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Markovianization with approximate unitary designs
Pedro Figueroa–Romero 1✉, Felix A. Pollock1 & Kavan Modi 1✉

Memoryless processes are ubiquitous in nature, in contrast with the mathematics of open

systems theory, which states that non-Markovian processes should be the norm. This dis-

crepancy is usually addressed by subjectively making the environment forgetful. Here we

prove that there are physical non-Markovian processes that with high probability look highly

Markovian for all orders of correlations; we call this phenomenon Markovianization. Formally,

we show that when a quantum process has dynamics given by an approximate unitary design,

a large deviation bound on the size of non-Markovian memory is implied. We exemplify our

result employing an efficient construction of an approximate unitary circuit design using two-

qubit interactions only, showing how seemingly simple systems can speedily become for-

getful. Conversely, since the process is closed, it should be possible to detect the underlying

non-Markovian effects. However, for these processes, observing non-Markovian signatures

would require highly entangling resources and hence be a difficult task.
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A foundational question of modern physics is to understand
the origins of irreversibility1. In particular, to determine
whether fundamental laws, which are fully reversible, are

consistent with phenomena like equilibration and thermalization.
The dynamical version of this conundrum concerns the emergence
of forgetful processes from isolated ones. In quantummechanics, an
isolated process is unitary, and cannot lose information; past
behavior in one part of the system will always be remembered,
eventually returning to influence the future.

However, there are many ways in which nature manifests
forgetful processes, where a system’s evolution is determined with
a seeming disregard to its previous interactions with its sur-
roundings. For example, a carbon atom does not typically
remember its past and behaves like any other carbon atom. Such
processes are not isolated, and the general intuition is that the
dynamics of a system, in contact with a large environment, can
be approximately described as memoryless2. Yet, formal deriva-
tions of memory-less quantum processes require several
assumptions about the coupling strength with the environment,
the timescales of dynamical correlations, and an infinite-
dimensional reservoir. For finite-sized environments, this can
only be achieved exactly by continually refreshing (discarding and
replacing) the environment’s state, i.e., artificially throwing away
information from the environment. The problem this poses is
akin to the one made by the Fundamental Postulate of Statistical
Mechanics1, which a-priori sets the probabilities of a closed
system to be in any of its accessible microstates as equal.

Thus the foundational question remains open: can forgetful
processes arise from isolated processes without any artificial dis-
carding of information? Because forgetful processes are often called
Markovian, we refer to the mechanism for forgetting as Marko-
vianization, in the same spirit as the terms equilibration and
thermalization1,3–8. Indeed, Markovianization is likely to come
about through mechanisms intimately related to these other pro-
cesses. For instance, dissipative Markov processes have fixed points
to which the system relaxes; this is a mechanism for equilibration,
and also possibly for thermalization. We have previously argued for
the emergence of Markovianization for mathematically typical
processes, using averages with respect to the Haar measure9;
however, such processes are far from physically typical1.

In this paper, we identify a class of isolated physical processes
which approximately Markovianize in a strong sense, where even
the multi-time quantum correlations vanish. To do so, we employ
large deviation bounds for approximate unitary designs derived by
R. Low10, and apply them to the process tensor formalism11–13,
which describes quantum stochastic processes. We show that,
similar to the way in which quantum states thermalize, quantum
processes can Markovianize in the sense that they can converge to a
class of typical processes, satisfying a meaningful large deviation
principle whenever they are undergone within a large environment
and under complex enough—but not necessarily fully random—
dynamics. As a proof of principle, we employ a recent efficient
construction of approximate unitary designs with quantum
circuits14 to illustrate how a dilute gas would quickly Markovianize.
These results directly impose bounds on complexity and timescales
for standard master equations employed in the theory of open
systems. Finally, we discuss possible extensions of our results to
many-body systems with time-independent Hamiltonians. Our
results are timely given the ever-increasing interest and relevance in
determining the breakdown of the Markovian approximation in
modern experiments15–18.

Results
Quantum stochastic processes. A classical stochastic process on
a discrete set of times is the joint probability distribution of a

time-ordered random variable, Pðxk; ¼ ; x0Þ. A process is said to
have finite memory whenever the state of the system at a given
time is only conditionally dependent on its previous m states:
Pðxkjxk�1; ¼ ; x0Þ ¼ Pðxkjxk�1; ¼ ; xk�mÞ. Here, m is the Mar-
kov order; when m= 1 the process is called Markovian, and when
m= 0 the process is called random. Finite memory processes, and
in particular Markov processes, have garnered significant atten-
tion in the sciences for two principal reasons. First, the com-
plexity of a process grows with the Markov order and thus it is
easier to work with finite memory processes. Second, many
physical processes tend to be well approximated by those with
finite memory.

Generalizations of Markov processes and Markov order to the
quantum realm have been plagued with technical difficulties19,
which have their origin in the fundamentally invasive nature of
quantum measurement. However, recently, a generalized and
unambiguous characterization of quantum stochastic processes
within the process tensor framework11,20 has paved the way to
alleviating these difficulties. The success of this framework lies in
generalizing the notion of time-ordered events in the
quantum realm.

Consider a system-environment composite SE of dimension
dSE= dSdE with an initial state ρ(0) that undergoes a evolution
U0. An intervention A0 is then made on the system S alone,
followed by evolution U1. For concreteness, onward we will
consider U i ≠U j. Then a second intervention A1 on S alone. This
continues until a final intervention Ak is performed following Uk.
A quantum event xi at the ith time step corresponds to an
outcome of the corresponding intervention, and is represented by
a completely positive (CP) map Axi

ð�Þ :¼ ∑νA
ν
xi
ð�ÞAνy

xi
with Kraus

operators {Aν} satisfying ∑Aν†Aν ≤ 1. In other words, an
intervention is the action of an instrument J ¼ fAxi

gXi

xi
where

Ai ¼ ∑xi
Axi

is a completely positive trace preserving (CPTP)
map. This is depicted schematically in Fig. 1. In general, the
evolution U is allowed to be a CPTP map on SE. In this paper,
however, we are interested in an isolated SE, where the Us are
unitary transformations: Uð�Þ :¼ Uð�ÞUy, with U a unitary
operator.

The probability to observe a sequence of quantum events is
given by

Pðxk; ¼ ; x0jJ k; ¼ ;J 0Þ ¼ tr Axk
Uk�1 ¼Ax0

U0ρ
ð0Þ

h i
:

This can be rewritten, clearly separating the influence of the
environment from that of the interventions, in a multi-time
generalization of the Born rule21–23:

Pðxk; ¼ ; x0jJ k; ¼ ;J 0Þ ¼ tr ϒΛT
� �

; ð1Þ
where T denotes transpose, Λ :¼ Ax0

� � � � �Axk
, and the effects

on the system due to interaction with the environment have been
isolated in the so-called process tensor ϒ. We have depicted ϒ
and Λ in Fig. 1a as the red and green comb-like regions,
respectively. A circuit depiction of the same process ϒ, along with
the instruments Λ is given in Fig. 1b.

