in the dynamic spin structure calculated using the dynamical density matrix

renormalization group method. We then propose a resonating dimer–monomer liquid state

that meets these features.
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Quantum entanglement is an extremely important concept
in research, such as quantum information and quantum
magnetism1. Low-dimensional quantum spin systems are

attracting attention because they are expected to have a strong
entanglement. A quantum entanglement analysis for quantum
spin models has recently attracted attention because it can
characterize various phases2–10, even in states without a break in
the translational symmetry or long-range dipole orders, such as
the Haldane state in integer spin chains11 and the
Tomonaga–Luttinger liquid (TLL) state in half-integer spin
chains. According to conformal field theory, the central charge c
characterizing the excitation properties can be obtained by cal-
culating the entanglement entropy2–6. In a TLL state, there is a
gapless excitation with a non-zero integer value of c, whereas in a
Haldane state, there is a gapped excitation with c= 0. Moreover,
the Haldane state can be characterized by the degeneracy of the
entanglement spectrum7–10. For example, the spin-1 chain exhi-
bits a doubly degenerate entanglement spectrum7.

In two-dimensional frustrated quantum spin systems, quantum
spin liquid states, such as the resonating valence bond (RVB)
introduced by Anderson, are expected to emerge12,13. The RVB
state is a resonant state of singlet dimers covering the whole
lattice. It is believed that one of the possible models for exhibiting
RVB states is the spin-12 antiferromagnetic Heisenberg model on
the kagome lattice14. However, the ground state has been pre-
dicted to be a Z2 RVB spin liquid with topological order14–17, U
(1) spin liquid18–21, and valence bond crystal (VBC)22–26,
although the exact ground state is unknown owing to the diffi-
culty in solving two-dimensional frustrated systems. In the pre-
sence of a magnetic field, magnetization plateaus were predicted
at M/Msat= 0, 1/9, 1/3, 5/9, and 7/9, where M is the magneti-
zation and Msat is the saturation magnetization16,27–29. These
magnetization plateaus are realized by the effect of the strong
geometric frustration peculiar to the kagome lattice.

Kagome strip chains (KSCs), which are one-dimensional
kagome lattices, have been recently studied, because the pre-
sence of exotic quantum states is expected in the kagome
lattice30–37. In the KSC, as shown in Fig. 1, it was found that the
magnetization plateaus emerge at M/Msat= 0, 1/5, 3/10, 1/3, 2/5,
7/15, 3/5, and 4/535. Among them, four types of plateaus were
found at M/Msat= 1/5. The number of different types in each
plateau was the largest at M/Msat= 1/5. Therefore, we can expect
the presence of quantum phases generated by a strong geome-
trical frustration in this 1/5 plateau. Furthermore, when the
model compound for the KSC is synthesized in the near future,
the 1/5 plateau can be easily accessed with a small magnetic field.

In this study, we investigate the 1/5 plateaus of the KSC using
the density matrix renormalization group (DMRG) method. We
developed a magnetic phase diagram of the 1/5 plateau and, to the
best of our knowledge, found two new plateau phases that have
yet to be identified in the previous studies35. As our main result,
although one of the two phases exhibits a gapless spin-liquid
behavior with c= 1, the entanglement spectrum of the phase is
doubly degenerate. This means that this plateau phase has the
properties of both a half-integer spin chain and a spin-1 chain.
This feature is known to be realized in the gapless symmetry-
protected topological (SPT) phase, which has been studied in
recent years38,39. Furthermore, we calculate the dynamical spin
structure factor (DSSF) in this phase using the dynamic DMRG
(DDMRG)40 (see Methods section). The DSSF of the Sz (mag-
netic field) direction exhibits gapless and dispersion-less low-
energy excitations. To describe these properties during the phase,
we propose a resonating dimer–monomer liquid (RDML) state,
which is a mixed state of singlet dimers and up-spin monomers.

