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General theory and observation of Cherenkov
radiation induced by multimode solitons
M. A. Eftekhar 1✉, H. Lopez-Aviles1, F. W. Wise2, R. Amezcua-Correa1 & D. N. Christodoulides 1

Advancements in computational capabilities along with the possibility of accessing high

power levels have stimulated a reconsideration of multimode fibers. Multimode fibers are

nowadays intensely pursued in terms of addressing longstanding issues related to informa-

tion bandwidth and implementing new classes of high-power laser sources. In addition, the

multifaceted nature of this platform, arising from the complexity associated with hundreds

and thousands of interacting modes, has provided a fertile ground for observing novel phy-

sical effects. However, this same complexity has introduced a formidable challenge in

understanding these newly emerging physical phenomena. Here, we provide a comprehen-

sive theory capable of explaining the distinct Cherenkov radiation lines produced during

multimode soliton fission events taking place in nonlinear multimode optical fibers. Our

analysis reveals that this broadband dispersive wave emission is a direct byproduct of the

nonlinear merging of the constituent modes comprising the resulting multimode soliton

entities, and is possible in both the normal and anomalous dispersive regions. These theo-

retical predictions are experimentally and numerically corroborated in both parabolic and

step-index multimode silica waveguides. Effects arising from different soliton modal com-

positions can also be accounted for, using this model. At a more fundamental level, our

results are expected to further facilitate our understanding of the underlying physics asso-

ciated with these complex “many-body” nonlinear processes.
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The past few years have witnessed a resurgence of interest in
multimode waveguide structures, predominantly driven by
the ever-increasing demand for higher information

capacities1–4. This renaissance, in turn, incited a flurry of activ-
ities in the general area of nonlinear multimode fiber optics5–25.
In this regard, the sheer complexity associated with the presence
of hundreds or thousands of nonlinearly interacting modes that
collectively act as a many-body system, has led to new opportu-
nities in observing a multitude of novel optical effects that would
have been otherwise impossible in single-mode settings12. These
include for example, the formation of multimode solitons (MM-
solitons)11, beam self-cleaning effects16,17,19, geometric spatio-
temporal instabilities14, and efficient supercontinuum and
second-harmonic generation17,20,21,25, to mention a few. The
prospect for spatiotemporal laser mode-locking has also been
successfully demonstrated in a recent study26.

One of the most prominent processes taking place in nonlinear
optical waveguides is that associated with dispersive wave (DW)
emission or Cherenkov radiation27–32. In general, these effects are
induced by optical solitons generated in the anomalous dispersion
regime. In single-mode fibers (SMFs), this Cherenkov emission is
typically the outcome of a soliton fission event, caused by the
inherent instability of higher-order solitons. This latter highly
nonlinear effect significantly expands the spectrum, thus allowing
phase-matching to occur between the soliton itself and the
expected Cherenkov lines. In turn, this condition promotes the
generation of a DW in the normal dispersion region of a SMF.
Nonlinear interactions between DWs, solitons and other spectral
features, are known to play a key role in shaping supercontinuum
generation, especially in single-mode, dispersion-engineered
photonic crystal fibers and integrated microstructures33–35.

As one could expect, this situation is considerably more
involved in nonlinear multimode environments. In fact, in a
recent experimental study12, carried out in a parabolic-index
multimode fiber (MMF), a series of dispersive wave lines was
unexpectedly observed around the visible wavelengths. In this
case, this Cherenkov comb extended over hundreds of nan-
ometers, as opposed to SMFs where DW phase-matching can
only be observed within a narrow band. Naturally, the question
arose as to what leads to the creation of such distinct DW lines. A
possible explanation for this effect was provided in ref. 18, by
interpreting these lines as Kelly sidebands—a characteristic
sideband instability associated with periodically amplified
solitons36. After all, in a parabolic fiber the soliton beam tends to
undergo fast periodic compressions and expansions, thus
mimicking nonlinear effects emanating from periodic amplifica-
tion, even in a fully passive MMF. What makes this periodic self-
imaging behavior possible is the equidistant distribution of the
propagation eigenvalues, something that is very unique to para-
bolic (harmonic) potentials. While this theoretical model could
elucidate some of the trends in the DW spectrum, it could not
account for many of the observed spectral feature. Even more
puzzling was the appearance of blurred DW bands in experiments
performed in step-index MMFs, where no such periodic beam
compression/expansion is possible. This directly suggests that the
physics behind the MMF Cherenkov lines is considerably more
complex than previously thought—implying that the actual
mechanism behind this effect is still elusive.

