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Quantum entangled fractional topology and
curvatures
Joel Hutchinson 1 & Karyn Le Hur 1✉

Topological spaces have numerous applications for quantum matter with protected chiral

edge modes related to an integer-valued Chern number, which also characterizes the global

response of a spin-1/2 particle to a magnetic field. Such spin-1/2 models can also describe

topological Bloch bands in lattice Hamiltonians. Here we introduce interactions in a system of

spin-1/2s to reveal a class of topological states with rational-valued Chern numbers for each

spin providing a geometrical and physical interpretation related to curvatures and quantum

entanglement. We study a driving protocol in time to reveal the stability of the fractional

topological numbers towards various forms of interactions in the adiabatic limit. We elucidate

a correspondence of a one-half topological spin response in bilayer semimetals on a hon-

eycomb lattice with a nodal ring at one Dirac point and a robust π Berry phase at the other

Dirac point.
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In recent years, rising interest in topology has traveled from
mathematics to physics owing to advances in quantum science
and technology. This allows for the direct observation of the

Chern number distinguishing topological insulators and super-
conductors from their normal counterparts1,2. The properties of
these systems can be revealed from the reciprocal or momentum
space, where the Bloch Hamiltonian maps onto the Hamiltonian
of a spin-1/2 particle or two-state system in an applied magnetic
field that acts radially on the Poincaré (Bloch) sphere3 with polar
angle θ and azimuthal angle ϕ. Upon adiabatically sweeping from
the north to south pole, along a curved path with fixed angle ϕ,
the Chern number C of this two-state system represented by a
vector of Pauli matrices σ= (σx, σy, σz) is equal to 1. Incredibly,
this topological quantity can be measured directly from the spin
magnetizations at the poles4–6

C � 1
2π

Z 2π

0
dϕ

Z π

0
dθF ϕθ

¼ 1
2

hσzðθ ¼ 0Þi � hσzðθ ¼ πÞi� � ¼ 1:

ð1Þ

The angles θ= 0 and θ= π refer to the north and south poles
of the sphere, respectively. We have introduced the Berry cur-
vature

F ϕθ � ∂ϕAθ � ∂θAϕ; ð2Þ
and the Berry connection A, defined from the gradient of the
ground state ψ

�� �
according to7

Aα ¼ i ψ
� ��∂α ψ

�� �
: ð3Þ

The associated Berry phase represents an important foundation
of quantum physics8. In the quantum Hall effect, such a geo-
metrical description in terms of curvatures plays a key role in the
link with electronic transport properties such as the quantum
Hall conductivity9,10. Here, the integer Chern number C of a
given spin-1/2 is related to a topological charge—the degeneracy
point of the Hamiltonian—contained within the sphere spanned
by the magnetic field vector. The spin-1/2 orientation then
measures directly this topological charge11–13. A recent
experiment12 has studied two spin-1/2s, σ1 and σ2, under the
influence of the radial fields H1 and H2 forming the surface of the
sphere. The two spins interact through a transverse coupling
ðσx1σx2 þ σy1σ

y
2Þ. Their resulting topological phase diagram consists

of integer C ¼ 0, 1, and 2 phases, corresponding to topological
charges located outside both spheres, inside one sphere, and
inside both spheres, respectively. To show the possibility of
entangled states with a stable fractional Chern number for each
spin, we add a crucial ingredient corresponding to adjustable
constant magnetic fields on the sphere. In the following, we
introduce a model with two spins σ1 ¼ ðσx1; σy1; σz1Þ and σ2 ¼
ðσx2; σy2; σz2Þ interacting through an Ising coupling, to reveal half-
topological numbers for each spin on the sphere. The topology is
defined on each subsystem, here a spin-1/2, directly from the
poles. We show applications of the spheres with C ¼ 1=2 per spin
for the characterization of topological semimetallic phases in
bilayer honeycomb systems showing one Dirac point associated
with a π Berry phase and another Dirac point revealing a nodal
entangled ring. We generalize the effect including XY couplings
and higher numbers of spins.

Results
Model with two spheres. The Hamiltonian for two spheres reads

H ± ¼ �ðH1 � σ1 ±H2 � σ2Þ±~rf ðθÞσ1zσ2z : ð4Þ
The magnetic field Hi acts on the same sphere parameterized

by (θ, ϕ) and may be distorted along the ẑ direction with the

addition of the uniform field Mi according to4

H i ¼ ðH sin θ cos ϕ;H sin θ sinϕ;H cos θ þMiÞ; ð5Þ
for i= 1, 2. We show below through energetics arguments that
the fields Mi are indeed important to stabilize a fractional Chern
number. We also consider a generic θ-dependent coupling ~rf ðθÞ
with ~rf ðθÞ > 0. The ± denotes two distinct classes of models. It is
important to highlight here that in the case where a spin-1/2 is
coupled to an environment, the topological number associated
with the spin may vary continuously from C ¼ 1 to C ¼ 0
dependently on the coupling strength between the two systems.
In the present case, we show that the fractional Chern numbers
are stable toward smooth deformations of the geometry and
toward the form of the interactions. In experiments, the
magnetizations may be measured for each spin independently,
such that the Chern number also has a well-defined component
corresponding to each subsystem. Therefore, we find it important
to first generalize Eqs. (1) and (3) for subsystem or spin j in the
interacting model. The corresponding Chern number Cj will
provide a robust topological number related to the quantum Hall
conductivity and will also represent a measure of entanglement.
The spin system we consider here provides a nice platform for
understanding how topology can be partitioned between
subsystems.