Maps like the process tensor are abstract objects with many
different representations12. In this manuscript, for convenience,
we work with the Choi state representation12,24 of the process
tensor, shown in Eq. (10) of the Methods section. The process
tensor ϒ is a complete representation of the stochastic quantum
process, containing all accessible multi-time correlations25–28.
Similarly, the tensor Λ contains all of the details of the
instruments and their outcomes. This tensor, in general, is also
a quantum comb, where the bond represents information fed
forward through an ancillary system. Finally, the process tensor
can be formally shown to be the quantum generalization of a
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classical stochastic process, satisfying a generalized extension
theorem with consistency conditions for a family of joint
probabilities to guarantee the existence of an underlying
continuous quantum stochastic process13, and reducing to
classical stochastic process in the correct limit29,30.

Measuring non-Markovianity. The convenience of using the
Choi state ϒ is that it translates temporal correlations between
timesteps into spatial correlations. Furthermore, as detailed in the
Methods section on the process tensor, ϒ can be efficiently
described when written as a matrix product operator11,31, whose
bond dimension represents the dimension of a quantum envir-
onment that could mediate the non-Markovian correlations. In
particular, when the bond dimension is one, the process is
Markovian. Specifically, a process ϒ(M) is Markovian if and only
if it has the form

ϒðMÞ ¼ E1:0 � � � � � Ek:k�1; ð2Þ

with E j:i a CPTP map on the system connecting the ith to the i+
1th time12,20. This quantum Markov condition in Eq. (2) allows
for a precise quantification of memory effects; it is fully consistent
with the classical Markov condition, and contains all of the
popular witnesses of quantum non-Markovianity19. Importantly,
it allows for operationally meaningful measures of non-Marko-
vianity: for instance, the relative entropy of the process tensor
with respect to its marginals, which happen to be the closest
Markovian process tensor, i.e. NS :¼ minϒðMÞSðϒ k ϒðMÞÞ,
quantifies the probability of mistaking ϒ and ϒ(M), which
decreases in the number of realizations of the process n as
expð�nNSÞ.

For the current considerations, a natural choice is the so-called
diamond norm. Just as trace distance is a natural metric for

differentiating two quantum states, in the sense of having a clear
operational definition, the natural distance for differentiating two
quantum channels is the diamond norm, which allows for the use
of additional ancillas32. We are interested in optimally differ-
entiating between a non-Markovian process from a Markovian
one, which leads to the multi-time diamond distance:

N
♦
:¼ 1

2
min
ϒðMÞ

k ϒ� ϒðMÞk
♦
; ð3Þ

where ∥X∥
♦
:= supfOig;i k ∑i tr OiX � 1

� �
ij i ih jk1 is a generalized

diamond norm27,33, with the supremum over i ≥ 1 and a set of
CP maps fOig. This definition generalizes the diamond norm for
quantum channel distinguishability34 (also called cb-norm35 or
completely bounded trace norm24), reducing to it for a single step
process tensor, and similarly being interpreted as the optimal
probability to discriminate a process from the closest Markovian
one in a single shot, given any set of measurements, which can be
made together with an ancilla.

Vanishing non-Markovianity in Eq. (3) would imply that the
process must have the form of Eq. (2). The derivations of such
processes make ad-hoc assumptions such as artificially refreshing
the environment between time-steps (i.e., assumption of an
infinite bath) that render approximations such as Born-Markov.
Classical processes additionally require randomness injection by
hand for stochasticity. Here, we show that a class of underlying
quantum mechanisms lead to the emergence of Markovianity
without ad-hoc assumptions. Namely, We show that the above
measure of non-Markovianity in Eq. (3) vanishes as the global SE
dynamics becomes more complex. This is entirely analogous to
entanglement being the underlying mechanism explaining the
emergence of statistical mechanics from quantum dynamics alone
and accounting for the artificial postulate of equal a-priori
probabilities3.

Fig. 1 Quantum processes and the process tensor. a A k-step quantum process ϒ on system S alone is due to the time evolution of an initial system-
environment (SE) state ρ(0) with distinct unitary transformations U i with i= 0, 1,…, k. In between each pair of unitaries, an external operation (e.g., a
measurement) Ai for i= 0, 1,…, k is applied; this can also be described by a tensor Λ. b An n-qubit SE-system ( 0j i depicting a single qubit) with two-qubit
gate interactions (depicted by vertical lines between squares) only: a subsystem qubit is probed at the ith step through Ai . While the standard approach
towards typicality or equilibrium properties concerns the whole SE dynamics and/or a single measurement on system S as in Standard Statistical
Mechanics, we show that complex—not necessarily uniformly random—dynamics within large environments will be highly Markovian with high probability.
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Markovianization with unitary designs. The generic form of
open quantum dynamics is non-Markovian, but, despite this, it is
often very well approximated by simpler Markovian dynamics.
How this memorylessness emerges is not dissimilar to questions,
regarding the emergence of thermodynamic behavior, which have
pervaded quantum mechanics since its conception. Indeed, it can
be shown that canonical quantum states are typical36–39, and we
now know that the fundamental postulate of equal a-priori
probabilities of statistical mechanics can be traced back to the
entanglement between subsystems and their environment3. It
turns out that, very similarly, if we sample a generic quantum
process occurring in a large finite environment at random, it will
be almost Markovian with very high probability9.

This sampling procedure can be formalized through the so-
called Haar probability measure, μh, over the d-dimensional
unitary group UðdÞ, which is the unique (up to a multiplicative
constant) measure with the property that, if U 2 UðdÞ is
distributed according to the Haar measure, then so is any
composition UV or VU, with a fixed V 2 UðdÞ. It can be
normalized to one, so as to constitute a legitimate probability
measure40. The Haar measure allows one to swiftly obtain
statistical properties of uniformly distributed quantities40–45 and,
furthermore, to prove concentration of measure results46–48;
these somewhat surprisingly imply that, when drawn from the
right distribution, certain quantities will become overwhelmingly
likely to be close to another fixed quantity as the Hilbert space
dimension is increased. Henceforth, we write U ~ μh to refer to U
as distributed according to the Haar measure and, similarly, we
use Ph and Eh to denote probabilities and expectations with
respect to the Haar measure.

The Result by Modi et al. on Markovian Typicality9, which is
reproduced in detail in the Methods section on, gives a
mathematically sound result of concentration of measure around
Markovian processes. However, it assumes a Haar-distributed
uniform sampling of unitary dynamics, and we know that nature
seldom behaves randomly49,50. The dynamics of a vast number of
physically relevant models can be approximated as Markovian51,
so can we say that these also satisfy a concentration of measure
with respect to Markovianity?

In some circumstances, sets of physical processes can
approximate some of the statistical features of the Haar
measure1,52–54; for example, consider the toy model depicted in
Fig. 2, comprising a dilute gas of n particles evolving
autonomously in a closed box. The gas particles interact with
each other in one of two ways as they randomly move inside the
box. Following and intervening on a special impurity particle,
taken to be the system, this model can be approximately thought
to be described by a circuit such as the one in Fig. 1b. The
simplicity of this system suggests that it can only uniformly
randomize after a large number of random two-qubit interac-
tions, progressively resembling genuine Haar random dynamics.