Results
Model. The unit cell of the KSC consists of one site located in the
center and four sites located in the four corners. The Hamiltonian
for the spin-12 KSC in a magnetic field is defined as

H ¼ ∑
hi;ji

Ji;jSi � Sj � h∑
i
Szi ; ð1Þ

where Si is the spin-12 operator, S
z
i is the z component of Si, 〈i, j〉

runs over the nearest-neighbor spin pairs. The first and second
terms in Eq. (1) represent the Heisenberg interaction and Zeeman
interaction with the magnetic field h along the z direction,
respectively. Ji,j in the first term corresponds to one of JX, J1, or J2
in Fig. 1. JX in Fig. 1 represents the antiferromagnetic exchange
interaction between the central site and one of the other sites in
the unit cell. J1 is the exchange interaction between the nearest-
neighbor sites along the upper and lower edges in the unite cell,
while J2 is the nearest-neighbor interaction along the upper and
lower edges connecting neighboring unit cells. In the following,
we set JX= 1 as the energy unit.

Phase diagram of the kagome strip chain. We first determined
the phase diagram of the KSC at M/Msat= 1/5 using the DMRG
method. We obtained six 1/5 plateau phases using N= 120–1000
clusters under the open boundary condition (OBC), as shown in
Fig. 2, where N denotes the number of sites. We determined the
phase boundaries for each magnetization plateau from the mag-
netization curve and their magnetic structures, as shown in Fig. 3.

Fig. 1 Structure of a kagome-strip chain. The black solid, red dashed, and
blue broken lines denote the exchange interactions JX, J1, and J2,
respectively. The green circles denote the sites with spin. The numbers
below the vertical dotted lines represent the distance of the sites along the
x-axis from the left edge. We set JX= 1.

Fig. 2 Phase diagram of the kagome strip chain atM/Msat = 1/5.M is the
magnetization and Msat is the saturation magnetization. Here, J1 and J2 are
the exchange interactions shown in Fig. 1. The colored regions denote the 1/
5 plateau phases, which are distinguished by Roman numerals and colors.
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The regions of phases I–VI are denoted by different colors. The
white region had no magnetization plateau. Phases II and III were
found in the present study, whereas the other phases had already
been found in a previous study35.

Figure 3 shows the nearest-neighbor spin-spin correlation
hSi � Sji � hSzi ihSzj i and local magnetization hSzi i for the six
phases. The lines connecting two nearest-neighbor sites denote
the sign and magnitude of the spin-spin correlation by color
and thickness, respectively. The circle in each site represents
hSzi i. The stability of phases I, IV, V, and VI can be explained by
the energy gain owing to a local strong spin correlation, as
evidenced by the thick lines in Fig. 3. By contrast, phases II and
III do not have such a distinguished thick line. In phase II, the
periodic magnetic structure of the spin–spin correlation and
local magnetization are not observed, whereas the mirror and
inversion symmetries at the center of the chain, which should
exist under the OBC, are unbroken (see Supplementary Note 1).
In phase III, the spin-spin correlation and local magnetization
have a periodic structure, and there is no symmetry breaking.

Magnetization process and magnetization plateau. Figure 4a, b
show magnetization curves at J1= 1.0 and J2= 0.7 (phase II), and
J1= 0.9 and J2= 0.3 (phase III), respectively. The 1/5 plateaus are
clearly visible under both conditions. These magnetization curves
show little variation with size N and the boundary conditions.

However, in Fig. 4a (phase II), a plateau deviating from 1/5 in
only one step, that is, M/Msat= 1/5+ 2/N, appears under the
OBC. We confirmed that this deviation appears in the other sets
of J1 and J2 in phase II, implying the presence of edge excitations
that appear in the Haldane chain. For example, in the spin-1
Haldane chain under the OBC, the magnetization plateau does
not appear at M= 0 but at M= 1. This is because two spins at
both ends of the chain cannot form a valence bond, and thus both
spins have almost spin-1/2 degrees of freedom, forming an M=
1 state under a magnetic field41. We also confirm the excitation
owing to the edge spins in phase II (see Supplementary Note 1).
In the following, we regard the 1/5 plateau in phase II under the
OBC as the state with M/Msat= 1/5+ 2/N. Phases I, IV, V, and
VI were examined in a previous study ??. Therefore, we investi-
gate phases II and III in the following.