While the eigenstates of the Hamiltonian (4) are in general
complicated for ~rf ðθÞ ≠ 0, their ϕ-dependence is very simple, such
that the ground state wavefunction of the system can be written as
ψ
�� � ¼ ∑klcklðθÞ ΦkðϕÞ

�� �
1
ΦlðϕÞ
�� �

2
. In the standard representation

of a single-spin eigenstate in a radial magnetic field, the ground
state is "

�� �
at the north pole where θ= 0, and eiϕ #

�� �
at the south

pole where θ= π. We will take these states to form our single-spin
basis and introduce the standard spin or representation,

ΦþðϕÞ
�� �

j
¼ "

�� � ¼ 1
0

� �
and Φ�ðϕÞ

�� �
j
¼ eiϕ #

�� � ¼ 0
eiϕ

� �
for the

two spins with j= 1, 2. Therefore, in the wavefunction we have k,
l= ±.

For ~r ! 0 and Mi → 0, the ground state ψ
�� �

then shows
cþþðθÞ ¼ cos2 θ

2, c��ðθÞ ¼ sin2 θ
2, and c�þðθÞ ¼ cþ�ðθÞ ¼

sin θ
2 cos

θ
2 with the normalization equation ∑kl∣ckl∣2= 1 where k,

l= ±. While there are many ways to represent these single-spin
states, their relative phase eiϕ is fixed. At a general level, we have
cklðθÞ ¼ c1klðθÞc2klðθÞ such that the wavefunction of the system can
be equivalently written as ψ

�� � ¼ ∑kl c
1
klðθÞΦðϕÞk

�� �
1
c2klðθÞΦðϕÞl
�� �

2
.

Then, we introduce the partial derivative symbol ∂1α, which
equally refers to ∂1αI� I when applied on jψi, where 2 × 2
identity matrices Imean that the partial derivative acts identically
on the two components of a spin-1/2 spin or and through the
direct product it acts on the subspace of one spin-1/2 only (here
the first spin). We introduce a similar definition for ∂2α as I� ∂2αI
acting on the second spin-1/2. The Berry connection for the jth
spin is then naturally defined as Aj

α � i ψ
� ��∂jα ψ

�� �
where α= ϕ,θ,

along with the jth Berry curvature F j
ϕθ ¼ ∂jϕAj

θ � ∂jθAj
ϕ, and

Chern number

Cj ¼ 1
2π

Z 2π

0
dϕ

Z π

0
dθF j

ϕθ: ð6Þ

The operator ∂jα acts on the Hilbert space of the jth spin. Here,
Aj

θ is not uniquely defined, but Cj still is since Aj
θ ¼

i∑klc
�
klðθÞ∂jθcklðθÞ with ∂1θcklðθÞ ¼ c2klðθÞð∂θc1klðθÞÞ and

∂2θcklðθÞ ¼ c1klðθÞð∂θc2klðθÞÞ, so that we can safely summarize that
∂jϕAj

θ ¼ 0. From the relations ∂jϕ Φ�ðϕÞ
�� �

j ¼ i Φ�ðϕÞ
�� �

j and

∂jϕ ΦþðϕÞ
�� �

j
¼ 0, the Berry connection then reads: A1

ϕ ¼
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�jc�þðθÞj2 � jc��ðθÞj2 and A2
ϕ ¼ �jcþ�ðθÞj2 � jc��ðθÞj2. Note

that product states such as "
�� �

1
"
�� �

2
or #

�� �
1
#
�� �

2
will contribute 0

or −1 to the Berry connection, while a maximally entangled
Einstein–Podolsky–Rosen or Bell state14, such as
1ffiffi
2

p ð "
�� �

1
#
�� �

2
þ #

�� �
1
"
�� �

2
Þ, will give −1/2.