In this article, we develop a theoretical model capable of pre-
dicting and explaining the Cherenkov spectral peaks generated by
multimode soliton fission processes in nonlinear MMFs. A key
notion in our model is the very formation of a multimode soliton,
that forces all the modes involved to first coalesce in the temporal
domain, and in doing so, individually shift their spectral content.
The actual Cherenkov lines then ensue from a wideband multi-
mode phase-matching with these MM-solitons after fission and,

in principle, they can lie in the anomalous dispersive region, in
contradistinction to SMFs. Our theoretical model is in close
agreement with experimental observations in both parabolic and
step-index MMFs. In addition to enabling promising applications
in nonlinear MMFs, our results can shed light on these highly
involved nonlinear many-mode effects.

Results and discussion
Theory. A central element in our work is the way a MM-soliton is
established when excited in the anomalous dispersive region of a
MMF. In general, a multimode soliton is a composite entity in
which several modes bond and hence travel together at the same
velocity V. To form a multimode soliton, the nonlinearity
should first compensate for both intermodal dispersion (differ-
ential group delays) and chromatic dispersion. Even more
importantly, the carrier frequencies ωμν associated with each
mode must be nonlinearly shifted with respect to each other so as
to lock all the modes at the same group speed V. For simplicity,
we here ignore any polarization effects, in which case the non-
linear contribution to the refractive index can be written as

n r; z;ωð Þ ¼ n0 r;ωð Þ þ n2 Ê r; z; tð Þ
�� ��2, where n0 (r, ω) represents

the waveguide index profile and n2 the nonlinear Kerr coefficient
of silica glass. Following the above arguments, we express the total
electric field Ê r; z; tð Þ in this system as a superposition of all the
spatial modes involved, i.e.,

Ê r; z; tð Þ ¼ ∑
μ;ν

Eμν rð Þ exp iβμν ωμν

� �
z � iωμνt

h i
Φμν z; tð Þ; ð1Þ

Where Eμν (r) denotes the modal field profile of mode (μ, ν), and βμν,
ωμν represent its corresponding propagation constant and angular
frequency. Meanwhile, Φμν (z,t) stands for the slowly varying
envelope associated with the (μ,ν) mode, where μ,ν ∈ {0, 1, 2, 3, …}.
By following the analysis of Crosignani and Di Porto37,38, one then
finds that, in the anomalous dispersion region, the envelopes evolve
according to

i
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vμν
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where β 2ð Þ
μν ¼ d2βμν=dω

2
� �

ω¼ωμν

; v�1
μν ¼ dβμν=dω

� �
ω¼ωμν

repre-

sent the second-order dispersion coefficient and modal-group
velocity. The self-phase and cross-phase modulation coefficients are
given by Rμ0ν0;μν ¼ ωn2=c

� � RR
E2
μ0ν0 rð ÞE2

μν rð Þdr= RR E2
μν rð Þdr37,38.

In developing Eq. (2), we intentionally omitted any four-wave
mixing (FWM) terms. This FWM suppression can be justified37,38

given that the frequencies ωμν of the participating modes will be
eventually quite different once a MM-soliton is formed. As pre-
viously noted, a MM-soliton can only form provided that all the
constituent modes move at a common group velocity V, i.e., νμν=
V. In this case, one can show that Eq. (2) can admit the following
self-consistent multimode bright-soliton solution,

Φμν z; tð Þ ¼ Φμν
0 exp

i β 2ð Þ
μν

��� ���z
2τ2

0
@

1
Asech

t � z=V
τ

	 

; ð3Þ

where Φμν
0 is the peak amplitude of the mode (μ,ν) and τ is the

MM-soliton pulse-width. In this case, the acquired angular fre-
quency corresponding to each mode in this composite soliton is
now denoted as ωsμν

. In addition, the amplitudes Φμν
0 can be
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determined from the following set of algebraic equations

β 2ð Þ
μν

��� ���
2τ2

¼ ∑
μ0≠μ
ν0≠ν

Rμν;μν Φμν
0

�� ��2þ2Rμ0ν0;μν Φμ0ν0
0

�� ��2h i
: ð4Þ

In obtaining the solution presented in Eq. (3), the hyperbolic
secant ansatz was used, given that Eq. (2) is not integrable and
hence cannot be in general addressed via inverse scattering
transform methods. As opposed to SMFs, Eq. (4) clearly suggests
that, for a given input energy, this MM-soliton solution is by no
means unique. In other words, infinitely many modal distributions
can be obtained, all satisfying Eq. (4). To some extent, all modes
experience on average the same effective trapping nonlinear
potential in a way akin to electron eigenfunctions in heavy atomic
elements, when viewed within the framework of the Hartree-Fock
method39. Once all the modes composing the MM-soliton are
locked together at a common speed V, one can then determine the
frequency shift Ωpq the mode (p,q) should undergo from the linear
dispersion relation V�1 ¼ β0pqðωspq