Evidence of spin liquid in phase II form the central charge.
Figure 5 shows the entanglement entropy for L= 200(N= 5 × L)
under the OBC as a function of ln ½L=π sinðπj=LÞ� with a variable j
denoting the position of the 5-site unit. This plot comes from the

Fig. 3 Magnetic structures of each phase. The nearest-neighbor spin-spin
correlation hSi � Sji � hSzi ihSzj i and the local magnetization hSzi i around the
center of the chain with N= 200 under the open boundary condition for the
six phases, where Si is the spin-12 operator, S

z
i is the z component of Si, and

N is the number of sites. Black solid (purple dashed) lines connecting two
nearest-neighbor sites denote negative (positive) values of the spin–spin
correlation, and their thickness represents the magnitude of the correlation.
The blue (red) circles on each site denote the positive (negative) value of
hSzi i, and their diameter represents its magnitude. Roman numerals denote
the 1/5 plateau phases and correspond to those in Fig. 2. In VI, the value of
hSzi i at the center is 0.4193, and that of hSi � Sji � hSzi ihSzj i of the thickest
line is− 0.6513.

Fig. 4 Magnetization curves in phases II and III as a function of the
magnetic field. The black, red, and blue solid lines show the results of the
periodic boundary condition for N= 60, periodic boundary condition for
N= 120, and open boundary condition for N= 300, respectively, at zero
temperature, where N is the number of sites. In addition, M is the
magnetization, Msat is the saturation magnetization, and h is the magnitude
of the magnetic field. a J1= 1.0 and J2= 0.7 (phase II). b J1= 0.9 and J2=
0.3 (phase III). J1 and J2 are the exchange interactions shown in Fig. 1.

Fig. 5 Entanglement entropy of the kagome strip chain. The cluster used
in the calculations is the open boundary condition for L= 200(N= 5 × 200),
where L is the number of five-site units in the kagome strip chain. The
results of the calculation of the entanglement entropy with respect to
ln ½L=π sinðπj=LÞ� at J1= 1.0 and J2= 0.7 (Phase II), and J1= 0.9 and J2= 0.3
(Phase III), are represented by black squares and red circles, respectively,
where j denotes the position of the 5-site unit. Here, J1 and J2 are the
exchange interactions shown in Fig. 1. The value of the central charge c was
obtained by fitting the entanglement entropy data using straight lines. The
fitting lines are shown as dashed lines.
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following relation between the central charge c and the position-
dependent entanglement entropy, EE(j):

EEðjÞ ¼ c
bc
ln

L
π
sin

πj
L

� �� �
þ ac; ð2Þ

where ac is a nonuniversal constant, and bc= 6 (3) for the OBC
(PBC)3–6. The value of c becomes finite when the spin-spin
correlation exhibits a power-law decay, and gives c= 1 in the
TLL. By contrast, when the spin-spin correlation decays expo-
nentially, e.g., in the Haldane phase, c= 0. The value of c in Fig. 5
was obtained by fitting the entanglement entropy data using
straight lines. Because c for phase II is nearly unity, as in the TLL,
phase II is expected to be a gapless spin liquid. Because plateau
phases should have an energy gap, there should be a gapless
excitation only in the subspace where the total Sz does not
change. This feature has also been observed in the 1/3 magneti-
zation plateau in frustrated three-leg spin tubes42–44. We also
confirm that the spin-spin correlations of the Sz and Sx compo-
nents exhibit a power decay corresponding to the gapless exci-
tation and exponential decay corresponding to the energy gap,
respectively (see Supplementary Note 2).