From Eq. (6), the Chern number for the jth spin can be written
as

Cj ¼ �ðAj
ϕðπÞ �Aj

ϕð0ÞÞ: ð7Þ
Additional derivations of this are shown in Supplementary

Note 1 through Stokes’ theorem and the introduction of smooth
fields. It is interesting to observe that a similar correspondence is
useful to describe the “quantized” topological response of one
pseudospin-1/2 when coupling with circularly polarized light
then referring to quantized circular dichroism of light15–17. Here,
we also show that Eq. (7) defining the topology at the poles only is
related to the charge polarization and the quantum Hall
conductivity for the subsystem j itself, see Supplementary Note 1.
Then, we have the general result

C1 ¼ jc�þðπÞj2 þ jc��ðπÞj2 � jc�þð0Þj2 � jc��ð0Þj2;
C2 ¼ jcþ�ðπÞj2 þ jc��ðπÞj2 � jcþ�ð0Þj2 � jc��ð0Þj2:

ð8Þ

From the Pauli operator σ jz ¼ "
�� �

jj
"� ��� #

�� �
jj
#� �� and from the

normalization equation of the state ψ
�� �

, we also find the equality

ψ
� ��σ jz ψ�� � ¼ 1þ 2Aj

ϕ, leading to

Cj ¼ 1
2

hσ jzðθ ¼ 0Þi � hσ jzðθ ¼ πÞi� �
: ð9Þ

Equation (9) is an interesting generalization of Eq. (1) because
this shows that one can yet define and measure for these
interacting models in curved space the topology from the
magnetizations of a given spin j at the poles.

Now, we consider the specific system of interest whose ground
state evolves from a product state at θ= 0 to an entangled state at
θ= π

"
�� �

1 "
�� �

2 !
1ffiffiffi
2

p ð "
�� �

1 #
�� �

2 þ #
�� �

1 "
�� �

2Þ: ð10Þ

The nonzero coefficients are ∣c++(0)∣2= 1 and
jcþ�ðπÞj2 ¼ jc�þðπÞj2 ¼ 1

2, for which

C1 ¼ C2 ¼ 1
2
: ð11Þ

The presence of entanglement at one pole leads to a fractional
Chern number of 1/2 for each spin. This value is in agreement
with hσ jzðθ ¼ 0Þi ¼ 1 and with hσ jzðθ ¼ πÞi ¼ 0, reflecting the
formation of a maximally entangled Bell pair at the south pole14.
The norm of each spin effectively shrinks at the south pole,
leading to a ln 2 entanglement entropy18. In the case where the
two spins would form a product state that follows the magnetic
field, then from c++(0)= 1 and c−−(π)= 1, we verify Cj ¼ 1. In
the case where the two spins would be entangled at both poles
then Cj ¼ 0.

To show that our model in Eq. (4) does indeed fulfill the
necessary prerequisites to observe C1 ¼ C2 ¼ 1

2, we study the
topological phase diagram which is entirely determined by the
energetics at the poles. For clarity, we analyze the Hþ

Hamiltonian, hereafter the H� Hamiltonian, reveals a similar
fractional phase. At the poles, the ground state is readily
determined, and the resulting topological phase for each spin is
shown in Fig. 1a for a constant interaction f(θ)= 1. Allowing for a
nonconstant interaction does not change this phase diagram
significantly, though it does open up the intriguing possibility of a

direct transition from C1 þ C2 ¼ 2 to C1 þ C2 ¼ 0 at the solution
of ðH �M2Þ=f ðπÞ ¼ ~r ¼ ðH þM1Þ=f ð0Þ.

In the presence of Z2 symmetry between the two spins
corresponding to σ1z $ σ2z when M1=M2≡M in Eq. (4), the
ground state at the north pole with θ= 0, is "

�� �
1
"
�� �

2
provided

that ~rf ð0Þ < H þM. At the south pole with θ= π, the ground
state is #

�� �
1 #
�� �

2 for ~rf ðπÞ < H �M, but it is degenerate between
the antialigned configurations for ~rf ðπÞ>H �M. In that case, the
presence of the transverse fields in the Hamiltonian along the
path over the sphere will then produce the analog of resonating
valence bonds19. Indeed in this section, we will see that the singlet
state is decoupled from the rest, while the triplet state
1ffiffi
2

p ð "
�� �

1
#
�� �

2
þ #

�� �
1
"
�� �

2
Þ, showing the resonance between the

two valence bond states "
�� �

1
#
�� �

2
and #

�� �
1
"
�� �

2
, is the one

Fig. 1 Topological phase diagrams. a Spin-1/2 model: topological phase
diagram for each spin in the ðM2=H;~r=HÞ plane whereM2 is the bias field on
the second qubit, ~r is the interaction, and H is the radial magnetic field.
Lines demarcate regions of different partial Chern numbers. Here, we have
set the bias field for the first qubit to M1= H/3. The gold line at M2=M1

indicates the symmetric phase with partial Chern numbers C1 ¼ C2 ¼ 1
2. The

insets illustrate (adiabatically deformed) spheres corresponding to the
parameter space spanned by the effective field for spin 1 (blue) and spin 2
(orange) in each phase. The topological charge at the origin is indicated by
the red dot. Along the gold line the effective-field manifold (which is
identical for each spin) is in a coherent superposition of containing and not
containing the monopole yielding a Chern number of 1/2 for each spin.
b Lattice model: topological phase diagram in the (M2, r) plane for the total
Chern number at half-filling, defined with the two lowest occupied bands.
Here, M2 refers to the Semenoff mass in layer 2 and r is the interlayer
hopping. The gold line at M2=M1 indicates the symmetric phase for which
the gap is closed. t1 is the nearest-neighbor hopping amplitude, and jdzj ¼
3

ffiffiffi
3

p
t2 is the next-nearest-neighbor amplitude at the Dirac points.
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adiabatically connected to the θ= 0 ground state. As a result, we
obtain half-integer Chern numbers (Eq. 11). For the simple
constant interaction f(θ)= 1, this occurs within the range