One possible way to quantify this progressive resemblance of
the Haar measure is given by the concept of unitary designs. In
general an ϵ-approximate t-design, which we denote μtϵ , can be
defined through

Etϵ
V�sðXÞ� ��Eh U�sðXÞ� ���� ���≤ ϵ; 8s≤ t ð4Þ

for a suitable metric ∥ ⋅ ∥, where Uð�Þ :¼ Uð�ÞUy and Vð�Þ :¼
Vð�ÞVy are unitary maps with U ;V 2 UðdÞ. Here, as above, the
notation EΩ indicates the expectation value with respect to a
given probability measure μΩ, i.e. V � μtϵ and U ~ μh. That is, μtϵ
approximates the Haar measure up to the tth moment with a
small error ϵ. In the case we are interested in, the unitary maps
will correspond to SE unitaries, as depicted in Fig. 1(a),

according to the either the Haar measure or a unitary design.
We also do not assume anything about the parameter t other than
it is a positive non-zero integer.

Notice what this would mean for a model similar to that of
Fig. 2: as individual random two-body interactions of each kind
accumulate, what we expect is for the dynamics to start
scrambling their information across the whole gas in the box,
progressively becoming more complex and uniformly random55.
Unitary designs give us this finite quantification of the
approximation to uniform Haar randomness and, in this case,
it can give us a precise way to account for the progressive
emergence of complexity from seemingly simple individual two-
body interactions.

Unitary designs for t= 2, 3 have been widely studied56–65 and
efficient constructions are known for larger values of t14,59,66. The
latter are of particular relevance, precisely as designs for large t,
i.e., those with a higher complexity55, are expected to satisfy
tighter large deviation bounds, approaching concentration of
measure as the level and quality of the design increases.

Such large deviation bounds over approximate unitary designs
were derived in a general form by R. Low10 for a polynomial
function satisfying a concentration of measure bound, and we
now use them to demonstrate the phenomenon of Markovianiza-
tion for corresponding classes of processes.

Theorem 1
Given a k-step process ϒ on a dS dimensional subsystem, generated from global unitary
dSE dimensional SE dynamics distributed according to an ϵ-approximate unitary t-design
μtϵ , the likelihood that its non-Markovianity exceeds any δ > 0 is bounded as

Ptϵ
½ N

♦
≥ δ�≤B; ð5Þ

where B is defined as

B :¼ d3mð2kþ1Þ
S

δ2m
m
C
� �m

þ ð2BÞ2m þ ϵ

d t
SE

η2m
" #

; ð6Þ

Fig. 2 A toy model analogous to a system with dynamics given by an
approximate unitary design with two kinds of two-qubit interactions
only. An impurity particle (teal) immersed in a gas of nE particles (arrows
depicting direction of motion) within a closed box, where all particles
interact in pairs in one of two ways (dashed circles) at random, can be
similarly described by an approximate unitary design. The result of
Theorem 1 ensures that for a large enough nE and number of interactions,
most processes analogous to this one with approximate unitary designs will
be almost Markovian.
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for any m ∈ (0, t/4] and

η :¼ d4SEd
2k
S þ d�ð2kþ1Þ

S

� �
=4; ð7Þ

where C is defined in Eq. (14) and B an upper bound on the expected norm-1 non-
Markovianity Eh½N 1�, defined in Eq. (15).

The proof is displayed in full in the Methods section. The
overall strategy is as done by R. Low10: a bound on the moments
Etϵ

½N m
♦
� is given in terms of B, C and η, followed by Markov’s

inequality. The quantity η is related to the ϵ-approximate unitary
t-design μtϵ through

Etϵ
N 2m

2

� �
≤Eh N 2m

2

� �þ ϵ

d t
SE

η2m; ð8Þ

for any m > 0 and corresponds to the sum of the moduli of the
coefficients of N 2

2 . We explicitly determine a bound on this
quantity within the proof of Theorem 1 in the Methods section,
which is the one we take as definition in Eq. (7).

The choice of 0 <m≤t/4 can be made to optimize the right-hand-
side of the inequality, which ideally should be small whenever δ is.
The term d3ð2kþ1Þ

S =δ2 arises from bounding N
♦

and Markov’s
inequality, while the three summands within square brackets will be
small provided i) C is large, ii) B is small and iii) the unitary design
sufficiently small ϵ and large t is well-approximate and high enough.
For conditions i) and ii), we require a fixed k such that dE � d2kþ1

S :
this implies B � 0, so that ignoring subleading terms, we require

ϵ 	 δ2mð2d�2
E d�ð10kþ11Þ=4

S Þ4md t
SE for a meaningful bound, as

detailed in the Methods section on Convergence towards
Markovianity.

Overall, the bound in Eq. (5) approaches concentration
whenever dE is large relative to dS and k, together with large
enough t, as shown in Fig. 3. Generally, it can be seen by
inspection that the scaling in these cases will be polynomially
vanishing in dE, exponentially vanishing in t (upon appropriate
choice of parameter m), and becomes loose, polynomially in dS
and exponentially in k. Therefore, the vast majority of processes
sampled from such a t-design are indistinguishable from
Markovian ones in this limit. This can be intuitively understood
as that for processes of small subsystems in large environments
(dE � d2kþ1

S ) undergoing complex enough dynamics (large
enough t) will look almost Markovian with high probability if
the system is probed not too many times (small k). We will now
show how these processes can be modeled in terms of random
circuits.

Markovianization by circuit design. While no explicit sets
forming unitary t-designs for t ≥ 4 are known to date, several
efficient constructions generating approximate unitary designs by
quantum circuits are known. Using these constructions we can
highlight the physical implications of the theorem above. We
begin by discussing the details of one such construction. As
suggested in Fig. 1b, this construction only requires simple two-
qubit interactions and, under certain conditions, yields an
approximate unitary design, from which we can use Eq. (5) in our
main Theorem to verify that Markovianization emerges.

We focus specifically on Result 2 by Winter et al.14, reproduced
in the Methods section on efficient unitary designs, where a
circuit with interactions mediated by two-qubit diagonal gates
with three random parameters is introduced. The intuition
behind such construction is that repeated alternate applications of
these diagonal gates quickly randomizes the system. Notice that
this idea now fully captures the gas scenario depicted in Fig. 2,
where we only have two types of random two-body interactions
repeatedly occurring, and we focus on one of the particles of the
gas. The detail of this construction is reproduced in the Methods
section on efficient circuit unitary designs.