In phase III, c is nearly zero. This indicates that there is an
energy gap in this phase. Moreover, we confirm that the ground
state has no degeneracy, and there is no symmetry breaking, as
shown in Fig. 3. We note that when the ground state has no
degeneracy and no symmetry breaking, the
Oshikawa–Yamanaka–Affleck (OYA) criterion45 which is given
by pS(1−M/Msat)= n must be satisfied, where p is the ground-
state period, S is the spin magnitude, and n is an integer. In phase
III, the OYA criterion is satisfied because p= 5, S= 1/2,M/Msat

= 1/5 gives integer n= 2.

Continuous excitation in dynamical spin structure factor. To
investigate phase II in more detail, we calculate the DSSF, Sαβ(q,
ω), which is defined by

Sαβðq;ωÞ ¼ � 1
π
Im 0h j~Sβ�q

1
ω� H þ E0 þ iη

~S
α
q 0j i; ð3Þ

where q denotes the momentum of the lattice geometry shown in
Fig. 1, 0j i is the ground state with energy E0, and η is the

broadening factor. In addition, ~S
αðβÞ
q ¼ SαðβÞq � 0h jSαðβÞq 0j i, where

SαðβÞq ¼ N�1=2∑ie
iqxi SαðβÞi , xi is the position of the spin i, and α(β)

=+ ,− , z.
Figure 6 shows Szz(q, ω) corresponding to the Sz component

and [S+−(q, ω)+ S−+(q, ω)]/2 corresponding to the Sx and Sy

components for L= 12 (N= 5 × 12) with η= 0.05 under the
PBC. Because the position xi is defined in Fig. 1, the range of 0 ≤
q/π ≤ 4 corresponds to half of the extended Brillouin zone. As
shown in Fig. 6a, a gapless excitation in the Sz component
emerges at approximately q/π= 2. This excitation is consistent
with the expected result from the fact that c= 1. We confirm that
the value of q showing the lowest-energy excitation is size-
dependent. As the size increases, the q value tends to move
toward 2π (see Supplementary Note 3). Thus, we expect that in
the thermodynamic limit, a gapless excitation emerges at q/π= 2.
In addition, low-energy excitations at ω≲ 0.2 show a less
dispersive feature. This feature will be discussed later.

As shown in Fig. 6b, [S+−(q, ω)+ S−+(q, ω)]/2, corresponding
to the excitations of the S+ and S− components, has a gap. Here,
the external magnetic field h is set to 0.63, which is the value at
the center of the 1/5 magnetization plateau. The minimum
excitation gap is found to exist at approximately q/π= 2 and q/π
= 3. Continuous excitations exist up to the high-energy region at
more than ω= 1.5 at q/π= 2.

Entanglement spectrum with double degeneracy in phase II.
Finally, we calculated the entanglement spectrum to investigate
each phase in more detail. The ground state can be Schmidt
decomposed as follows:

0j i ¼ ∑
α
λα ΦL

α

�� �
ΦR

α

�� �
; ð4Þ

where ΦL
α

�� �
and ΦR

α

�� �
are orthonormal basis vectors of the left

and right part of the chain, respectively7. Here, λ2α are the
eigenvalues of the reduced density matrix. The entanglement
spectrum is defined as �2ln ðλαÞ. Figure 7 shows the results of the
entanglement spectrum as a function of J2 at J1= 0.9. Phases I, III,
and V are trivial phases owing to the mixture of singly and doubly
degenerate states of the entanglement spectrum7. By contrast, in
phase II, all the entanglement spectra are doubly degenerate.
Furthermore, in phase II, edge excitation occurs, as discussed in
Discussion section. The doubly degenerated entanglement