H �M < ~r <H þM; ð12Þ

indicated by the gold line in Fig. 1a. This line can be considered as
a critical point between two distinct topological phases of a given
spin. In the limit M → 0, it becomes the quantum critical point
between the total Chern number 2 and total Chern number 0
phases. We find that the H� Hamiltonian also contains a line of
fractional Chern numbers with C1 ¼ �C2 ¼ 1

2. In Supplementary
Note 2, we show that the fractional phase with Cj= 1/2 can be
stabilized and in fact spreads in the presence of an XY coupling.

We also verify that the fractional Chern number may be
generalized for N > 2 spins; starting from a product state at the
north pole, spins may evolve via the transverse field to an
entangled state at the south pole with Cj ¼ 1=2 for an even
number of spins or Cj ¼ Nþ1

2N for a frustrated system with an odd
number of spins. See Supplementary Note 3. The spin model of
Supplementary Fig. 3b, at the south pole, can be mapped onto the
same Majorana fermions as in the Kitaev spin ladder geometry20

through the Jordan–Wigner transformation, providing a relation
between Z2 gauge theories and Cj ¼ 1=2 for N= 4 spins.

Geometrical interpretation. There is another geometric picture
we can use to understand the topological nature of these num-
bers. For a spin-1/2 system, the Chern number counts the
number of degeneracy monopoles associated with the topological
charges contained within the closed manifold spanned by the
magnetic field, in accordance with Gauss’ law21. We can adapt
this picture to the case of interacting spins, where the effective
magnetic field for each spin depends on the orientation of the
other. In a mean-field sense, this would amount to Heff

1 ¼
�H1 þ ~rf ðθÞhσ2ziẑ with ẑ a unit vector along the z axis. Each of
the two manifolds spanned by Heff

1 , Heff
2 may or may not contain

the degeneracy monopole as illustrated by the insets in Fig. 1a,
resulting in the different possibilities of Ci ¼ 0; ±1. Thus, Ci,
which counts the topological charge of the effective model
describing the subsystem, is robust against local perturbations of
the effective field. For the entangled case, the manifold spanned
by the effective magnetic field on each spin rather consists of a
coherent superposition of two geometries: the one that contains
the monopole and the one that does not, represented schemati-
cally by the inset corresponding to the gold line in Fig. 1a. From
Stokes’ theorem, the geometry (hemisphere) encircling the
topological charge can be related to a pole associated with a π
Berry phase, see Eq. (33) of Supplementary Note 1. The corre-
spondence for the two spins is also similar to having two tori
placed one on top of the other; when switching on the interaction,
the topological response for each subsystem becomes equivalent
to having a half torus encircling a hole and the remaining surface
participating in the quantum entanglement.

Now, we show that this spin-1/2 model can also find
applications in topological lattice models. It is well known that
the Haldane model22—a two-dimensional Chern insulator which
has been realized in quantum materials23, graphene24, cold
atoms25,26 and light systems27–31—has a natural pseudspin-1/2
representation due to the A and B sublattices of the honeycomb
lattice where the Brillouin zone torus can be mapped onto the
parameter space discussed above. It follows that a stack of two
Haldane layers may be represented by a two-spin model.

Lattice model. We consider a plane realization of Eq. (4) con-
sisting of two AA and BB-stacked graphene lattices32 and show

how to find a fractional magnetization representing Cj. Here, θ=
0 and θ= π map onto the K and K 0 points of the first Brillouin
zone, respectively (see Supplementary Note 4). The spin degrees
of freedom now describe the momentum-space sublattice mag-
netization for each layer j. A correspondence between the spheres
model and the lattice model, which will be developed below Eq.
(16), can be formulated through the identification
σ jz $ njkB � njkA. Here, njkα represents the density of particles
associated with sublattice α=A or B for a wavevector k, in a
given layer j. The bilayer system is half-filled. The values Mj from
the previous section now describe inversion-symmetry breaking
Semenoff masses, which may be tuned for each layer33. We
highlight here that from the spheres’ formalism, the topology is
introduced here through tunable Berry phases in each layer in
accordance with the Haldane model. If the two layers have equal
fluxes, the model corresponds to the Hþ Hamiltonian, while if
they have opposite fluxes, it describes theH� Hamiltonian, which
is equivalent to the Kane–Mele model34. Here, we will discuss the
situation with equal fluxes. The mapping suggests that we need an
unusual interaction—one that is local in k-space—to produce a
momentum-dependent Ising interaction. Such interactions have
been studied in relation to Weyl semimetals35,36. In fact, we can
achieve the same result with an interlayer coupling r between
neighboring sites. All of this motivates the following lattice model
in momentum space:

H ¼ ∑
k
ðψy

k1;ψ
y
k2ÞHðkÞ ψk1

ψk2

� �
; ð13Þ

where ψy
ki � ðcykAi; cykBiÞ and

HðkÞ ¼ ðd þM1ẑÞ � σ rI
rI ðd þM2ẑÞ � σ

� �
ð14Þ

is represented in terms of the Pauli matrices σ, the 2 × 2 identity
matrix I, and the k-dependent vector d is defined in accordance
with the Haldane model in each layer (see Supplementary Note
section 4 for details). The indices i= 1, 2 indicate the layer.

