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Crystal phases of charged interlayer excitons in van
der Waals heterostructures
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Throughout the years, strongly correlated coherent states of excitons have been the subject

of intense theoretical and experimental studies. This topic has recently boomed due to new

emerging quantum materials such as van der Waals (vdW) bound atomically thin layers of

transition metal dichalcogenides (TMDs). We analyze the collective properties of charged

interlayer excitons observed recently in bilayer TMD heterostructures. We predict strongly

correlated phases—crystal and Wigner crystal—that can be selectively realized with TMD

bilayers of properly chosen electron-hole effective masses by just varying their interlayer

separation distance. Our results can be used for nonlinear coherent control, charge transport

and spinoptronics application development with quantum vdW heterostuctures.
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Strongly correlated coherent states of excitons have been a
subject of intense theoretical and experimental studies over
the last decades1–10. The topic has gained momentum

recently due to new emerging materials of reduced dimensionality
such as atomically thin van der Waals (vdW) bound layers of
semiconducting transition metal dichalcogenides (TMDs)11–18.
These layered quasi-two-dimensional (2D) semiconductors make
the exciton formation possible of electrons and holes located in
distinct layers19–24. Due to the dimensionality reduction and
because of a greatly reduced electron-hole wavefunction overlap,
interlayer (or indirect) excitons thus formed have large binding
energies and long lifetimes. Being electrically neutral, they feature
a permanent electric dipole moment directed perpendicular to the
layers, offering tunability of their quantum states by an external
electric field. Similar to indirect excitons in conventional GaAs
based coupled quantum well systems25,26, the interlayer excitons
(IE) in vdW heterostructures can be coupled to light to form
dipolar exciton-polaritons, allowing control of quantum phe-
nomena such as electromagnetically induced transparency, adia-
batic photon-to-electron transfer, room-temperature Bose-
Einstein condensation (BEC) and superconductivity27–32.

For bilayer TMD heterostructures, controlled optical and
electrical generation of IEs and charged IEs (CIEs, also known as
trions formed by indirect excitons33) has lately been
achieved23,24. Their in-plane propagation through the sample was
adjusted by the excitation power and perpendicular electrostatic
field. These experiments exhibit a unique potential of TMD
bilayers for achieving precise control over compound quantum
particles of both bosonic (IE) and fermionic (CIE) nature. The
CIEs offer even more flexibility in this respect as they have both
net charge and permanent dipole moment as well as non-zero
spin (Fig. 1), to allow for electrical tunability and optical spin
manipulation in charge transport and spinoptronics experiments
with quasi-2D vdW heterostructures.

Here, we consider the collective properties of the negative and
positive CIEs starting with their binding energies in bilayer quasi-
2D semiconductor heterostructures. We derive the general ana-
lytical expressions as functions of the electron-hole effective mass
ratio and interlayer separation distance to explain the

experimental evidence earlier reported for the negative CIE to
have a greater binding energy than that of the positive CIE23. Our
analysis of the pairwise interactions between the CIEs, as sketched
in Fig. 1, exhibits two scenarios for crystallization phase transi-
tions in the collective multiparticle CIE system. They are the
crystallization of the unlike-charge CIEs and the Wigner crys-
tallization of the like-charge CIEs, which can be selectively rea-
lized in practice by choosing bilayers with appropriate electron-
hole effective mass ratio and interlayer separation in addition to
the standard technique of electrostatic doping. We conclude that
this strongly correlated multiexciton phenomenon of CIE crys-
tallization can be realized in layered van der Waals hetero-
structures such as double bilayer graphene and bilayer TMD
systems23,27, and can be used for nonlinear coherent optical
control and spinoptronics application development with charged
interlayer excitons.

Results
The binding energy. The compound structure of the CIE com-
plexes of interest is sketched in Fig. 1. We use the configuration
space approach34 to derive the binding energy expressions for
the CIEs as functions of their electron-hole effective mass ratio
σ=me/mh and interlayer separation distance d. This approach
was recently proven to be efficient as applied to quasi-1D35,36 and
quasi-2D bilayer semiconductors33 where it offers easily tractable
analytical solutions to reveal universal relations between the
binding energy of the complex of interest and that of the 1D-
exciton or that of the indirect (interlayer) exciton37, respectively.
The method itself was originally pioneered by Landau38, Gor’kov
and Pitaevski39, Holstein and Herring40,41 in their studies of
molecular binding and magnetism.

