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Quantum adiabatic cycles and their breakdown
Nicolò Defenu 1✉

The assumption that quasi-static transformations do not quantitatively alter the equilibrium

expectation of observables is at the heart of thermodynamics and, in the quantum realm, its

validity may be confirmed by the application of adiabatic perturbation theory. Yet, this

scenario does not straightforwardly apply to Bosonic systems whose excitation energy is

slowly driven through the zero. Here, we prove that the universal slow dynamics of such

systems is always non-adiabatic and the quantum corrections to the equilibrium observables

become rate independent for any dynamical protocol in the slow drive limit. These findings

overturn the common expectation for quasi-static processes as they demonstrate that a

system as simple and general as the quantum harmonic oscillator, does not allow for a slow-

drive limit, but it always displays sudden quench dynamics.
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Quasi-static processes are thermodynamic transformations,
which happen slow enough not to cause any sizeable
variation to the instantaneous equilibrium solution of the

problem1. A convenient mathematical representation for these
processes considers a system, initially at equilibrium, whose
Hamiltonian is slowly varied in time H(δ ⋅ t) with a rate much
smaller than any internal scale of the system. Under proper
assumptions on the analyticity of the evolution and of the ther-
modynamic functions, an analytic scaling ~δ2 for the dynamical
corrections to the equilibrium expectations may be predicted2.

In the quantum realm, the concept of “adiabaticity”, i.e. the
possibility to realise an equilibrium state by a quasi-static
process, is crucial to quantum computation, where non-trivial
correlations in the system ground state are generated by a slow
variation of the Hamiltonian parameters3. The possibility of such
manipulation is granted by the quantum adiabatic theorem4–6,
which ensures that the outcome of the adiabatic procedure will
converge to the ground-state of the final Hamiltonian in the δ→
0 limit.

The prototypical model for quantum adiabatic dynamics is the
Landau–Zener (LZ) problem, which describes the excitation
probability of a two level system ramped over an avoided
eigenvalue crossing7,8. In analogy with the classical case, the exact
solution of the LZ problem features dynamical corrections which
vanish exponentially in the slow drive limit. However, at a
quantum critical point (QCP) an actual eigenvalue crossing
appears9 and non-analytic corrections ~δθ to the adiabatic
observables emerge, according to the Kibble–Zurek mechanism
(KZM), where the θ-scaling only depends on the equilibrium
critical exponents10,11. Interestingly, an exact description of KZM
in thermodynamic systems with purely Fermionic quasi-particles
can be obtained by relating the quasi-particle dynamics to an
infinite number of LZ transitions with momentum dependent
minimal gaps12,13. Therefore, the LZ problem has remained up to
now one of the most precious tools to understand defects for-
mation in quantum systems14.

Nevertheless, several quantum many-body systems feature
strongly interacting QCPs and no quadratic effective field theory
in terms of Fermi quasi-particles can be constructed. The validity
of KZM scaling in these systems can be shown by adiabatic
perturbation theory, which, under proper scaling assumptions, is
able to reproduce the expected non-analytic scaling for the defect
density nexc ≈ δθ15. Notice that the assumptions made in ref. 15 in
order to derive the KZM prediction for generic quantum many-
body systems may not apply to systems with competing
interactions16.

More in general, the adiabatic perturbation theory approach
cannot be applied to harmonic systems with Bosonic quasi-
particles as the perturbative assumption is violated by Bose sta-
tistics, which allows macroscopic population in the excited
resonant states17,18. Moreover, several critical systems ranging
from quantum magnets and cavity systems to superfluids and
supersolids can be effectively described by harmonic Bose quasi-
particles, whose excitation energy gradually vanishes approaching
the QCP2,9.

In the following, we investigate quantum adiabatic cycles
across a QCP, where infinite many excitation levels become
degenerate (corresponding to the case of Bose statistics for the
excitations), see Fig. 1. The general assumptions of the quantum
adiabatic theorem do not hold in this case and no-general result
over the dynamical corrections to the adiabatic observables is
known4–6. We prove that adiabaticity breakdown is a universal
feature of these systems independently of the considered drive
rate and shape. These results justify and extend recent studies
concerning non-adiabatic defect formation nexc ≈O(1) in fully-

connected many-body systems and in single-mode harmonic
Hamiltonians with analytic ~t2 drives19,20.