We can illustrate this idea in Fig. 4, where we depict an n-qubit
SE composite with k interventions on one of the qubits, with the
interactions within the circuit being only between pairs of qubits
and of only two kinds; these form blocks of unitaries between
each time-step i that we label W‘i

, where ℓ is related to the
amount of two-qubit interactions as explicitly defined in Eq. (42).
The main Result 2 of by Winter et al.14 states that for an n-qubit
system, when t is of order

ffiffiffi
n

p
, a circuit W‘ yields an ϵ-

approximate unitary t-design if ℓ ≥ t− log2(ϵ)/n, up to leading
order in n and t.

Furthermore, of great relevance in this result is the fact that
almost all 2-qubit gates in each repetition of W‘ can be applied
simultaneously because they commute64,67. Therefore, if W‘
yields an approximate unitary design as above, the order of the
non-commuting gate depth D, defined by Winter et al.67 as the
circuit depth when each commuting part of the circuit is counted
as a single part, will coincide with the bound on the order of the
number of repetitions ℓ. That is, the non-commuting gate depth
asymptotes to

D � t� log2ðϵÞ=n: ð9Þ
We can now think of the system from the toy model of Fig. 2 as

given by a spin locally interacting with a large, nE-qubit
environment, via a random time-independent Hamiltonian, with
Eq. (5) statistically predicting under which conditions memory
effects can be neglected. Notice that this is only a physical picture
evoked by the W‘ circuits rather than exactly being the model
described by it. In Fig. 5 we take such a system for a single qubit
and demand a bound B≤0.01 on the probabilityPtϵ

½N
♦
≥ 0:1� for

a k= 2 timestep process; with this, we plot the scaling of the non-
commuting gate depth D required to achieve an ϵ= 10−12

approximate unitary t-design using W‘ circuits for different
values of 2 ≤ t ≤ 10. While the number of 2-qubit gates is on the
order of 104, the number of repetitions ℓ is at most 12 for an
approximate 10-design and stays mostly constant as the number
of environment qubits increases.

This construction naturally accommodates the cartoon exam-
ple in Fig. 2. As long as the two interactions in the example
together generate the necessary level of complexity, Markoviani-
zation will emerge. This shows, in principle, how simple
dynamics described by approximate unitary designs can Marko-
vianize under the right conditions. Moreover, taking the physical
interpretation of a qubit locally interacting through two-qubit
diagonal unitaries with a large environment, it also hints at how

Fig. 3 Upper bound on the probability for non-Markovianity to exceed a
small amount for processes with distinct number of interventions and
design dynamics against environment size. Upper bound B, defined by Eq.
(5), on Ptϵ

½N 
 0:1�, the probability Ptϵ
over an ϵ-approximate t-design for

the non-Markovianity N to exceed δ= 0.1, against log2(dE), where dE is
environment dimension, for a subsystem qubit undergoing a joint closed
approximate unitary design interaction between a given number of
interventions k. We fix an ϵ= 10−12 approximate unitary t-design for
different values 2 ≤ t ≤ 10 and fixed values of timesteps k, optimizing m for
each case.
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macroscopic systems can display Markovianization of small
subsystem dynamics in circuits requiring just a small gate depth.
Furthermore, for macroscopic systems with coarse observables,
the same Markovianization behavior would remain resilient to a
much larger number of interventions.

Discussion
We have shown how physical quantum processes Markovianize,
i.e., forget the past, for a class of physically motivated systems that
can finitely can approximate random ones. Forgetfulness is
indeed a common feature of the world around us, and one that is
crucial for doing science. Without forgetfulness, repeatability
would be impossible. After all, if each carbon atom remembered
its own past then it will be unique and there would be no sense in
classifying atoms and molecules. Beyond these foundational
considerations, our results have direct consequences for the study
of open systems using standard tools, such as master equations
and dynamical maps. The latter of which can be seen as a family
of one-step process tensors (with initial SE correlations a mini-
mum of two steps must be considered16,68). Specifically, our
results, for the case of k ≤ 2, can be used to estimate the time
scale, using gate depth as a proxy, on which an approximate
unitary design’s open dynamics can be described (with high
probability) with a truncated memory kernel2,69,70, or even a
Markovian master equation.

Conversely, for larger k, our results would have implications
for approximations made in computing higher order correlation
functions, such as the quantum regression theorem71. These
higher order approximations are independent of those at the level
of dynamical maps, which can, e.g., be divisible, even when the
process is non-Markovian72. This is reflected in the loosening
behavior of the bound in Eq. (5) as the number of timesteps
increases, which can be interpreted as a growing potential for
temporal correlations to become relevant when more information
about the process is accessible.

This breadth of applicability is in contrast with the results of
Modi et al.9, where it was shown that quantum processes satisfy a
concentration of measure with respect to Haar measure around
Markovian ones, which has two main drawbacks: first, as stated
above, Haar random interactions do not exist in nature and hence
the relevance of the result is limited. Second, the rate of Mar-
kovianization is far too strong. Almost all processes, sampled
according to the Haar measure, will simply look random, i.e.,
Markov order m= 0 even for a large k. This, unlike our current
result, misses almost all interesting physical dynamical processes.
While the behaviour of our large deviation bound is polynomial,
rather than exponential, thus not exhibiting concentration per-se,
we have nevertheless exemplified how, with modestly large
environments and relatively simple interactions, almost Marko-
vian processes can come about with high probability. Physical
macroscopic environments will be far larger than the scale shown
in Figs. 3 and 5.

Despite the fundamental relevance of our result, it is well
known that typicality arguments can have limited reach.
For instance, the exotic Hamiltonians, introduced by
Gemmer et al.73, which lead to strange relaxation, may not
Markovianize even though the SE process is highly complex
with a large E. There is also still significant scope for further
addressing physical aspects, such as the question of whether,
and how, a time-independent Hamiltonian can give rise to an
approximate unitary design14, the relevant time scales of
Markovianization, or the potential role of different approaches
to pseudo-randomness such as that by Kastoryano et al.74,
where it is shown that driven quantum systems can converge
rapidly to the uniform distribution. Furthermore, a renewed
wave of interest in thermalization has come along with the so-
called Eigenstate Thermalization Hypothesis (ETH), which is a
stronger and seemingly more fundamental condition on
thermalization75–80, and we would thus expect a deep con-
nection in the sense of ETH between Markovianization and
thermalization to be forthcoming. In any case, it is clear that
many physical systems Markovianize at some scale, and it only
remains to discover how.

Fig. 4 Circuit diagram for a quantum process which can Markovianize under only two different types of 2-qubit interaction dynamics. For an n-qubit
system (where each 0j i is a single qubit), the unitariesW‘, composed of ℓ alternate repetitions only two distinct types of random interactions (depicted by
diamonds and squares joined by the interacting qubits), and defined by Eq. (42), generate an ϵ-approximate unitary t-design whenever ℓ ≥ t− log2(ϵ)/n, as
shown bt Winter et al.14. This can be thought as stemming from repeated alternate applications of random 2-qubit gates diagonal in only two Pauli bases. A
qubit probed with a set of operations fAig on a system undergoing ϵ-approximate unitary t-design dynamics W‘ on a large environment will Markovianize
for small design error ϵ and large complexity t as specified in the main text.