The eigenvalues and eigenvectors of this matrix are readily
found at the K and K 0 points where the gap closes, respectively,
for the values of r

rþc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdzj þM1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdzj þM2

p
r�c �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdzj �M1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdzj �M2

p
:

ð15Þ

For the case of asymmetric Semenoff masses M1 ≠M2, the gap
closes and reopens at r�c . When M1 ≠M2, computing the Berry
curvature numerically37, we show in Fig. 1b that the phase
diagram for the total Chern number C at half-filling is defined
from the two lowest occupied bands, in agreement with
established results32. A topological transition takes place where
the Chern number of the second band changes from 1 to 0. When
the gap closes and reopens at K this number goes to −1. The
Chern number of the first band (lowest band) remains 1
throughout. The similarity between Fig. 1a and 1b suggests that
there indeed exists a faithful mapping between the lattice model
and the spin model, which has been shown to be certainly valid
close to the transition between the phases C ¼ 2 and C ¼ 1
(starting from the C ¼ 1)32.

Now, we study the (gold) line M1=M2 where the system
shows an additional Z2 layer symmetry (1 ↔ 2) which is at the
origin of the fractional Chern number. This situation describes a
special class, where time-reversal and inversion symmetry are not
present due to the flux and mass terms, while a Z2 symmetry is
preserved. The result is a nodal ring semimetal where the second
and third bands cross as shown in Fig. 2a. A time-reversal
invariant version of this case has been discussed38. The
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eigenstates at the poles take the simple form

ψ1 ¼
1ffiffiffi
2

p ð0;�1; 0; 1Þ; ψ2 ¼
1ffiffiffi
2

p ð0; 1; 0; 1Þ;

ψ3 ¼
1ffiffiffi
2

p ð�1; 0; 1; 0Þ; ψ4 ¼
1ffiffiffi
2

p ð1; 0; 1; 0Þ:
ð16Þ

Defining ψg

���
E
� 1

2 ðcyA1cyB1 � cyA1c
y
B2 � cyA2c

y
B1 þ cyA2c

y
B2Þ 0j i, we

see that at r ¼ rþc , there is a transition in the ground state at K

from cyB1c
y
B2 0j i, with 0j i referring to the vacuum state, to ψg

���
E
.

Meanwhile at K 0, there is a transition at r ¼ r�c from cyA1c
y
A2 0j i

(which is favored by the Semenoff masses) to ψg

���
E

(which is

favored by the interaction). Here, we develop the correspondence
with the spheres model for specific values of r between r�c and rþc
such that the fractional state can occur. It is important to
emphasize here that at half-filling, the two lowest-energy bands
are occupied, giving rise to a two-particle wavefunction. At the K
point, the ground state can be written as cyB1c

y
B2 0j i ¼ ""

�� �
. We

can then define the pseudospin magnetization in each plane as

σ jzðKÞ $ njBðKÞ � njAðKÞ with njB ¼ cyBjcBj and similarly for the

sublattice A. Here, σ jz measures the particle-density asymmetry
between sublattice A and B resolved for a k value. At the K point,
populating an eigenstate cyA1c

y
A2 0j i ¼ ##

�� �
then requires an

additional energy related to ∣dz∣. At the K 0 point, the nodal ring
involves the state jψgi. Importantly, the states cyA1c

y
B1 0j i and

cyA2c
y
B2 0j i do not modify the pseudospin magnetization in each

plane as they favor an equal particle density on the two
sublattices, but they will participate in the entanglement entropy
maximum in the nodal ring region. Therefore, from the point of
view of the pseudospin magnetization at the Dirac points or
equivalently at the poles on the sphere, only four states intervene.
Explicitly, the correspondence between states in the lattice model
and states in the sphere model is given by

cyB1c
y
B2 0j i ¼ ""

�� �
; cyA1c

y
A2 0j i ¼ ##

�� �
; cyB1c

y
A2 0j i ¼ "#

�� �
; cyA1c

y
B2 0j i ¼ #"

�� �
:

ð17Þ
These are the states that enter in the evaluation of the

topological properties. The pseudospin magnetic structure
around the K 0 point is therefore related to the reduced
wavefunction 1ffiffi

2
p ðcyA1cyB2 þ cyA2c

y
B1Þ 0j i in jψgi which corresponds

then to the same entangled state as for the two spheres around the
south pole. The topological properties of this semimetal can then
be described through Eqs. (7) and (9). Thus, we introduce the
lattice version of Cj (Eq. (9)) as

~Cj ¼ 1
2
hnjKB � njKA � njK 0B þ njK 0Ai ð18Þ

¼
1 r < r�c
1=2 r�c < r < rþc
0 r > rþc ;

8><
>: ð19Þ

where j= 1, 2 refers to the layer basis and the particle densities in
each sublattice A or B are resolved at a given Dirac point or pole
on the sphere. The magnetization for a single layer is shown over
the unit cell of the reciprocal lattice in Fig. 2b.