One of the fundamental consequences of these findings con-
cern the full characterisation of defect formation in critical
quantum many-body systems, as we provide the missing piece of
information to summarise universal adiabatic dynamics as
follows:

● Finite systems: nexc ≈ δ2.
● Interacting QCPs: nexc ≈ δθ.
● Harmonic Bose quasi-particles: nexc ≈O(1).

The first class is conveniently represented by the LZ model, while
the second one can be treated by adiabatic perturbation theory.
The present investigations focus on the third class, where the
dynamical corrections are always non-adiabatic, i.e. rate inde-
pendent, but for which no general result was known up to now.

It is worth noting that the aforementioned regimes for defect
scaling may also appear in a given quantum system depending on
the type of dynamical protocol performed, see the results section.
In particular, for a system with harmonic Bose quasi-particles, the
non-analytic δθ scaling may be found for dynamical protocols
terminating exactly at the QCP (regime 1). While any actual
crossing of the gapless point will lead to a finite defect density
nexc ≈O(1) (regime 2). Therefore, dynamical quasi-static trans-
formations of Bosonic systems across QCPs are the main focus of
the present paper.

Before proceeding further with the analysis, it is convenient to
discuss the aforementioned picture in the context of the existing
literature. Seminal studies on the Kibble–Zurek scaling across
QCPs have been performed in refs. 11,12,14,15 in the context of
many-body systems with Fermi quasi-particles. The extension of
these analyses to the case of Bose modes, such as spin-waves, has
been limited to the case of quenches in the vicinity of a critical
point17,21, where regime (1) has been analysed only for linear
scaling of the square frequency ω(t)2 ≈ δ ⋅ t. Also, refs. 17,21 con-
sider a continuum ensemble of non-interacting Bose quasi-
particles with gapless spectrum rather than a single mode. Then,
the non-adiabatic phase observed in refs. 17,21 is not the con-
sequence of the crossing of the critical point (which is not dis-
cussed there), but of the infra-red divergence of spin-wave

Fig. 1 Schematic representation of the quantum adiabatic cycle under
study. The system is prepared in the ground state of the Hamiltonian (n=
0) with a regular, well separated, spectrum at the initial time− ti. Each
excited state is labeled by a growing integer n. Then, the Hamiltonian is
dynamically driven in such a way to reduce the spectral gap of the system ω
(t*)≪ω(−ti) (i.e. followong the lower green arrows), until the
instantaneous spectrum becomes fully degenerate ω(t= 0)≃ 0 (on the
right in the picture). Finally, the drive protocol is inverted and the initial
Hamiltonian is restored (following the upper green arrows).
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contributions in low-dimensions, which also causes the dis-
appearance of continuous symmetry breaking transitions in d ≤ 2,
according to the Mermin–Wagner theorem22–24.

First mathematical evidences of the existence of regime (2)
have been found in ref. 19, where the scaling of the single mode
gap was assumed to be linear (ω(t)2 ≈ t2). This solution is more
straightforward due to the homogeneous scaling of the time
parameter and the position operator ω(t)x2∝ (t x)2. In the physics
context, these results have been used to justify the anomalous
defect scaling numerically observed in the LMG model20,25.

In this work we are going to prove that the existence of regime
(2) is actually a generic feature of any dynamical protocol,
crossing a QCP with pure bosonic quasi-particles. The amount of
heat and the number of defects generated at the end of these
dynamical manipulations will be shown to be universal functions,
which do not depend on the drive rate nor on the peculiar drive
shape, but only on the leading scaling exponent in the time-
dependent frequency expansion ω(t) ≈ (δ∣t∣)zν+⋯ . Moreover,
our analysis will extend the observations of refs. 17,21 for dyna-
mical evolutions terminating in the vicinity of the QCP to any
scaling exponent zν.

Results
In order to prove our picture, let us consider a single dynamically
driven Harmonic mode with Hamiltonian

HðtÞ ¼ 1
2

p2 þ ωðtÞ2x2� �
: ð1Þ

A part from its fundamental interest, the Hamiltonian in Eq.
(1) faithfully describes the quantum fluctuations of many-body
systems with fully-connected cavity mediated interactions such as
the Dicke26 or the Lipkin–Meshkov–Glick (LMG) models20,27–31

and, more in general, models which feature a collective single
mode excitation, such as the BCS model32.