Þ ¼ β0pqðω0Þ þ βð2Þpq ðω0ÞΩpq,

where ωspq
¼ ω0 þ Ωpq is the resulting carrier frequency of the

participating mode (p,q), and ω0 denotes the carrier angular
frequency of the input pulse. It is important to note that, while Eqs.
(3–4) do represent an exact solution to this problem, in reality the
temporal profiles of all modes involved in a MM-soliton could be
considerably more complex. Yet, even in this case, once all modal
components are locked together at a common group velocity V
(because of mutual self-trapping), the corresponding frequency
shifts Ωpq still remain the same as per our discussion above.

Starting from Eqs. (2–4), one can readily obtain the dispersion
relationship at any angular frequency ω for each constituent
spatial mode (p,q) involved in a MM-soliton:

βspq ωð Þ ¼ βspq ωspq

� �
þ 1

V
ω� ωspq

� �
þ

β 2ð Þ
pq

��� ���
2τ2

; ð5Þ

where again ωspq
represents the carrier frequency of mode (p,q) in

the MM-soliton. The last term in Eq. (5) stands for the nonlinear
shift in the propagation constant that each mode experiences
during propagation. We note that in weakly guiding structures
(like the ones considered here), the second-order dispersion does
not appreciably change from mode to mode since it is dominated
by material dispersion.

In general, dispersive waves result when a soliton sheds
energy into a narrowband of frequencies through the interplay
between higher-order dispersion effects and nonlinearity.
In SMFs, the resonant frequencies of the emerging DWs are
dictated by a phase-matching condition with respect to the
propagation constant of the soliton itself. However, as we will see,
unlike SMFs, the modal group delays in MMFs now play a
deciding role in establishing the available phase-matching
paths needed to generate DWs. Based on these latter arguments,
the phase-matching condition between a soliton mode (p,q)
and a DW in another mode (m,n) can only be met at a resonance
frequency ωr when βspq ðωrmn

Þ ¼ βmnðωrmn
Þ, where βnm stands

for the linear dispersion relationship associated with this
mode. In practice, the soliton fission process further encourages
the onset of DWs. For parabolic-index multimode fibers,
the dispersion relation of the spatial mode (m,n) is given

by βmn ωð Þ ¼ k0n ωð Þ 1� 2
ffiffiffiffiffiffi
2Δ

p ðmþ nþ 1Þ=k0anðωÞ
� �� 1=2

where
k0= ω/c denotes the free space wavenumber at an angular
frequency ω and n (ω) represents the refractive index of silica as
function of frequency – as obtained from a corresponding
Sellmeier equation. Here, a and Δ stand, respectively, for the core
radius and relative index difference of the fiber. It is important to

note, that, this latter dispersion relation was obtained within the
Gauss-Hermite base of modal wavefunctions LPmn allowed in the
parabolic-index MMF. This same system can also be considered
in an equivalent Gauss-Laguerre modal base LPlp, provided that
mþ nð Þ ! 2pþ l � 2

� �
. The group velocity of each mode in a

graded-index potential can then be obtained from
v�1
gm;n

¼ dβmn=dω,

v�1
gm;n

¼ 1
c

n ωð Þ þ ω
dn
dω

	 
� �
1� mþ nþ 1ð Þ ffiffiffiffiffiffi

2Δ
p

ω
c an ωð Þ

� �

´ 1� 2 mþ nþ 1ð Þ ffiffiffiffiffiffi
2Δ

p
ω
c an ωð Þ
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:

ð6Þ

Clearly, if the velocity V of a MM-soliton is known, then the
frequency shift that is nonlinearly acquired by each of its
constituent spatial modes (needed to compensate for the intermodal
group-velocity mismatch), can be evaluated. On the other hand, the
linear dispersion relation corresponding to a DW in mode (m,n) in
such a parabolic-index MMF, can be approximated to first-order as
βmn ¼ k0n ωð Þ � mþ nþ 1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2Δ=a2

p
. From here, the phase-

matching condition between a DW in mode (m,n) and a
component residing in mode (p,q) of this MM-soliton (traveling
at velocity V) can be directly determined from (see Supplementary
Note 1)

ωrmn

n ωrmn

� �
c

� 1
V

0
@

1
A ¼ mþ nð Þ � pþ q

� ��  ffiffiffiffiffiffi
2Δ
a2

r

þ
ωspq

c
n ωspq

� �
� 1

V
ωspq

þ
β 2ð Þ
pq

2τ2
;

ð7Þ

where again ωrmn
is the angular frequency of the DW. Equation (7)

plays a central role in our subsequent discussion.