Fig. 5 Scaling of the non-commuting gate depth of the approximate
unitary design by Winter et al.14 for a 2-step process on a single qubit to
Markovianize with respect to environment size. Scaling of the non-
commuting gate depth D, given by the minimum amount of alternate
repetitions ℓ of the two kinds of random two-qubit diagonal gates within
the unitary W‘, plotted against the environment qubits nE= log2(dE), to
generate an ϵ= 10−12 approximate unitary t-design for 2 ≤ t ≤ 10. This is
such that for a single-qubit system undergoing a process with k= 2
timesteps, the probability Ptϵ

for the non-Markovianity N exceeding 0.1 is
less or equal than 0.01, i.e. Ptϵ

½N 
 0:1� � B � 0:01.
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Methods
The process tensor. The Choi state representation of the process tensor is given
by

ϒ ¼ trE Uk:0 ρ� Ψ�k
� 	

Uy
k:0

h i
; ð10Þ

where each Ψ is a maximally entangled state on an ancillary space of dimension d2S ,
and where

Uk:0 :¼ ðUk � 1ÞSk � � � ðU1 � 1ÞS1ðU0 � 1Þ; ð11Þ
is a unitary operator acting on the whole SE together with the 2k ancillas. All
identities act on the ancillary system, the Ui are SE unitary operators at step i, and
Si is a SWAP operator between system S and half of the ith ancillary space at the
ith time-step of the process.

The definition in Eq. (10) is a generalization of the standard Choi state for
quantum channels, as given by the Choi-Jamiołkowski isomorphism (CJI)24. The
CJI for quantum channels establishes a one to one correspondence with a quantum
state on a larger Hilbert space, given as the action of the channel onto half a
maximally entangled state. The standard definition uses unnormalized maximally
entangled states; however, here we are concerned with distinguishability of Choi
states through the diamond norm in Eq. (3) and the Schatten norms in Eq. (IV B),
so we avoid a normalization factor in these by normalizing the Choi states by
definition. A discussion in full depth about the process tensor, its different
representations and its properties and relevance is given by Modi et al.12.

As stated in the main text, ϒ can be efficiently described when written as a
matrix product operator11,31. A matrix product operator (MPO) gets its name from
the representation of an n-body operator Ô as
Ô ¼ ∑fp;qgO

q1 ¼ qn
p1 ¼ pn p1 ¼ pn



 �
q1 ¼ qn
� 

, where the coefficients can be represented as

a product of matrices, O
q1 ¼ qn
p1 ¼ pn ¼ tr½Mp1q1

1 Mp2q2
2 � � �Mpnqn

n �. In particular, a matrix

product density operator is a MPO with Mpiqi
i ¼ ∑‘A

pi‘
i � ðAqi‘

i Þy , with the

dimension of the matrices Api‘
i known as the bond dimension. For the process

tensor ϒ, these matrices generically correspond to M
rir

0
i�1sis

0
i�1

i ¼ hrijUijr0i�1i �
hsijUy

i js0i�1i where rð0Þ


 �

and sð0Þ


 �

are subsystem S basis vectors and Ui is an SE
unitary at timestep i11. This means the bond dimension of ϒ is dE, which in
practice should be much smaller, given that only part of the environment interacts
with the system at any given time.

A non-ambiguous measure of non-Markovianity. As with any distinguishability
measure, the non-Markovianity metric of Eq. (3) is not unique, and we choose the
diamond norm for its mentioned operational significance. However, more gen-

erally, for any Schatten p-norm k Xkp :¼ trðjXjpÞ1p, a similar quantity can be

defined N p :¼ 1
2 minϒðMÞ k ϒ� ϒðMÞkp , as done with p= 1 in by Modi et al.9,

whenever ϒ is normalized such that tr½ϒ� ¼ tr½ϒðMÞ� ¼ 1. Then, we have the
hierarchy N 1 ≥N 2 ≥ ¼ , induced by that of the Schatten norms. As the black
diamond norm is generally difficult to compute exactly, a particularly useful
relation to Eq. (3) is d�2k�1

S N
♦
≤N 1 ≤N♦

, in the sense that once any Schatten
norm is known, the black diamond norm is automatically bounded.

Nevertheless, we highlight that, in general, any distinguishability measure N
between a process ϒ and the closest Markovian one ϒ(M) will capture all non-
Markovian features across multiple time steps, i.e., all multi-time phenomena and
memory effects20. This is in contrast to other measures of non-Markovianity, e.g.
trace-distance based measure19 and other based on divisibility81, that have been
proposed in recent years. In particular, all other measures relying on completely
positive divisibility are only able to account for temporal correlations across at
most three time-steps and are not sufficient to enforce the multi-time Markov
condition82. This is even true in the classical case. Concretely, there are explicit
examples of multi-time non-Markovian processes that are shown to be completely
positive divisible processes, thus also deemed to be Markovian by the trace-distance
based measure20,82. On the other hand, if a process satisfies the multi-time Markov
condition, then it will be completely positive divisible.

In other words, the multi-time Markov condition is a stronger one that contains
Markov conditions based on completely positive divisibility. This is why we
consider the multi-time Markov condition in this manuscript.

Markovian typicality. In general, we say that a function f from a metric space S
with metric ΔS and probability measure μσ, to the real numbers, satisfies a con-
centration of measure around its mean if, for any point x 2 S and any δ > 0,

Pσ ½f ðxÞ≥Eσ ðf Þ þ δ�≤ ασ ðδ=LÞ; ð12Þ
where as done in the remainder of this manuscript, Pσ and Eσ explicitly refer to
the probability and expectation with x ~ μσ, and where L > 0 is the so-called Lip-
schitz constant of f, which can be determined according to jf ðxÞ �
f ðyÞj≤ L ΔSðx; yÞ for any two points x; y 2 S. Whenever L is small, intuitively this
implies that f varies slowly in such space. Finally, the function ασ is called a
concentration rate; it generally must be vanishing in increasing δ in order for (12)
to constitute concentration of measure, and it intuitively tells us how strong such
concentration is.

Particularly well-known is the example of concentration of measure in the
hypersphere of a high dimension, where for all functions that do not change too
rapidly, i.e. with a small Lipschitz constant L, the function evaluated on a point
picked uniformly at random will be close to its mean value with high probability,
i.e. specifically ασ decays exponentially with− δ2. This is also known as Levy’s
lemma46 and it has, remarkably, also been used by Winter et al.3 to show that the
fundamental theorem of statistical mechanics arises from entanglement.