The dynamics described by Eq. (1) cannot be explicitly solved in
general, but an explicit solution can be obtained for the scaling form

ωðtÞ2 ¼ δjtjð Þ2zν ð2Þ
where δ > 0 is the drive rate and the exponent zν > 0 represents the
gap scaling exponent. In the following we are going to show that
any time-dependent shape ω(t), which crosses the QCP at t= 0, can
be reduced to the form in Eq. (2) in the δ→ 0 limit.

Equation (1) with the time-dependent frequency in Eq. (2) may
be regarded as effectively describing a many-body system ramped
across its QCP, in the spirit of refs. 19–21. Within this perspective
the exponent zν represents the dynamical critical exponent for the
gap scaling9. However, it is worth noting that in the framework of
the effective theory in Eq. (1) the quantity zν in Eq. (2) is merely a
tuneable parameter describing the dynamical protocol and it is
not directly related to any critical behaviour displayed by the
effective model at equilibrium.

As long as the the spectral gap remains finite at all instants (ω
(t) ≠ 0 ∀ t) the scaling of the defect density and the corrections to
the dynamical observables with respect to the instantaneous
equilibrium expectation can be predicted using adiabatic pertur-
bation theory17,21, see also Chap. 3 of ref. 33. In addition, as
anticipated in the introduction, two universal regimes are
observed according to the scaling of the observables in the quasi-
static limit δ→ 0:

1. Kibble–Zurek regime (half-cycle).
2. Universal non-adiabaticity (full cycle).

Regime (1) occurs for a half-cycle t∈ [−ti, 0] (with ti∝ 1/δ) and
features non-analytic corrections to the adiabatic expectations

appearing at t= 0 (where ω(0)= 0). Such corrections cannot be
captured by the standard perturbative approach, but can be
predicted by the KZM scaling argument. On the contrary for a
full cycle t∈ [−ti, ti] the critical point is actually crossed and the
system enters in the non-adiabatic regime, where the leading
correction to the observables expectation does not depend on δ.
We refer to this latter scenario as regime (2). Again, it should be
stressed that the notation zν for the frequency scaling in Eq. (2) is
employed in order to make contact with the traditional
Kibble–Zurek picture in many-body systems, but in our case
the exponent zν is just an effective quantity, which is not
connected with the equilibrium critical scaling of any
specific model.

The picture outlined above naturally follows from the solution
of the model under study. The dynamical eigen-functions of the
Hamiltonian in Eq. (1) can be written in terms of a single time-
dependent parameter: the effective width ξ(t), see the definition in
Supplementary Eq. (2). Then, the dynamics of the quantum
problem may be obtained by the solution of the Ermakov–Milne
equation, which describes the evolution of the effective width ξ(t),
see Supplementary Eq. (5).

First, it is convenient to rewrite the Hamiltonian in Eq. (1) as a
rate independent one by introducing the transformations

t ¼ δ�
zν

1þzνs; x ¼ δ�
zν

2þ2zν~x ð3Þ
which reduce the dynamics of the model in Eq. (1) to the δ= 1
case, see the Supplementary Methods 2. The expressions for the
fidelity and defect density of the model, given in Supplementary
Eqs. (12) and (13), are invariant under the transformations in Eq.
(3) in such a way that the fidelity and excitation density at real
times can be obtained by ~ξðsÞ ¼ limδ!1ξðtÞ and ~ΩðsÞ2 ¼ s2zν ,
provided that the endpoint of the dynamics is rescaled
accordingly.