Fig. 6 Dynamical spin structure factor of phase II. a Szz(q,ω) and b [S+−(q,ω)+ S−+(q,ω)]/2, obtained from the dynamic density matrix renormalization
group for the kagome strip chain under the periodic boundary condition for L= 12 (N= 5 × 12) at J1= 1.0 and J2= 0.7, where L is the number of the 5-site
units, and J1 and J2 are the exchange interactions shown in Fig. 1. In addition, Szz(q,ω) corresponds to the Sz component of the dynamical spin structure
factor, and [S+−(q,ω)+ S−+(q,ω)]/2 correspond to the Sx and Sy components.
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spectrum and edge excitation are identical to the features of the
spin-1 Haldane chain. Therefore, we speculate that phase II is a
nontrivial topological phase7. However, we have not yet been able
to identify the symmetry protecting the degeneracy in phase II,
which remains a future study. We also confirm that the double
degeneracy is independent of L, J1, and J2. Degeneracy is obtained
even for L= 2 (the shortest chain).

Discussion
To the best of our knowledge, phases II and III are newly iden-
tified magnetization plateau phases in the present study. Phase III
was concluded to be a trivial phase based on (i) c= 0, (ii) no
degeneracy in the ground state, and (iii) a trivial distribution of
the entanglement spectrum. By contrast, phase II is a phase that
has the characteristics of both a gapless spin liquid and spin-1
Haldane state because of c= 1 and the double degeneracy of the
entanglement spectrum. These characteristics are the same as
those of the gapless SPT phase38,39.

Why does phase II have these characteristics? We anticipate
that a mixed state of singlet dimers and up-spin monomers,
which reveals a liquid behavior similar to the RVB, is the ground
state of phase II. We refer to this state as RDML. The RDML state
in the KSC under the OBC is introduced as
jψiRDML ¼ ∑iaijϕiiDM, where ai is a constant and jϕiiDM is one of
the dimer–monomer states, which has only one monomer in all
5-site units except at both ends, and there is no nearest-
neighboring monomer, as shown in Fig. 8. In other words, all
states of f ϕi

�� �
DM

g have one dimer (not two dimers) in all 5-site
units. In addition, the four spins at both ends are up-spin
monomers, reflecting the results of the numerical calculation (see
Supplementary Note 1). The monomers at both ends induce edge
excitations, which lead to an extra 2/N in M/Msat= 1/5+ 2/N.
The typical ϕi

�� �
DM

for L= 8 is shown in Fig. 8a, b. The RDML
state defined in this study does not require jaij2 ¼ jajj2(i ≠ j). This
definition allows for excitation from an RDML state to other
RDML states. This is important for understanding the gapless and
dispersion-less excitations of Szz(q, ω). The entanglement spec-
trum in these dimer–monomer states shows double degeneracy
because every state contains a singlet dimer at the center of the
chain. The singlet dimer state is represented by
1ffiffi
2

p ð "
�� � #

�� �� #
�� � "

�� �Þ, where the first and second terms have the
same absolute value. Therefore, when the singlet dimer is located
at the center, the entanglement spectrum must be doubly
degenerate. For this reason, we can obtain the double degeneracy
even for L= 2, where the RDML consists of two dimer–monomer
states, jϕi¼1;2iDM with the central singlet bond, as shown in
Fig. 8c, d, respectively.

One may construct RDML states orthogonal to the RDML
ground state by changing the distribution of {ai}. The constructed
RDML state is expected to be in an excited state with infinitesimal
or small excitation energy. This corresponds to local excitations,
which should form a nearly dispersion-less structure in Szz(q,ω).
The DMRG result shown in Fig. 6 confirms this property. As the
size increases, the dispersion-less excitations become more pro-
nounced at approximately q/π= 2 (see Supplementary Note 3). We
note that such a dimensionless spectral distribution depends on the
values of {ai} for both the ground and excited states. Similarly, the
nonuniformity of the weight of Szz(q,ω) at approximately q/π= 2
in Fig. 6a is presumably due to the distribution of {ai}. Assuming
the presence of the RDML state, we can explain the gapless

Fig. 7 Entanglement spectrum of the kagome strip chain with respect to
J2 at J1= 0.9. Here, J1 and J2 are the exchange interactions shown in Fig. 1.
The cluster used in the calculations is the open boundary condition for L=
80(N= 5 × 80), where L is the number of five-site units in the kagome strip
chain. In addition, λ2α are the eigenvalues of the reduced density matrix, and
α is an index of the eigenvalues. The Roman numerals correspond to the
phases shown in Fig. 2. The vertical dotted lines represent the phase
boundaries determined by the entanglement spectrum and the magnetic
structures. The horizontal bars indicate the values of λα, and the filled
circles indicate the degeneracy of λα.