Alternatively, we may represent the ground state at half-filling
in terms of the occupancy in each layer (comprising two
sublattices with a given ket ij

�� �
, i+ j= 1, such that 10j i refers

to sublattice A occupancy and 01j i to sublattice B occupancy,
respectively): ψ

�� � ¼ ∑iþjþkþl¼2cijkl ij
�� �

1
klj i2, from which we get

the reduced density matrix ρ1 by tracing out the second layer.
From this, the entanglement entropy is computed numerically
(see Supplementary Note 4) and shown for the case of symmetric
masses in Fig. 2c. For r < r�c , the entanglement entropy is
identically 0. Above r�c , we verify that the system shows a
maximum entanglement entropy of ln 4 located in the band-
crossing region, in agreement with the form of jψgi. One Dirac
point is characterized by a nodal ring enclosing the entangled
region. Since the two Dirac points map to the two poles on the
spheres, this emphasizes the correspondence between the two
spins and the lattice model.

We highlight here that even though we have a band-crossing
effect in the nodal ring region, the spheres’ formalism allows us to
conclude that the topological number defined through Eq. (7) is
yet applicable in this situation showing then that Cj ¼ 1=2 is
measurable through the quantum Hall conductivity, with j
referring to one layer. From Stokes’ theorem on the sphere, it is
important to emphasize here that the Cj ¼ 1=2 topological
number can also be interpreted as a π Berry phase encircling
just one Dirac point associated with the topology (Eq. (33) of
Supplementary Note 1). Regarding the bulk-edge correspondence,

Fig. 2 Two stacked Haldane layers. a Bulk band structure through the high
symmetry points. b Sublattice magnetization σ jz � hnjkB � njkAi in one layer
over the primitive cell of the reciprocal lattice at the K Dirac point, the light
yellow color refers to magnetization 1, the K0 Dirac point has a
magnetization equal to 0 as a result of entanglement. c Entanglement
entropy S1 of one layer in the same region (yellow refers to a maximum
entropy of ln 4 and in the blue region the entropy is 0). The parameters
chosen for all panels are jdzj ¼

ffiffiffi
3

p
t1, r ¼

ffiffiffi
3

p
t1=3 (which is in the range

r�c < r < rþc ), and M1 ¼ M2 ¼ 3
ffiffiffi
3

p
t1=4 (symmetric Semenoff masses).

Here, t1 is the nearest-neighbor hopping amplitude, ∣dz∣ is the next-nearest-
neighbor amplitude at the Dirac points, and M1, M2 are the Semenoff
masses in the two layers.
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the edge spectrum in the reciprocal space produces one chiral
edge mode as in the quantum Hall effect39–41 and in the Haldane
model22. We study the edge states of this model in real space
using the KWANT code42 and show that for M1=M2 this mode
is equally distributed between the two planes at the edges as if a
charge e in the reciprocal space redistributes as two e/2 effective
charges in real space, in agreement with the quantum Hall
conductivity for M1=M2. When we progressively deviate from
the line M1=M2, navigating in the blue C= 1 region of Fig. 1b,
then this mode progressively redistributes in one plane only. The
nodal ring gives rise to delocalized bulk gapless modes in real
space, and yet the robust topology can also be measured from the
particles’ densities associated with each layer resolved in
momentum space at the two Dirac points from Eq. (18). We

also find that the layer magnetization number ~Cj varies smoothly
across the transition, in contrast to the sharp change in Cj that
occurred in the spin model. See Supplementary Note 4 for further
details related to these facts and proofs.

Protocol in time. Here, we show the occurrence of stable half-
topological numbers in a real-time protocol, in the adiabatic limit.
We also illustrate energy bands interferometry effects and
deviations from these rational values when increasing the speed of
the protocol. One experimental protocol for measuring Cj in a
spin system is to perform a linear sweep, θ= vt, t∈ [0, π/v] for
some velocity v, of the magnetic field along the meridian ϕ= 0,
measuring hσ jzi at the endpoints of the path12, i.e., at the north
and south poles. Any finite velocity will lead to nonadiabatic
transitions via the Landau–Zener–Majorana mechanism43–45,
which describes a time-dependent two-state model of the form
H ¼ λtσz þ Δσx . The amplitudes for the "