Regime 1 (Kibble–Zurek scaling). An adiabatic cycle is realised
when the system starts in the instantaneous ground state of the
equilibrium Hamiltonian, i.e. limt!�ti

ψðtÞ ¼ ψad
0 ð�tiÞ, where ψad

0

is the adiabatic state obtained replacing the constant frequency
with the time-dependent one in the equilibrium ground-state34.
Accordingly, one has to impose the boundary conditions

lim
t!�ti

ξðtÞ2 ¼ 1
2ωðtÞ ; lim

t!�ti

_ξðtÞ2 ¼ 0: ð4Þ

Following the exact solution given in the Supplementary Meth-
ods 3, the time-dependent width ξ(t) and its time derivative attain
a finite value in the t→ 0 limit. However, a finite result for the
width ξ(t) at ω(t)= 0 corresponds to a vanishing fidelity,
f ðtÞ /

ffiffiffiffiffiffiffiffi
ωðtÞ

p
, see the Supplementary Eq. (13). Consequently, the

defect density diverges as nexc(t)∝ 1/ω(t), see Supplementary Eq.
(12), but the heat (or excess energy) remains finite

lim
t!0

QðtÞ ’ lim
t!0

ωðtÞnexcðtÞ / δ
zν

1þzν; ð5Þ
where nexc represents the excitation density and the power-law
scaling θ= zν/(1+ zν) perfectly reproduces the celebrated
Kibble–Zurek result13.

The result in Eq. (5) may be also obtained by the impulse-
adiabatic approximation at the basis of the KZM result13,17.
Indeed, as long as the instantaneous gap remains large with
respect to the drive rate _ωðtÞ � ωðtÞ2 the dynamical state may be
safely approximated by the adiabatic one ψ0ðtÞ ’ ψad

0 ðtÞ. This
approximation breaks down at the freezing time t* such that
the adiabatic condition is violated _ωðt�Þ ’ ωðt�Þ2. For t > t*
the system enters in the impulse regime and the state remains
frozen at ψad

0 ðt�Þ with frequency ω(t*)∝ δzν/(1+zν) all the way
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down to t= 0. Then, the excess energy at the endpoint of the
dynamics readsZ þ1

�1
ψad;�
0 ðt�ÞHð0Þψad

0 ðt�Þdx � δ
zν

1þzν ð6Þ

which reproduces the exact result in Eq. (5) as well as the
traditional Kibble–Zurek picture for many-body systems35,36. The
result in Eq. (6) provides a first evidence of the validity of the
model Hamiltonian in Eq. (1) as an effective tool to represent
many-body critical dynamics.

Regime 2 (universal non-adiabaticity). A full cycle is realised
when the system actually crosses the QCP at t= 0. There, the
driving protocol in Eq. (2) is non-analytic, but a proper solution
can be achieved requiring that the dynamical state and its time
derivative remain continuous at all times. Thus, defining the
quantities limt!0± ξðtÞ ¼ ξ ± , a proper continuity condition for
the time-dependent width reads

ξþ ¼ ξ�; _ξþ ¼ _ξ�: ð7Þ
For a gapped cycle where limt→0ω(t) ≠ 0 in the δ→ 0 limit, the
conditions in Eq. (7) is automatically satisfied and the ξ+(t)
solution at t > 0 approaches the same form as in the first branch
t ≤ 0 of the dynamics, as required by the quantum adiabatic
theorem, see Fig. 2 and the Supplementary Methods 3C. Then, a
gapped cycle always remains adiabatic and the corrections to
scaling can be described within the same adiabatic perturbation
theory picture developed in refs. 17,21 for the zν= 1/2 case.

For a gapless cycle, represented by Eq. (2) with t∈ [−ti, ti], the
quasi-static limit (δ→ 0) becomes rate independent, yielding the
fidelity end excitations density expressions

lim
t!1

nexcðtÞ ¼ tan
π

2þ 2zν

� ��2

ð8Þ

lim
t!1

f ðtÞ ¼ sin
π

2þ 2zν

� �
ð9Þ

as detailed in the Supplementary Methods 3B. The expressions in
Eqs. (8) and (9) are universal with respect to rate variations, as it
was already evidenced in the peculiar zν= 1 case by ref. 19, where

asymptotic analysis yielded f ð1Þ ¼ 1=
ffiffiffi
2

p 8 δ in agreement
with the result in Eq. (9).