The negative X− (positive X+) trion complex in Fig. 1 can be
viewed as two equivalent IEs sharing the same hole (electron).
The CIE bound state then forms due to the exchange under-
barrier tunneling between the equivalent configurations of the
electron-hole system in the configuration space of the two
independent relative electron-hole motion coordinates represent-
ing the two equivalent IEs that are separated by the center-of-
mass-to-center-of-mass distance Δρ. The binding strength is
controlled by the exchange tunneling rate integral JX ± ðΔρÞ. The
CIE binding energy is

EX ± ðσ; dÞ ¼ �JX ± ðΔρ ¼ ΔρX ± Þ ð1Þ
with ΔρX ± to be determined from an appropriate variational
procedure to maximize the tunneling rate, which corresponds to
the CIE ground state. This approach gives an upper bound for the
(negative) ground state binding energy of an exciton complex of
interest33–36. It captures essential kinematics of the formation of
the complex and helps understand the general physical principles
to underlie its stability.

Using the configuration space method for solving the CIE
ground state binding energy problem, we obtain (see Methods)

JX ± ðΔρÞ ¼ 2N4Δρ2 exp �2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δρ2 þ 4d2
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q
are the interlayer separation dependent constants coming from
the indirect (interlayer) exciton wave function37, and the upper or
lower term should be taken in the curly brackets for the positive

Fig. 1 Charged interlayer exciton structure and interaction geometry. The
compound structure and the symmetry-promoted most likely pairwise
interaction geometry for the unlike-charge (a) and like-charge (b) interlayer
exciton (IE) complexes in a bilayer quasi-2D semiconductor of the
interlayer separation d. Here, ΔρX� and ΔρXþ indicate the center-of-mass-
to-center-of-mass distances for the two IEs sharing the same hole or the
same electron, respectively, to form the respective charged interlayer
excitons (CIEs, or interlayer trions), and R shows the center-of-mass-to-
center-of-mass distance for the two CIEs in the bilayer.
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or negative CIE, respectively. Here the 3D “atomic units” are
used37–41, with distance and energy measured in the units of
exciton Bohr radius a�B ¼ 0:529 Å ε=μ and exciton Rydberg
energy Ry� ¼ _2=ð2μ m0a

�2
B Þ ¼ e2=ð2εa�BÞ ¼ 13:6 eV μ=ε2,

respectively, ε represents the effective average dielectric constant
of the bilayer heterostructure and μ=me/(λm0) stands for the
exciton reduced effective mass (in the units of free electron mass
m0) with λ= 1+me/mh= 1+ σ. The image-charge effects are
neglected37. To properly take into account the screening effect for
the charges forming the CIEs as sketched in Fig. 1, we used the
Keldysh-Rytova (KR) interaction potential energy42,43 approxi-
mated by elementary functions in the form (atomic units)

Veff ðρÞ ¼
1
r0

ln 1þ r0
ρ

� �
þ ðln 2� γÞe�ρ=r0

� �
ð3Þ

proposed for atomically thin layers previously44, to represent the
effective electrostatic potential energy for like charges in mono-
layers. Here, ρ is the in-plane intercharge distance and r0= 2πχ2D is
the screening length parameter with χ2D being the in-plane
polarizability of 2D material44,45. For unlike charges the interlayer
electrostatic potential energy is taken in the standard screened

Coulomb form VC(r)=− 1/r with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ d2

q
(atomic units).

The function JX ± ðΔρÞ in Eq. (2) is clearly seen to have a
maximum. It tends to become a negative when αΔρ < 1 in the
second term in the square brackets, which is always the case for
large enough d whereby α � 1=

ffiffiffi
d

p
� 0 and the first term in the

square brackets is negligible, whereas for αΔρ > 1 it is manifestly
positive and approaching zero as Δρ increases. Extremum seeking
under the condition that Δρ > 1 to only include the leading terms
in small 1/Δρ, gives a compact result (see Methods)

ΔρX ± ¼
7α� 1� σ

1=σ

� �
2α2

� 3þ 2
σ

1=σ

� �� �
r0:

ð4Þ

Substituting this in Eq. (1), one obtains the positive and negative
CIE binding energies of interest.

Figure 2a shows the absolute values of the binding energies EXþ

and EX� calculated from Eqs. (1), (2) and (4) with σ= 1 and 0.7
as functions of d and r0. For σ= 1 they coincide33. For σ= 0.7 the
positive-negative CIE binding energy splitting is seen to occur in
the entire domain of parameters used. Figure 2b shows the
crosscuts of Fig. 2a for r0= 0 and 0.1 to exhibit the remarkable
features of the screening and binding energy splitting effects. The
screening of like charges in the CIE complex is seen to increase its
binding energy. The X± trion energy splitting at short d is such
that jEX� j> jEXþ j, which agrees with and thus explains the
measurements reported recently for (h-BN)-encapsulated
MoSe2–WSe2 bilayer heterostructures23. As d increases the
crossover occurs to give jEX�j< jEXþ j with jEX� j quickly going
down to zero, which is also seen in Fig. 2a. On closer inspection
of Eqs. (2) and (4) it can be seen though that jEX� j and jEXþ j
should interchange for σ > 1, thereby offering an extra function-
ality for properly fabricated vdW heterostructures46,47.