Fig. 8 Schematic diagrams of the dimer–monomer states. Two dimer–monomer states for (a and b) L= 8 and (c and d) L= 2 under the open boundary
condition at M/Msat= 1/5+ 2/N, where L is the number of the 5-site unit, M is the magnetization, and Msat is the saturation magnetization. The green
circles denote the sites with spin. The monomers are depicted as blue arrows, whereas the dimers are represented as red ellipses containing two sites.
Note that all 5-site units except at both ends in a and b have only one monomer, and there is no nearest-neighboring monomer. The monomers at both
ends correspond to the edge excitations.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00665-6 ARTICLE

COMMUNICATIONS PHYSICS |           (2021) 4:161 | https://doi.org/10.1038/s42005-021-00665-6 | www.nature.com/commsphys 5

www.nature.com/commsphys
www.nature.com/commsphys


excitation, double degeneracy of the entanglement spectrum, and
dispersion-less low-energy excitations in Szz(q,ω). Therefore, we
believe that phase II is the RDML state.

In summary, we obtained the phase diagram of the 1/5 plateaus
of the KSC using the DMRG method. To the best of our
knowledge, we discovered two new plateau phases (II and III). As
the most surprising result, phase II exhibits a gapless spin liquid
with c= 1 as in the half-integer spin chain and the double
degeneracy of the entanglement spectrum as in the spin-1 chain.
These features are the same as those of the gapless SPT phases
found in previous studies38,39. We also calculated the DSSF in
phase II using the DDMRG. We found that the DSSF of Szz(q, ω)
exhibits a gapless excitation corresponding to c= 1 and
dispersion-less low-energy excitations corresponding to local
excitations. Finally, we proposed an RDML state that can explain
the gapless excitation, double degeneracy of the entanglement
spectrum, and dispersion-less low-energy excitations in Szz(q, ω)
in phase II. Based on this proposal, newly derived questions
include what symmetry protects the degeneracy during phase II
and whether the RDML corresponds to a gapless SPT order.

The KSC compounds with five exchange interactions have been
previously reported46. Therefore, it is possible that compounds
with our model will be synthesized in the future. Because M/Msat

= 1/5 is a relatively low magnetization, the 1/5 plateau may be
observed experimentally. As such, we anticipate that our study
will promote future experimental studies on the KSC.

Methods
We conducted DMRG calculations at zero temperature up to a system size N=
1000(= 5 × 200) for various values of J1 and J2. For the system, we construct a
snakelike one-dimensional chain. The number of states m kept in the DMRG
calculation is 400− 2500, and truncation errors are less than 5 × 10−7. For the
calculation of the dynamical spin structure factors, we use DDMRG for N= 60(=
5 × 12) and N= 80(= 5 × 16) under a periodic boundary condition (PBC). In our
DDMRG, we use three kinds of target states: for Szz(q, ω), (i) 0j i, (ii) ~Szq 0j i, and (iii)
ðω�H þ E0 þ iηÞ�1~S

z
q 0j i. Target state (iii) is evaluated using a kernel-polynomial

expansion method40, where the Lorentzian broadening η is replaced by a Gaussian
broadening with a width of 0.05. We divide the energy interval [0, 1.6] by 80 mesh
points and target all of the points at once with m= 1000.

Data availability
The data supporting the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code that support the findings of this study is not an open source but is available
from the corresponding author upon request.
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