�� �
and #

�� �
compo-

nents of the wavefunction were derived by Zener43 for the
asymptotic case t → ∞. Here, we are actually interested in the
values at t= 0, which are derived in the Supplementary Note 5.
There we also show that the quasi-adiabatic regime of our two-
spin system is described by an effective two-state Hamiltonian

Hþ
eff ¼ �½~rf ðθÞ þ H cos θ þM�σz �

ffiffiffi
2

p
H sin θσx þ ðH cos θ þMÞI;

ð20Þ
where the basis for the Pauli matrices is now given by two of the
triplet states ð1; 0ÞT ¼ 1; 0j i and ð0; 1ÞT ¼ 1;�1j i. We see that
the entangled state 1; 0j i is indeed the unique ground state at θ=
π for ~r sufficiently large. More precisely, the window in which the
ground state evolves from the product state at the north pole to
the entangled state at the south pole, and therefore has Cj ¼ 1=2,
is given by

H �M
f ðπÞ < ~r <

H þM
f ð0Þ : ð21Þ

Returning to the dynamics of Eq. (20), we expand near θ= π,
such that t → t− π/v. With this new time variable, the important
dynamics takes place near t= 0 such that we approximate f(θ)= f
(π) close to the south pole. We will see that relaxing this
condition does not affect the result noticeably. We then rotate the
Pauli matrices about the y-axis. In the rotated basis, the effective
Hamiltonian takes the Landau–Zener form, with

λ �
ffiffiffi
2

p
Hv; Δ ¼ ~rf ðπÞ �H þM; ð22Þ

and adiabaticity parameter γ= Δ2/λ. The amplitude for measur-
ing the 1;�1j i state is then 1ffiffi

2
p ðAðtÞ � BðtÞÞ, while the amplitude

for measuring the entangled state is 1ffiffi
2

p ðAðtÞ þ BðtÞÞ. The former

results in Cj ¼ 1, upon sweeping to the south pole (now at t= 0),
while the latter gives Cj ¼ 1=2. The value of Cj is then related to

the coefficient A(0) and B(0) through

Cj � 3
4
� 1

4
ReðAð0ÞB�ð0ÞÞ: ð23Þ

The product A(0)B(0)* is evaluated in the Supplementary
Note 5, which yields

Cj � 3
4
þ π

4
Re ei3π=4e�γπ=4 sgnðΔÞ ffiffiffi

γ
p

Γð1=2þ iγ=4ÞΓð1� iγ=4Þ

� �
; ð24Þ

in terms of the gamma function Γ(z). We check the adiabatic limit
of this formula, v → 0 (γ → ∞), and find

Cj ! 3
4
� 1

4
sgnðΔÞ; ð25Þ

which gives 1 for ~r < ðH �MÞ=f ðπÞ and 1/2 for
~r > ðH �MÞ=f ðπÞ. We also study numerically the time evolution
of the interacting spins in this protocol (Fig. 3a–d). Our analytic
result for Cj is then compared with the corresponding numerical
value in Fig. 3e, f. We see that this formula accurately captures the
transition in Cj for small sweep velocities.

We also find, by checking many examples, that the shape of the
transition is independent of the particular form of time-
dependant interaction f(θ), which for small sweep velocities only
shifts the transition point. This is shown in Fig. 3f where we
compare the analytic approximation to the numerical solution of
the Schrödinger equation for a variety of interactions. Note that
the numerical results, which retain the full θ-dependence of the
interaction, do not deviate much from the analytic approximation
where we set f(θ) ≈ f(π). The fact that the Cj values are robust to
such changes in the form of the interactions is a result of the
topological nature of the quantum system.

Lastly, we also verified that the additional fractional phases
found for N > 2 spins are also stable from the time evolution of
these models in the quantum circuit simulator Cirq46, illustrating
that these phases can indeed be seen through the action of unitary
gates in a generic quantum computer, see Supplementary Note 5.

Discussion
Our analysis shows that one can realize quantum states with
fractional topology from the interplay between Berry curvatures
and resonating valence bond states19,22,47. Entanglement between
two spins can produce a Chern number of one-half for each spin.
We have provided a geometrical and physical interpretation of this
result through the derivation of Eq. (7). We have shown the sta-
bility of the fractional Chern number regarding various forms of
interactions in the adiabatic limit. We have formulated a corre-
spondence with topological lattice models respecting Z2 (layer)
symmetry, which form nodal ring semimetals in momentum space
around a Dirac point. The one-half topological number arises
from a π Berry phase around the Dirac point that shows the
topological band gap and also reveals one protected low-energy
edge mode in the reciprocal space. This prediction can be mea-
sured from momentum-resolved tunneling, i.e., when injecting a
charge e resolved in energy and wavevector48. In real space, we
verify that this mode equally redistributes between the two planes
with 1/2 probabilities as if a charge e would equilibrate as two
averaged charges e/2 in the two layers. It is important to highlight
here that for M1=M2, in the presence of a band-crossing effect
around the nodal semimetallic ring, we have shown that the one-
half topology of each spin or each plane in the bilayer model can
be defined from the spin magnetizations at the poles, the bulk
charge polarization, and the quantum Hall conductivity which can
also be reinterpreted as an effective charge e/2. Since the ground
state wavefunction is a direct product state on the sphere, defining
the operator Ĉ