Equation jEXþðσ; dÞj ¼ jEX�ðσ; dÞj links the electron-hole mass
ratio σ and interlayer separation d at which the crossover occurs.
For σ= 1 it turns into an identity33. The three lines in Fig. 2c
present the nontrivial solution to this equation, σ(d), for three
different r0 values. The screening is seen to shrink the jEX� j> jEXþ j
domain and expand the jEX� j< jEXþ j domain (above and below the
solution line, respectively). Since the greater binding energy
increases the formation probability, these domains are also those
to preferentially form the X− and X+ trion, respectively, while the
constraint jEX� j ¼ jEXþ j defines the line of equal X± formation
probabilities. Thus by varying d for a properly chosen TMD bilayer

composition with known σ, one can selectively control intrinsic
positive/negative CIE formation in an undoped heterostructure as
opposed to the electrostatic doping technique.

Unlike-charge trion crystallization. For undoped structures of
two monolayers with σ= 1 as well as for those with σ ≠ 1 fabricated
to hit the jEX� j ¼ jEXþ j line, both X− and X+ trions are equally
likely to form under intense external irradiation at not too high
temperatures T < jEX ± j=kB. This results in an overall neutral two-
component many-particle mixture of X− and X+ trions. The
aggregate state of a many-particle system is defined by its Helm-
holtz free energy consisting of the total energy term and the entropy
term. The entropy term becomes dominant at high T to favor
configurations with greater randomness. At not too high T the total
energy term—the sum of kinetic, potential and binding energies of
individual particles—overcomes the entropy term so that an
ordered state is favored, with the order-disorder transition being
predominantly determined by the interparticle pairwise interaction
potential energy48.

The long-range Coulomb interaction of the pair of CIEs (trions)
is strengthened by their permanent dipole moments directed
perpendicular to the plane of the structure. Their actual exact
interaction potential depends on the relative orientation of the
triangles formed by the three charges in a trion complex. The exact
potential includes nine terms to couple electrons and holes in two
complexes by means of the Veff ðR;ΔρX ± ; r0Þ and VCðR;ΔρX ± ; dÞ
potentials, where R is the trion center-to-center distance (see
Methods). Figure 3a shows the exact interaction potentials U and V
as functions of R and d for unlike- and like-charge trion pairs
(shown for σ= 1 and 0.5, respectively; no major change observed
with the variation of σ) in their symmetry-promoted most likely
configurations presented in Fig. 1. The unlike-charge trion pairwise
interaction potential exhibits a deep attractive (negative) minimum
and a strongly repulsive (positive) core for all d in the range
presented, in contrast with the manifestly repulsive like-charge trion
pairwise potential. This is what makes the order-disorder transition
in the two-component unlike-charge trion system identical to that
in an AB type alloy with A and B components randomly mixed at
high T and ordered on the ionic-crystal-type superlattice of
interpenetrating a- and b-sublattices below T ðNÞ

c ¼ zv=2kB, the
Néel temperature48. Here, z is the number of the nearest neighbors
on the superlattice and v= (vAA+ vBB)/2− vAB > 0 is the combined
nearest-neighbor coupling constant written in terms of those of
respective sublattices. In our case here, the ordering below T ðNÞ

c
creates 1D chains (z= 2) of the two interpenetrating sublattices
with collinear CIE permanent dipole moments in each of the two.
In full analogy, taking the parameters Rmin and Umin ¼ UðRminÞ of
the minimum of the potential U in Fig. 3a to represent the chain
period and the unlike-charge trion coupling constant, respectively,
one obtains T ðNÞ

c � ½Vð2RminÞ � UðRminÞ�=kB � jUminj=kB. Here,
Vð2RminÞ � 0 stands for the repulsive interaction coupling constant
of the like-charge trions whose sublattice period is twice greater
than the period of the chain.