Similarly, Modi et al.9 showed that quantum processes satisfy a concentration of
measure around Markovian ones, explaining the emergence of Markovianity
without a-priori assumptions. In particular, there, the trace distance N 1 was used
as a measure of non-Markovianity, which strictly speaking gives the
distinguishability between explicitly constructed Choi states of corresponding
process tensors and has no operational meaning; however, we can use the relation
d�2k�1
S N

♦
≤N 1 ≤N♦

to relate this to the stricter notion of non-Markovianity
defined in terms of the diamond norm in Eq. (3). This implies that the main result
by Modi et al.9, where all SE unitaries of Eq. (10) were randomly sampled
according to the Haar measure, can be written equivalently as

Ph N
♦
≥ d2kþ1

S B þ δ
� �

≤ exp �4 C δ2d�2ð2kþ1Þ
S

n o
; ð13Þ

where

C ¼ dSEðkþ 1Þ
16

dS � 1

dkþ1
S � 1

 !2

; ð14Þ

is the Lipschitz constant of N 1, and

B ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dE Eh½trðϒ2Þ� � x

p
þ y

2 if dE<d
2kþ1
S

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2kþ1
S Eh½trðϒ2Þ� � 1

q
otherwise;

8<
: ð15Þ

is an upper bound on Eh½N 1�, the expected non-Markovianity over the Haar
measure, with x :¼ dEd

�ð2kþ1Þ
S 1þ y

� 	
and y :¼ 1� dEd

�ð2kþ1Þ
S , and

Eh½trðϒ2Þ� ¼ d2E � 1
dEðdSE þ 1Þ

d2E � 1

d2SE � 1

 !k

þ 1
dE

; ð16Þ

the expected purity, i.e., the noisiness of the process ϒ, over the Haar measure.
Holding everything else constant, the bound B ≥Eh½N 1� satisfies

lim
dE!1

B ¼ 0 and lim
k!1

B ¼ 1; ð17Þ

so that the expected non-Markovianity vanishes in the dE→∞ limit and becomes
loosest in the k→∞ limit case.

The significance of Eq. (15) is thus that quantum processes with not too many
interventions in high dimensional environments will look to be almost Markovian
with high probability. This means that, even when processes generically carry
temporal correlations, these are typically low, explaining the emergence of
Markovian processes without ad-hoc assumptions such as the Born-Markov
approximation of weak coupling51.

Unitary designs. The result in Eq. (15) assumes that the dynamics are Haar
distributed; however, implementing a Haar random unitary requires an expo-
nential number of two-qubit gates and random bits83, thus Haar random dynamics
cannot be obtained efficiently in a physical setting.

An exact unitary t-design is defined10 as a probability measure μ t on UðdÞ such
that for all positive s ≤ t, and all ds × ds complex matrices X,

Et V�sðXÞ� � ¼ Eh U�sðXÞ� �
; 8s≤ t: ð18Þ

As per the definition in Eq. (18), a unitary t-design reproduces up to the tth

moment over the uniform distribution given by the Haar measure. In particular, μ t

can consist of a finite ensemble fVi; pigNi¼1 of unitaries Vi and probabilities pi, as is
now common in applications such as so-called randomized benchmarking of error
rates in quantum gates60,62.

Moreover, this definition can be relaxed by letting a unitary design approximate
the Haar measure with a small error ϵ. In this manuscript we specifically employ
the definition by R. Low10 for unitary designs. It uses the fact that the definition of
an exact t-design, μ t, can be written in terms of a balanced monomial Θ of degree
less or equal to t in the elements of the unitaries U. A balanced monomial of degree
t is a monomial in the unitary elements with precisely t conjugated and t
unconjugated elements: for example, UabUcdU

�
ef U

�
hg is a balanced monomial of

degree 2. Thus, writing Eq. (18) in terms of matrix elements, this can be seen to be
equivalent to requiring Et½ΘðVÞ� ¼ Eh½ΘðUÞ� for all monomials Θ of degree s≤t.
Similarly, for an ϵ-approximate t-design we adopt the definition by R. Low10 with
Eq. (4) implying

Etϵ
ΘðVÞ �EhΘðUÞ




 


≤ ϵ

dt
; ð19Þ

for monomials Θ of degree s≤t. From now on, we will focus on the more general
approximate designs. We will see below that the degree ϵ to which the distribution
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of the unitary dynamics on μtϵ differs from an exact design for given t depends on
the complexity of the model.

Large deviation bounds for t-designs. The general idea for the main result by R.
Low10 (similarly applied before by Horodecki et al.66) is that given a μtϵ dis-
tribution as an ϵ-approximate unitary t-design and a concentration result for a
polynomial X of degree p, then one can compute the last term f tϵ in

Etϵ
Xm ¼ EhXm þ f tϵ ; ð20Þ

with m≤t/2p, which will generally have a dependence f tϵ ¼ f tϵ ðϵ; t;X Þ. Using
Markov’s inequality

Ptϵ
ðX ≥ δÞ ¼ Ptϵ

ðXm ≥ δmÞ

≤
Etϵ

Xm

δm

¼ 1
δm

EhXm þ f tϵ

h i
;

ð21Þ

which is the form of the main large-deviation bound.
Specifically, the results that we employ are the following, proved R. Low10.

Theorem 2
(Large deviation bounds for t-designs by R. Low10) Let X be a polynomial of degree T. Let
f ðUÞ ¼ ∑iαiΘsi

ðUÞ where Θsi
ðUÞ are monomials and let α(f)= ∑i∣αi∣. Suppose that f has

probability concentration

Ph½jf � ζj ≥ δ�≤C exp �Cδ2
� 	

; ð22Þ
and let μtϵ , be an ϵ-approximate unitary t-design, then

Pμtϵ
½jf � ζj≥ δ�≤ 1

δ2m
C

m
C

� �m
þ ϵ

dt
ðαþ jζjÞ2m

 �
; ð23Þ

for any integer m with 2mT≤t.
This is the most general result providing a large-deviations bound on

approximate unitary designs, where ζ can be any quantity, in particular the
expectation of f. The main idea from this result (similarly applied before by
Horodecki et al.66) is that given a μtϵ distribution as an ϵ-approximate unitary t-
design and a concentration result for a polynomial f of degree T, then one can
compute

Etϵ
f m
� � ¼ Eh f m

� �þ gðϵ; t; f Þ; ð24Þ
where m≤t/2T. Using Markov’s inequality we have

Ptϵ
ðf ≥ δÞ ¼ Ptϵ

δm Eh f m
� �þ gðϵ; t; f Þ� �

; ð25Þ
which is the form of the main large deviations bound in Eq. (23). More precisely,
the other two main results that come along with the proof of Theorem 2 by R.
Low10, and allowing to compute the right hand-side of Eq. (25) are the following.

Lemma 3
(3.4 of by R. Low10) Let X be a polynomial of degree T and ζ any constant. Let
f ðUÞ ¼ ∑iαiΘsi

ðUÞ where Θsi
ðUÞ are monomials and let α(f)=∑i∣αi∣. Then for an

integer m such that 2mT≤t and μtϵ an ϵ-approximate unitary t-design,

Etϵ
jf � ζ j2m� �

≤Eh jf � ζ j2m� �þ ϵ

dt
αþ jζjð Þ2m: ð26Þ

Lemma 4
(5.2 of by R. Low10) Let X be any non-negative random variable with probability con-
centration

PðX ≥ δ þ γÞ≤C expð�C δ2Þ; ð27Þ
where γ ≥ 0, then

E½Xm�≤C 2m
C

 �m=2

þ ð2γÞm; ð28Þ

for any m > 0.
So, in essence, given these results, we determine the right-hand sides of Eq. (26)

and Eq. (28) through the measure of non-Markovianity in Eq. (3) and all the other
relevant quantities in such terms.