j ¼ 1=2ðσzj ð0Þ � σzj ðπÞÞ, we obtain the standard
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deviation eδCj ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðĈjÞ2i � hĈji2

q
¼ ðe=2Þ ffiffiffi

F
p ¼ e=2 and

F ¼ hσ jzðπÞ2i � hσ jzðπÞi
2 ¼ 1, which is a result of the formation of

an entangled Bell pair at the south pole. Related to circular
dichroism of light, we have verified that at the topological Dirac
point the response is similar to the Haldane model15,16 and that in
the semimetallic region there is no light response, such that when
averaging on both light polarizations the response at the two Dirac
points is also in agreement with a one-half topological number.
Increasing the number of spins can give access to other rational
topological numbers as well, in relation with various forms of
entangled states. These predictions can be measured with actual
developments on quantum systems, entanglement, and light-
matter coupling. The interpretation of this phase needs to be
further studied in relation with the classification table21,38, as well
as interaction effects on the lattice directly from the reciprocal
space15,35,36. These spheres’ models may also find applications as
light emitters through a quantum dynamo effect4, many-body
synchronization sources49, and can be generalized to super-
conducting systems through the Nambu basis and in networks

similar to the Affleck–Kennedy–Lieb–Tasaki architecture50 for
quantum algorithms purposes.

Methods
The methodology begins from general quantum arguments to show the possibility
of a fractional Chern number for an interacting spin-1/2 particle, leading to Eqs.
(7), (9), and (11). Then, we analyze the ground state energetics of a particular
model and show how to observe a Chern number 1/2. We justify the results from
the superposition of two geometries, one encircling the topological charge and one
forming the quantum entanglement. Furthermore, we formulate a mathematical
correspondence between the spin-1/2 and topological bilayer lattice models. We
find a relation between the Chern number measurement and the quantum Hall
conductivity, the polarization, and the light response in a given plane. We perform
numerical evaluations in the bilayer model of the Berry curvature, magnetization,
entanglement entropy, as well as the band structure in a finite and infinite system.
For the time-dependent protocol, we check, through numerical evaluation of the
Schrödinger equation, that our results are very similar for various forms of spin
interaction in curved space. We also study the effect of increasing the speed of the
protocol related to Landau–Zener–Majorana interferometry effects.

In Supplementary Note 1, we present in the first section two proofs for the gauge
invariance of Eq. (7) and show from the smooth fields that it is related to a quantum
Hall conductivity σxy ¼ 1

2
e2
h on one plane and to a π Berry phase around one Dirac

point. We also discuss applications to the class of wavefunctions we study. In Sup-
plementary Note 2, we consider generalized models with transverse coupling. In

Fig. 3 Time evolution for interacting spin-1/2s. a–d Spin responses 〈σ1〉 (on the blue sphere) and 〈σ2〉 (on the orange sphere) to a sweep protocol of the
radial applied magnetic field along a meridian of the sphere with sweep velocity v= 0.0001H. The time-dependent spin vectors shown in red are
determined from the numerical solution of the Schrödinger equation. The radius of each sphere is the magnetic field strength H. a–c An asymmetric case
where the bias fields for the two qubits are M1= H/3 and M2= H/2. The Ising couplings between the qubits are given by (a) ~r ¼ 0:25H. b ~r ¼ 0:9H. c)
~r ¼ 1:7H. d–f show the symmetric case with M1=M2= 3H/4. d Spin response for ~r ¼ H=3. In this case, the magnitude of the spin vector vanishes at the
south pole. e Chern number of a single spin versus the normalized coupling ~r=H for different sweep velocities v (shown in different colors) with interaction
coefficient f(θ)= 1. The solid lines show the analytic approximation of Eq. (24), while the dotted lines show the result from the numerical solution to the
Schrödinger equation. f Numerically determined Chern number of a single spin vs ~rfðπÞ=H shown by the solid lines for different interactions with v= 0.05H;
Θ refers to the Heaviside step function. The dashed black line shows the analytic approximation of Eq. (24) which is universal for a given speed v.
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Supplementary Note 3, we study models with higher numbers of spins. In Supple-
mentary Note 4, we show definitions on the Haldane model and bilayer system,
develop the notations for the entanglement entropy calculation, and show the edge
modes and local density of states of a ribbon geometry. Lastly, in Supplementary
Note 5, we present results on the time evolution of the systems. We derive the
transition amplitudes for the time-dependent protocol associated with the
Landau–Zener–Majorana dynamics. We also verify the possibility of other fractional
topological states in time for the situation with N > 2 spins using the Cirq algorithm46.

Data availability
All relevant data are available from the authors.

Code availability
All codes used to generate figures are available from the authors upon request.
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