In addition, the result in Eq. (8) remains finite for any finite zν
and it only quadratically vanishes as zν approaches zero, proving
that the non-adiabatic phase does not depend on the choice of the
drive scaling, but it is rather a general feature of Bosonic quantum
systems. Interestingly, in the zν→∞ limit the system reaches
what could be called an “anti-adiabatic” phase, where the ground
state fidelity completely vanishes at the end of the cycle. The
approach between the numerical solution for a finite ramp
extension (solid lines) and the exact asymptotic expressions in
Eqs. (9) and (8) is shown in Fig. 2.

Universality. Albeit the absence of any proper scaling beha-
viour as a function of δ , the results in Eqs. (8) and (9) are as
much universal as the traditional KZM result, in the sense that
they exactly describe the slow drive limit δ→ 0 of any dynamical
protocol which crosses the critical point. Indeed, given a general
time-dependent control parameter λ(δ t) the dynamics close to
the critical point can be expanded according to

ω0ðtÞ2 ’ ðδtÞ2zν þ γ0ðδtÞn þ � � � ð10Þ

where the integer exponent n 2 N represents any analytic cor-
rection to critical scaling (but the same argument will apply to a
non-analytic one, as long as it remains irrelevant in the t→ 0
limit, i.e. 2zν < n). Then, applying the transformation in Eq. (3)
one obtains the result ω0ðsÞ2 ’ s2zν þ γsn where
γ ¼ δðn�2zνÞ=ð1þzνÞγ0, which vanishes in the δ→ 0 and reproduces
the effective model considered in Eq. (2) .

Moreover, we have numerically verified that our analytic
solution accurately describes any drive ω0ðtÞ such that
jω0ðt�Þ � ωðt�Þj2 � ωðt�Þ2, as it is shown in Fig. 2. There, the
numerical integration of the Supplementary Eq. (5) with the
frequency in Eq. (10) and different γ values (solid curves) is
compared with the analytic result for the dynamical protocol in
Eq. (2) (black dashed lines). The resulting curves for the number
of excitations with different γ values only differ in the oscillations
at large times t≫ t*, but these oscillatory terms are irrelevant as
they are washed away in the t→∞ limit.

Fig. 2 Characterisation of quantum adiabatic cycles. a Heat generated during a gapped cycle with time-dependent gap ωðtÞ2 ¼ t0 þ δjtj� �2zν
, with minimal

gap ω0 ¼ t2zν0 , drive rate δ and scaling exponent zν. The curves are shown as a function of the time t in units of t*∝ δ−zν/(1+zν). Notice that the minimal gap
ω0 is reached at the time t0. Each sub-panel reports various curves for increasing values of s0 ¼ δ�1=ð1þzνÞω1=zν

0 . The values of s0∈ [0, 10] grow in the
direction of the arrow. The generated heat vanishes in the large s0 limit. b The fidelity of the model for different values of zν= {0.5, 0.9, 1.3, 1.75, 2.2, 3}
(solid lines from top to bottom) is compared with the asymptotic result in Eq. (9) (dashed horizontal lines). c The numerical results for the number of
excitations, defined by Eq. (12) in the Supplementary Methods 1, have been calculated within the generalised dynamical model described by Eq. (10).
Different values of γ∈ [0, 0.01], which quantify the extent of the non-universal correction see Eq. (10), produce different curves for t > t* (solid lines).
However, the long-time limit converges to the same asymptotic value. The exact analytic solutions at γ= 0 are shown as black dashed lines.
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Discussion
The aforementioned picture for the dynamics of the Harmonic
model does not only describe the simple Hamiltonian in Eq. (1),
but it also applies to conformal invariant systems confined by a
time-dependent harmonic potential, such as the Calogero
model37, the 1-dimensional Tonks girardeu38, the trapped 2D
Bose gas39, the unitary 3D Fermi gas40 and the 2D Fermi gas, far
from its crossover regime41. The Ermakov–Milne equation that
regulates the dynamics of the model in Eq. (1) has been also used
to study defect formation in a cosmological context34,42,43, see
ref. 44 for an overview. Moreover, a generalisation of the
Ermakov–Milne equation is obtained in all dimensions by the
variational treatment of the Gross–Pitaevskii equation45.