Proof of Theorem 1
A bound on the Haar moments ofN 2. Let us start by noticing that ∥X∥1≥∥X∥2, so a

concentration for N 1 given by Ph½N 1 ≥B þ δ�≤ expð�Cδ2Þ where here C ¼

dSEðkþ1Þ
4

dS�1
dkþ1
S

�1

 �2

(here 4 times the one defined in Eq. (14) in the main text), and B

is defined in Eq. (15), also implies

Ph½N 2 ≥B þ δ�≤ e�Cδ2 ; ð29Þ

so that in turn Lemma 4 through Eq. (28) implies that

Eh½N 2m
2 �≤ 4m

C
 �m

þ ð2BÞ2m

¼ 16m
ðkþ 1ÞdSE

dkþ1
S � 1
dS � 1

 !2" #m
þ ð2BÞ2m;

ð30Þ

for any m > 0.

A bound on the design moments of N 2. For the case of all unitaries at each step
being independently sampled, N 2

2 is a polynomial of degree p= 2 when the
unitaries are all distinct (random interaction type). We can thus take N 2

2 and
apply Lemma 3 for a unitary t-design μtϵ with t≥4m, which actually holds for real
m > 0, as

Etϵ
½N 2m

2 �≤Eh½N 2m
2 � þ ϵ

d t
SE

η2m ð31Þ

where η is the sum of the moduli of the coefficients of

N 2
2 ¼ 1

2
min
ϒðMÞ

k ϒ� ϒðMÞk2
 �2

≤
1
4
k ϒ� 1

d2kþ1
S

k22

¼ 1
4

trðϒ2Þ � d�ð2kþ1Þ
S

h i
:

ð32Þ

The proof of Lemma 3.4 by R. Low10 requires m to be an integer through the
multinomial theorem; in the notation of the cited paper, this can be relaxed to be a
real number by applying the multinomial theorem for a real power: convergence
requires an ordering such that jαtEMt j>21�njαt�nEMt�nj for each n= 1,…, t− 1
for both the approximate design and Haar expectations.

Let us explicitly write the process ϒ, defined in Eq. (10) in the main text, as a
function of the set of unitaries U :¼ fUigki¼0, i.e.

ϒ½U� ¼ trE½UkSk � � �U1S1U0ðρ� Ψ�kÞUy
0S1U

y
1 � � �SkU

y
k �; ð33Þ

where here implicitly Uℓ stands for Uℓ⊗ 12k−ancillas and the maximally entangled
states Ψ are taken to be normalized. As the swaps between the system and the ith

half ancillary system are given by Si ¼ ∑Sαβ � 1� β


 � αh ji � 1 where

Sαβ :¼ 1E � αj i β
� 



S
, this can be written as

ϒ½U� ¼ d�k
S ∑trE UkSαkβk

� � �U1Sα1β1
U0ρU

y
0Sδ1γ1

Uy
1 � � �Sδkγk

Uy
k

h i
� β1α1 � � � βkαk


 �

δ1γ1 � � � δkγk
� 

: ð34Þ

Now, the standard approach to compute the sum of the moduli of the
coefficients of a given polynomial is to evaluate on an argument (here a dSE × dSE
matrix) full of ones (so that all single monomials equal to one) and take each
summand to the corresponding modulus. We follow this approach, however, we
first notice that the environment part in Eq. (34) is just a product of the
environment parts of all unitaries and initial state. To see this, let U ¼
∑Ues

e0s0 esj i e0s0h j where ej i and sj i are E and S bases. Unitarity then implies

∑U
ab
es U

ab
ϵσ ¼ δeϵδsσ , where the overline denotes complex conjugate, and so this

means that trE½VSαβUρUySγδV
y� ¼ ∑Ves

e0s0V
eσ
e0σ 0U

e0s2
bs02

U
e0σ2
bσ 02

ρbrbt ϕðSÞ where ϕ(S)

stands for the system S part; for each b index the rest of the terms are summed
over e; this generalizes similarly for any number of unitaries. This implies that at
most dE terms need to be set to one and we can evaluate ϒ in a set of matrices
J ¼ f1E � JS; � � � ;1E � JS; JE � JSg with J a matrix with each element equal to
one in the respective E or S systems: let ρ ¼ ∑ρese0s0 esj i e0s0h j, then

ϒ½J � ¼ d�k
S ∑ρese0s0 tr½dEJE ej i e0

� 

�JS αk


 �

βk
� 

 � � � α1



 �
β1
� 

JS sj i s0

� 

JS δ1


 �

γ1
� 

 � � � δk



 �
γk
� 

JS � β1α1 � � � βkαk



 �
δ1γ1 � � � δkγk
� 



¼ dE
dkS

∑ρese0s0 JS αk


 �

βk
� 

 � � � α1



 �
β1
� 

JS sj i s0

� 

JS δ1


 �

γ1
� 

 � � � δk



 �
γk
� 

JS � β1α1 � � � βkαk



 �
δ1γ1 � � � δkγk
� 

;

ð35Þ
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and hence (we now omit the subindex S on the J matrices for simplicity),

dkS
dE

 !2

tr½ϒ2ðJ Þ� ¼ ∑ρese0s0ρϵσϵ0σ 0 tr J αk


 �

βk
� 

 � � � α1



 �
β1
� 

J sj i s0

� 

J δ1

 �
γ1
� 

 � � � J δk



 ��
γk
� 

J2 γk



 �
δk
� 

J � � � γ1



 �
δ1
� 

J σj i σ 0

� 

J β1

 �
α1
� 

J � � � βk



 �
αk
� 

J�

¼ d2S∑ρese0s0ρϵσϵ0σ 0 tr J αk


 �

βk
� 

 � � � α1



 �
β1
� 

J sj i s0

� 

J δ1

 �
γ1
� 

 � � ��

γk�1

� 

J δk

 �
δk
� 

J γk�1



 � � � � γ1


 �

δ1
� 

J σj i σ 0

� 

J β1

 �
α1
� 

J � � � βk



 �
αk
� 

J�

¼ d2kþ1
S ∑ρese0s0ρϵσϵ0σ 0 tr½J αk



 �
βk
� 

 � � � α1



 �
β1
� 

J sj i s0

� 

J σj i σ0
� 

J β1

 �

α1
� 

J � � � βk



 �
αk
� 

J�

¼ d2kþ3
S ∑ρese0s0ρϵσϵ0σ 0 βk

� 

J αk�1



 � � � � α2
� 

J α1

 �

β1
� 

J sj i s0

� 

J σj i σ 0
� 

J β1

 �

α1
� 

J � � � αk�1

� 

J βk

 �
¼ d2kþ5

S ∑ρese0s0ρϵσϵ0σ 0 βk�1

� 

J αk�2



 � � � � α2
� 

J α1

 �

β1
� 

J sj i s0

� 

J σj i σ 0
� 

J β1

 �

α1
� 

J � � � αk�1

� 

J βk�1



 �
¼ d2ð2kþ1Þ

S ∑ρese0 s0ρϵσϵ0σ 0 ;