The top and bottom panels in Fig. 3b present the exact d-
dependences of Rmin and Umin calculated for the U-potential
surface shown in Fig. 3a. Their approximate expressions can be
relatively easily found analytically by seeking the U-potential
minimum under the conditions r0, d < 1 and ΔρX ± >1 consistent
with Eq. (4). This leads to Rmin � ðree þ rhhÞ=2 and
Umin � �1=d þ 1=ree þ 1=rhh, where ree ¼ ðλ=σÞΔρX� and
rhh ¼ λΔρXþ are the interelectron and interhole distances in the
negative and positive CIE, respectively. These expressions are
seen to reproduce the numerical calculations quite well, within
the approximations used, to demonstrate the fast drop of jUminj
(and TcN for the unlike-charge trion crystallization transition,
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accordingly) with Rmin slowly rising as the interlayer separation d
in the heterostructure increases.

Like-charge trion Wigner crystallization. In heterostructures of
two monolayers with σ ≠ 1 separated by an interlayer distance not
to fulfill the jEX�ðσ; dÞj ¼ jEXþðσ; dÞj constraint, including elec-
trostatically doped heterostructures, either X− or X+ trions are
most likely to form under intense irradiation. As can be seen from
Fig. 2, for σ < 1 the domains jEX� j> jEXþ j and jEX� j< jEXþ j are
located at smaller and greater d to form like-charge trions—
negative and positive, respectively, as long as their binding energy
absolute values exceed the thermal fluctuation energy at a given T.

An ensemble of repulsively interacting particles (or quasiparticles,
structureless or compound) forms a Wigner lattice when its
average potential interaction energy exceeds average kinetic energy,
〈V〉/〈K〉= Γ0 > 1. This was previously shown for systems such as 2D
electron gas49, cold polar molecules50, and indirect excitons4. For
like-charge trions in Fig. 1b, the Coulomb repulsion at large R is
strengthened at shorter R by the dipole–dipole repulsion of their
collinear permanent dipole moments (to result in the pairwise
interaction potential V illustrated in Fig. 3), while the total
kinetic energy is additionally contributed by the rotational term
K ðrÞ

X ± ¼ _2lðl þ 1Þ=2IX ± with l= 0, 1, 2, . . . being the orbital quan-
tum number and IX ± ¼ mh;erhh;ee=2 representing the moment of
inertia for CIE rotation about its permanent dipole moment
direction. The low-T statistical averaging over l leads to the

characteristic temperature T ðrÞ
X ± ¼ _2=kBIX ± for rotational motion

“freezing”51. By direct analogy with the hydrogen molecular ion
problem52 this can be rewritten as T ðrÞ

Xþ � σjEXþj=kB and

T ðrÞ
X� � jEX� j=kBσ, indicating the rotational degrees of freedom to

be frozen out (at least for the case of σ being close to unity typical of
TMDs, in particular53,54) as long as the CIEs are stable against
thermal fluctuations.

With no rotational term contribution, it is straightforward to get
a qualitative picture of the like-charge trion Wigner crystallization
by performing an analysis analogous to that reported for the 2D
electron gas previously49. With slight modifications to include the
dipole repulsion in the interparticle interaction potential V and to
replace the electron mass by the CIE mass in the translational
kinetic energy K, the expressions for the zero-T critical density nc
and for the critical temperature T ðWÞ

c of the Wigner crystallization
phase transition take the form (see Methods)

ncX ± ¼ 2

πd2
g ± Γ0
4d

� �2

1� 1
2

4d
g ± Γ0

� �2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4d
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� �2
s2

4
3
5;

kBT
ðWÞ
cX ± ¼ 4Ry�
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2
0

;
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2

� �
σ þ 2

1

� �
1
σ

� ��1

:

ð5Þ

Fig. 2 Charged interlayer exciton binding energy. a Absolute values of the binding energies EX ± of the positive and negative charged interlayer excitons
(CIEs) as functions of the interlayer separation d and screening length parameter r0 as given by Eqs. (1), (2) and (4) for σ= 1 and 0.7 (electron-hole
effective mass ratio). b Crosscuts of (a) for r0= 0 and 0.1 (screening length parameter) to show the binding energy splitting for the positive and negative
CIEs with unequal electron-hole masses. c Solutions to the equation jEXþ ðσ; dÞj ¼ jEX� ðσ; dÞj for the three values of the screening length parameter r0.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00624-1

4 COMMUNICATIONS PHYSICS |           (2021) 4:134 | https://doi.org/10.1038/s42005-021-00624-1 | www.nature.com/commsphys

www.nature.com/commsphys


The quantities ncX ± and T ðWÞ
cX ± are shown on the top and bottom of

Fig. 3c as functions of d and σ ( < 1), respectively, for moderate Γ0
values49. As d increases so does 〈V〉 once the dipole repulsion
becomes appreciable. With constant Γ0 this leads to the 〈K〉 increase
and ncX ± rise, accordingly. The latter is slightly lower for the
negative CIE due to its smaller K because of the smaller mass than
that of the positive CIE. Lowering σ generally lowers the CIE mass
thus decreasing its K whereby T ðWÞ

cX ± increases. These are the general
trends featured in Fig. 3c.