More in general, our description of the KZM can be applied to
any many-body system, whose dynamics may be approximated
by an ensemble of harmonic spin-waves according to the time-
dependent Hartee–Fock approximation46–48. In the Supplemen-
tary Note 1 an account of this procedure is given for O(N)
symmetric models with long-range couplings in 1-dimension,
where the Hartee–Fock method becomes exact in the large-N
limit49–51 (the so-called spherical model52,53). In the last few
decades, O(N) field theories constituted the testbed for most
calculations in critical phenomena24,54–58 and are, even currently,
a continuous source of novel universal phenomena59–62. Our
analysis shows that the universal picture derived in the present
work for the Hamiltonian in Eq. (1) describes the scaling of the
fidelity and the defect density of O(N) models in the strong long-
range regime at large-N, see the Supplementary Note 1.

Thanks to the Harmonic nature of the Hamiltonian in Eq. (1)
we have been able to derive a comprehensive picture for defects
formation across the ω(t)= 0 QCP, where infinitely many exci-
tation levels become degenerate. The present solution proves that
the dynamical crossing of an infinitely degenerate QCP is non-
adiabatic independently on the smallness of the rate δ and on the
functional form of the drive ω(t). Adiabaticity is only recovered
for a sub-power law scaling of the drive, i.e. in the zν→ 0 limit. In
contrast, any dynamics terminating in the vicinity of the fully
degenerate critical point yields power law corrections, which can
be described by the celebrated KZM.

The Kibble–Zurek scaling is traditionally derived within the
adiabatic-impulse approximation discussed below Eq. (5) and
may be also justified in the more rigorous framework of adiabatic
perturbation theory15. Both these descriptions fail in regime (2) of
the harmonic oscillator dynamics due to the infinite number of
excited states collapsing at ω(t)= 0. Indeed, the impulse-adiabatic
approximation assumes that the dynamical state is frozen at
ψad
0 ðt�Þ

�� �
in the entire range t∈ [−t*, t*] of the dynamics. The

dynamical correction to the energy at any instant of time (t >−
t*) derives from the overlap between such state and the hierarchy
of adiabatic excited states cn0ðtÞ � hψad

n ðtÞjψad
0 ðt�Þi34. Then, the

probability distribution for the excitation number n remains fixed
at the instant −t* in the entire inner regime of the dynamics, so
that defects generated at t >−t* are effectively discarded.

In the conventional case, where a critical point with finite
degeneracy is crossed, the impulse-adiabatic approximation is
justified since most of the defects generated in range−t* < t < 0
annihilate at the opposite side of the cycle 0 < t < t* so that the
defect distribution can be approximated by the one at t=−t*13.
However, this is not the case of an infinitely degenerate QCP,
where the exact dynamical state also has a finite overlap with
high-energy states at large-n. The tunnelling between such states
and the adiabatic ground-state is suppressed due to the large
energy separation, forbidding defects recombination. As a result,
a finite fraction of the wave-function density is dispersed in the
high-energy portion of the spectrum after crossing the QCP and
the unit fidelity cannot be recovered for any t > 0.

The possibility to manipulate a quantum system in its ground-
state heavily relies on the adiabatic properties of quasi-static
transformations and it is crucial to quantum technology
applications3,63. Yet, the quantum adiabatic theorem only applies
to dynamical systems with finite ground-state degeneracy4–6,
while for the infinite degenerate case no general result was known
up to now. In principle, one could have expected that a particular
dynamical protocol could be devised to achieve a proper quasi-
static transformation also for quantum system dynamically driven
across infinite degenerate QCPs.

This is actually not the case, as we have proven that any
dynamical protocol which reduces the excitation energy of an
harmonic Hamiltonian down to the zero always produces a non-
adiabatic outcome. Indeed, the excitation density and the fidelity
results at the end of a general quasi-static transformation are
universal and only depend on the drive shape, but not on its
quench rate δ as long as a full cycle across the QCP is performed,
see Eqs. (8) and (9). This is not the case for driving protocols
terminating in the vicinity of the QCP, as they remain adiabatic,
see the result in Eq. (5) and refs. 17,21. The present analysis
unveils that a universal description of quasi-static processes can
be also achieved outside the traditional assumptions of the
quantum adiabatic theorem, opening to the possibility that
adiabaticity breakdown is a universal feature of QCPs with infi-
nite state degeneracy also beyond the harmonic result
discussed here.
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