Simulations and experiments. In order to verify our theoretical
analysis, we performed numerical simulations using gUPPE
techniques that globally take into account waveguiding, and
nonlinear and higher-order dispersion effects in fused silica40.
The beam spot-size assumed at the input was taken to be 15 µm
so as to excite a multitude of LP0p Gauss-Laguerre modes. As
shown in Fig. 1, the input pulse, after being injected into this
MMF, undergoes a continuous temporal contraction along with a
spectral expansion at a propagation distance of ~ 8 cm. At this
point, MM-soliton fission (which is marked by a sudden expan-
sion of the spectrum) takes place (Fig. 1a), and subsequently the
propagating pulse disintegrates into a sequence of secondary
multimode solitons (Fig. 1b). Right after fission, there is an
emergence of broadband DW-comb lines, occupying the spectral
region between 500 and 1000 nm. A closer look at the spectral
evolution, reveals that within a short distance after the MM-
soliton fission, additional DW lines start to appear in clusters,
whose discrete frequencies can be again determined by the sec-
ondary MM-solitons inducing them, as expected from Eq. 7.
Figure 1c depicts the evolution of the first emitted MM (sec-
ondary) soliton during the first few centimeters after its emission.
This figure clearly shows that this first emitted soliton (having the
highest peak intensity) undergoes significant Raman-induced red-
shifting just few centimeters after the MM-soliton fission event.
During this period, this decelerating MM-soliton experiences
multiple temporal compressions, each of which is accompanied
by a spectral expansion around the soliton spectrum and an
emission of low intensity DW lines, close to the visible region.
Our model (Eq. 7) now allows us to explain all the primary DW
line-combs appearing in Fig. 1, right after the soliton fission
point. More specifically, once the MM-soliton velocity is known
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(and hence the frequencies of the participating modes ωspq
), one

can then directly predict the spectral locations of the DW lines
from Eq. 7. From our simulations, the MM-soliton’s velocity right
after the fission event is estimated to be 2.049 × 108 ms−1 (ng=
1.4631) which is approximately to that expected from a soliton
that is centered close to the pump wavelength. This is because the
Raman-induced frequency red-shifting is still negligible at this
stage. Figure 2 depicts the spectrum immediately after the soliton
fission along with the positions of all DW lines (dotted lines), as
predicted from our theoretical model (see Supplementary
Note 2). As this figure suggests, there is an excellent agreement
between the DW frequencies predicted by Eq. 7 and our
numerical results. Note that, because the fiber has been excited on
center, only axially symmetric modes (LP0p modes) carry energy
and hence only modes with even (m+ n) actively participate in
reshaping the spectrum. This same analysis can now be repeated
for subsequent temporal compressions experienced by the first
MM-soliton (secondary soliton) after it has undergone a Raman
red-shifting. At these later stages, the composite soliton velocity
and wavelength have been altered, which, in turn, results in a new
set of phase-matching conditions and hence different sets of DW
spectral lines. The group velocity of this same soliton, at
approximately 1.5 cm right after the MM-soliton fission event, is
now estimated from simulations to be 2.0465 × 108 ms−1 (ng=
1.4649), which corresponds to a slower soliton at around 161.2
THz (1.8598 µm), because of substantial Raman redshifting. Our
theoretical predictions for the DW lines associated with this
redshifted wavelength are again in good agreement with the
results obtained from simulations (see Supplementary Note 2).
Note that our analysis has so far solely dealt with the first emitted

MM-soliton. However, DW lines produced by the subsequent
solitons can also be obtained following the same analytical pro-
cedure. In most cases however, the first emitted soliton carries
most of the total energy and hence is responsible for the primary
features of the DW content. In other words, while knowledge of
MM-soliton velocities can facilitate our understanding of this

Fig. 1 Temporal and spectral evolution of a multimode optical pulse in a graded-index multimode fiber. a Spectral evolution of a 400-fs pulse (150 nJ) at
1550 nm after propagating in a 20 cm long graded-index multimode fiber having a core diameter of 62.5 µm, NA= 0.275 as obtained from a gUPPE
simulation. b Temporal evolution of this same pulse, under the same conditions. c A closer look at multiple fissions and of the red-shifting of the first
emerging soliton right after the primary soliton fission event. The horizontal axes of b and c are expressed in a moving coordinate frame T= t – z/v42.