ð36Þ
where to obtain the second line we used the fact that Jn= dn−1J for positive
integers n, here applied for n= 2, together with the trace over system S given by
∑ γk
� 

 � γk



 �
. This is similarly done to get the third line by ∑ δk



 �
δk
� 

 ¼ 1S, and

taking the trace summing over γk�1



 �
, which can subsequently be done for all γi



 �
and δi



 �. For the fourth line, the cyclicity of the trace was used, followed by an
identity taken by summing up over αk



 �
, using J2= dJ, and taking the trace. This

can be done through all remaining steps, giving the last equality. This, together
with Eq. (32), implies that (now writing simply i, j for SE indices),

4η≤ d2Ed
2ðkþ1Þ
S ∑jρijj

� �2
þ 1

d2kþ1
S

≤ d4Ed
2ðkþ2Þ
S ∑jρijj2 þ

1

d2kþ1
S

≤ d4Ed
2ðkþ2Þ
S þ 1

d2kþ1
S

;

ð37Þ

where in the second line we used k Xk21 ≤ d k Xk22 for element-wise norms k
Xkpp ¼ ð∑jxijjpÞ and in the third line we used k ρk22 ≤ 1.

Markov’s inequality on N
♦
. As d�2k1�1

S N
♦
≤N 1 ≤

ffiffiffiffiffiffiffiffiffiffiffi
d2kþ1
S

q
N 2, also for 0 <m ≤ t/4,

Ptϵ
½N

♦
≥ δ�≤ Ptϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d3ð2kþ1Þ
S

q
N 2 ≥ δ

� �
¼ Ptϵ

N 2m
2 ≥

δ2m

d3mð2kþ1Þ
S

" #

≤
d3mð2kþ1Þ
S Etϵ

N 2m
2

δ2m
≤

d3ð2kþ1Þ
S

δ2

 !m
4m
C

 �m

þ ð2BÞ2m þ ϵ

d t
SE

η2m
" #

¼ d3ð2kþ1Þ
S

δ2

 !m
16m

ðkþ 1ÞdSE
dkþ1
S � 1
dS � 1

 !2" #m
þ ð2BÞ2m þ ϵ

16md t
SE

d4Ed
2ðkþ2Þ
S þ 1

d2kþ1
S

 !2m
8<
:

9=
;;

ð38Þ
where in the third line we used Markov’s inequality. This concludes the proof of
Theorem 1.

Convergence towards Markovianity. We may first examine the third and
penultimate lines leading to Eq. (38) for meaningful bounds Ptϵ

½N
♦
≥ δ�. The term

d3ð2kþ1Þ
S =δ2 arises from bounding the diamond norm and Markov’s inequality;

while δ is arbitrary, the d3ð2kþ1Þ
S could still be relevant when multiplied with

Etϵ
N 2m

2 . This latter term will be small provided 1) C is large, 2) B is small and 3)
the unitary design is approximate and high enough.

For 1) and 2), as detailed by Modi et al.9, we require a fixed k such that
dE � d2kþ1

S . This implies B � 0, so that

Ptϵ
½N

♦
≥ δ�≲ d3ð2kþ1Þ

S

δ2

 !m
16m

ðkþ 1ÞdSE
dkþ1
S � 1
dS � 1

 !2" #m
þ ϵ

16md t
SE

d4Ed
2ðkþ2Þ
S þ 1

d2kþ1
S

 !2m
8<
:

9=
;

� 16m

δ2ðkþ 1Þ
d2ð4kþ1Þ
S

dE

" #m
þ ϵ

d8m�t
E dmð10kþ11Þ�t

S

δ2m16m

( )
:

ð39Þ
Now, supposing the t-design is exact, i.e. ϵ= 0, we require m≤ δ2 ðkþ1ÞdE

16 d6kS
, together

with m≤t/4. On the other hand if ϵ is non-zero, we require

ϵ 	 δ2
2

d2Ed
ð10kþ11Þ=4
S

 !4" #m
d t
Ed

t
S: ð40Þ

The choice of real m is only restricted by 0 <m ≤ t/4, but otherwise is arbitrary.
The right-hand side of Eq. (38) is not monotonic in m over all the remaining
parameters, so it won’t always be optimal for some fixed choice. One may thus
optimize the choice of m numerically for each particular case.

Efficient circuit unitary designs. As mentioned in the main text, we focus on
Result 2 of of Winter et al.14. To begin with, an efficient approximation for a
unitary design on a system composed of n-qubits is shown by Winter et al.14 for a
circuit labeled RDCðI 2Þ, where the name stands for Random Diagonal Circuit, and
refers to a circuit where I 2 ¼ fIig is a set of subsets of qubit labels Ii⊂ {1,…, n},

such that ∣Ii∣= 2, i.e., at step i, Ii picks a pair of qubits, to which a Pauli-Z-diagonal
gate with three random parameters is applied. This construction can already be
seen in the results of Winter et al.64 as arising from only two types of random
diagonal interactions, which can be simplified into a product of Z-diagonal ones.

A particular case which further simplifies things is then denoted by
RDCðtÞ

discðI 2Þ, where the subscript disc and the superscript t refer to discrete sets
from which the parameters of the diagonal gates will be sampled, and which are
determined by a given natural number t. Specifically, all gates in RDCðtÞ

discðI 2Þ have
the simplified form

ðdiagf1; eiϕ1 g � diagf1; eiϕ2 gÞ diagf1; 1; 1; eiϑg; ð41Þ
where diag denotes Pauli-Z diagonal, and with ϕ1, ϕ2 chosen independently from
the discrete set {2πm/(t+ 1):m∈ {0,…, t}} and ϑ chosen from {2πm/(⌊t/2⌋+ 1):
m ∈ {0,…, ⌊t/2⌋}}. We emphasise that this is still a circuit with 2-qubit diagonal
gates with only three random parameters each, and therein lies its simplicity.

Now let Hn=H⊗n be n copies of the Hadamard gate, then the main Result 2 by
Winter et al.14 states that for an n-qubit system, when t is of order

ffiffiffi
n

p
, a circuit of

the form

W‘ :¼ RDCðtÞ
discðI 2ÞHn

� �2‘
RDCðtÞ

discðI 2Þ; ð42Þ

yields an ϵ-approximate unitary t-design if

‘≥ t� log2ðϵÞ=n; ð43Þ
up to leading order in n and t.

All the 2-qubit gates in each repetition of W‘, except those in Hn, can be
applied simultaneously because they commute64,67. Thus, as explained in the main
text, if W‘ yields an approximate unitary design, the order of the non-commuting
gate depth D will coincide with the bound on the order of the number of
repetitions ℓ.
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