Fig. 2 A comparison of theoretically predicted and numerically simulated
dispersive wave spectrum in a graded-index multimode fiber. Dispersive
wave (DW) spectrum as obtained from a gUPPE simulation right after the
first fission event. The parameters used are identical to those of Fig. 1. Dotted
lines indicate the discrete positions of the DW lines, as predicted by Eq. 7.
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process, the primary DW lines are generated right at the MM-
soliton fission point, i.e., at the pump wavelength. Therefore, the
group velocities of the various modes comprising the MM-soliton
can be directly extracted from Eq. (6).

To corroborate our theory, we performed a series of
experiments with both parabolic and step-index fibers. The
parabolic MMF used had a core radius of 35 µm and Δ~0.021
(NA ≈ 0.2). The fiber was illuminated on-axis with a 100 fs pulse
(500 kW) at 1550 nm emitted from an OPO (1 kHz) pumped by a
Ti:Sapphire laser. Figure 3 shows the spectrum recorded at the
end of a 10 m long fiber along with the theoretically calculated
DW line frequencies (dotted lines) from Eq. 7. For this analysis,
the soliton velocity was computed from the Sellmeier series, by
assuming that most of the MM-soliton spectral content
resides around the pump wavelength. Because of the radially
symmetric fiber excitation used, preservation of optical
angular momentum demands that during conversion, the
spectral features are dominated by DWs of even order, i.e.,
mþ nð Þ � pþ q

� � ¼ 2K;K ¼ 0; ± 1; ± 2; ¼
� �

. Figure 3 reveals,
that, from the fiber parameters, our theory can accurately predict
the DW lines emerging right at the MM-soliton fission point (see
Supplementary Note 3). Interestingly, in a same vein, the location
of subsequent DW line combs emitted by secondary MM-solitons
can spectroscopically provide information as to their respective
velocities.

According to Eq. (7), to populate the far reaching DW lines,
the beam at the soliton fission point should involve a significant
portion of the total energy in higher-order modes. Supplementary
Fig. 2, obtained from the numerical gUPPE simulations, shows
that at this point the beam is significantly compressed in both
space and time, indicating that higher-order modes are indeed
populated at soliton fission, irrespective of the modal composition
at the input (see Supplementary Note 4). Given that the energy
initially resides in the lowest order group of modes, our model
predicts that DW lines lying in higher-frequencies must reside in
higher-order modes in order to satisfy the phase-matching
condition of Eq. (7). This is especially necessary, in exciting high
frequency DW Cherenkov waves and it is in agreement with the
experimental results reported in ref. 18. Similarly, one can also
alter the spectral content of the DW lines by judiciously
modifying the input modal composition20. In other words, by
initially populating higher-order LP0p, the main portion of the
DW energy can be transferred to higher frequency regions20.

Another interesting aspect anticipated by both our theoretical
model and simulations is the appearance of a spectral DW line in
the long-wavelength region (at 2.5 µm in Fig. 1) above the pump
wavelength. Supplementary Fig. 3 depicts the phase-matching
conditions for the fundamental mode, suggesting that they can be
met in both the anomalous as well as in the normal dispersive
regions (see Supplementary Note 5).

Both our experimental observations and numerical results
indicate that the wideband generation of dispersive waves in
graded-index MMFs always occurs in a discrete fashion—a direct
consequence of the equidistant distribution of propagation
eigenvalues. Equation 7 dictates that the phase-matching
condition can be met only at discrete frequencies since the term
(m+n)−(p+q) is always an integer. Since this feature does not
apply for other index distributions, one may then expect a drift
for each DW frequency and an absence of any clustering of lines.
To verify this hypothesis, we simulated a step-index fiber (105 µm
in core diameter and NA= 0.275). A similar fiber was also used
in a different set of experiments. In Fig. 4, the visible portion of
the experimentally measured spectrum for this step-index MMF
(100 fs, 700 kW, 1550 nm, 10 m) is contrasted to that previously
obtained in the parabolic MMF. Our experiments clearly show
that DW generation plays out distinctly even in step-index fibers,
an aspect that previous models could not account for. The
numerically simulated spectrum, resulting shortly after the soliton
fission event is also depicted in Supplementary Fig. 4 in
Supplementary Note 6. These figures clearly indicate that indeed
the DW grouping vanishes in step-index MMFs. As a result, the
DW spectrum forms a continuum extending from 450 to 1000
nm. These results suggest that the distribution of the generated
DWs in MMFs can also be tailored through appropriately
designed refractive index profiles.

So far, in our experiments, we have only considered moderate
input power levels. As we apply larger input powers, the
nonlinear phase term (Eq. 4) starts to play a more important
role in the phase-matching condition (last term on the right-hand
side of Eq. 7). To experimentally observe the impact of this
nonlinear phase-contribution, in both graded-index and step-
index MMFs, we gradually increased the input power injected and

Fig. 3 A comparison of theoretically predicted and experimentally
observed dispersive wave spectrum in a graded-index multimode fiber.
Experimentally measured spectra at the output of a 10m long parabolic-
index multimode fiber of core radius 35 µm. Theoretically predicted
dispersive wave wavelengths (Eq. 7) are shown in dotted lines.

Fig. 4 A comparison between experimentally observed dispersive
spectrum in a graded-index and a step-index multimode fiber. A
comparison between dispersive waves (DWs) generated in a step-index
multimode fiber (MMF) (blue curve) and a parabolic-index MMF (green
curve). The step-index MMF had a length of 10 m, a core diameter of 105
µm and a numerical aperture NA= 0.22. In both cases the extent of the
DW spectrum is approximately the same. However, the DWs generated
from a step-index MMF do not have the comb-like features, a signature of
parabolic MMFs.
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recorded the output spectrum. As it is shown in Fig. 5, because of
this nonlinear phase term, the DW lines gradually drift toward
higher frequencies as analytically predicted by Eq. 7. However,
since lower order modes have larger nonlinear coefficients, their
spectral shift happens to be more significant.

In conclusion, we have provided a comprehensive theory
capable of explaining the distinct DW (Cherenkov) lines
emerging after multimode soliton fission events. Our results
indicate that this broadband DW emission results from the
nonlinear self-trapping of the constituent modes involved in the
generated multimode solitons. In this respect, DWs can be
generated in both the normal and anomalous dispersion regions
of a MMF. Experiments carried out in both parabolic and step-
index multimode optical fibers are in good agreement with our
theoretical model. Our results could pave the way towards
understanding the complex dynamics of highly multimode and
multidimensional nonlinear systems.

Methods
Simulations. To verify our theory, we conducted simulations using generalized
unidirectional pulse propagation equations (gUPPE). For the case of graded-index
fiber, the core radius of the fiber was assumed to be 31.25 µm, the numerical
aperture was assumed to be NA= 0.275 and the silica Kerr coefficient was taken to
be 2.9 × 10−20 m2W−1. For the case of step-index fiber, the core diameter of the
fiber was assumed to be 105 µm, the numerical aperture was assumed to be NA=
0.22 and the silica Kerr coefficient was taken to be 2.9 × 10−20 m2W−1. In addition,
all nonlinear and linear processes such as modal walk-offs, self-focusing, self-phase
modulation, cross-phase modulation, FWM, Raman and shock effects were
accounted for in the simulations. The input pulse in the anomalous regime was
centered around 1550 nm (0.193 PHz). In all our simulation, the pulse-widths were
assumed to be 400 fs and the longitudinal step size was set at Δz ≈ 1 µm. For
undertaking such computationally demanding simulations, we used parallel com-
puting, provided by the XSEDE supercomputer facility.

Experimental design. To corroborate our theory, we performed a series of
experiments with both parabolic and step-index fibers. The parabolic MMF used
was 10 m long, had a core radius of 35 µm, and Δ ~ 0.021 (NA ≈ 0.2). The fiber was
illuminated on-axis with a 100 fs pulse at 1550 nm emitted from an OPO (1 kHz)
pumped by a Ti:Sapphire laser. The step-index fiber used in our experiments was
in-house fabricated germanium-doped silica multimode optical fiber. The fiber has
a core diameter of 105 µm and a length of 10 m. The 100 fs pulses were coupled to

the from a Ti:Sapphire laser source (1.55 μm). A three-axis translation stage and a
5 cm focal length lens were used to couple laser beams into the fibers. The ensued
spectrum was measured with visible and IR spectrometers. In acquiring our data,
both polarizations are accounted for.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or
the Supplementary Materials. Additional data related to this paper may be requested
from the authors.
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