Estimates for the effects discussed. We consider the case of the
CIE formation in TMD homobilayers (both monolayers of the
same material) encapsulated in bulk hexagonal boron nitride
(hBN), a popular practical realization one encounters in a wide
range of experiments23,24,32,55. Heterobilayers (two different
TMD monolayers) offer many more CIE formation possibilities

and therefore preferably should be analyzed on a case-by-case
basis. For the quantitative description of the effects predicted, our
model requires the knowledge of the exciton reduced effective
mass μ, the electron-hole effective masses me,h associated with it,
the effective average dielectric constant ε of the system, and the
screening length parameter r0= 2πχ2D with χ2D being a spatially
dispersive (and so nonlocal, i.e. in-plane distance-dependent)
polarizability function44,56. We use μ, me and mh reported
recently from the first-principles calculations of the TMD-
monolayer electronic structure47. The effective dielectric permit-
tivity ε can be evaluated by the Maxwell-Garnett method57, which
in our case prescribes to use the weighted average of the hBN and
TMD static permittivities, whereby for the hBN-monolayer
number much greater than two we obtain ε= 5.87 (bulk hBN
permittivity averaged over all three directions58). Finally, the r0
parameter can be obtained based on the fundamental energy
minimum principle59, whereby the (negative) binding energy of a

Fig. 3 Interaction potentials and crystallization. a The exact unlike-charge attractive and like-charge repulsive electrostatic interaction potentials U and V
calculated for the pairs of charged interlayer excitons (CIEs) shown in Fig. 1 with electron-hole effective mass ratio σ= 1 and 0.5, respectively, separated by
the center-of-mass-to-center-of-mass distance R in bilayers with the screening length parameter r0= 0.1 and interlayer separation d. b The approximate
analytical (dashed black lines) and computed d-dependences (interlayer separation) of the position Rmin (green line) and value Umin (red dots) of the
minimum for the U-potential surface in (a). cWigner crystallization phase transition parameters calculated for the many-particle charged interlayer exciton
(CIE) system with the average potential-to-kinetic energy ratio Γ0= 10 and 20 (for comparison): critical densities ncX ± as functions of the interlayer
separation d for the positive and negative CIEs with electron-hole effective mass ratio σ= 0.5, and critical temperatures TðWÞ

cX ± as functions of the electron-
hole effective mass ratio σ.
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CIE complex must contribute the most in order for the CIE
ensemble to be at a local minimum of its total energy in equili-
brium. The r0 parameter can therefore be found as the maximum
point of the CIE binding energy absolute value jEX ± ðσ; d; r0Þj
taken with both σ=me/mh and d fixed. We note that by its
definition the KR potential screening length r0 refers to in-plane
charges which are the like-charge carriers to form the CIE in our
case. These carriers are separated by distances at least of the order
of 2a�B—much greater than those of the order of a�B one typically
encounters in the exciton case. Therefore, being determined by
greater distances, our r0 due to its inherent nonlocality may very
well be different from the values previously reported theoretically
and experimentally for excitons in TMD monolayers45,55.

Figure 4 presents and summarizes the data we have obtained
for the hBN-encapsulated homobilayers of MoS2, MoSe2, WS2
and WSe2. With μ, me,h and ε found as described above, we first
calculate the exciton Bohr radius a�B and Rydberg energy Ry* for
each case individually. Then, with known σ=me/mh, a�B and Ry*

we obtain the binding energy surfaces jEX ± ðσ; d; r0Þj in physical
units (eV for energy and Å for distance) from Eqs. (1), (2) and
(4), determine their maximum points rX

±

0 for a particular fixed d,
and compute the CIE binding energy absolute values
jEX ± ðσ; d; rX ±

0 Þj. We do this for the interlayer distances d= 3,

4, 5 and 6Å (typical of van der Waals coupling) for each
homobilayer type in order to be able to see the tendencies for
the X+ and X− trion formation as d increases. As an example,
panels (a) and (b) show the X+ and X− binding energy surfaces
and their fixed-d crosscuts, respectively, for CIEs in the MoSe2
homobilayer. The vertical dashed lines in panel (b) trace the jEX ± j
maxima and their respective rX

±

0 distances. The CIE parameters
thus obtained are tabulated in panel (c) for all four homobilayers
selected. We note the general consistency of our jEX ± j obtained
both with numerical simulation data reported previously for the
MoS2/WS2 heterobilayer embedded in hBN (18/28 meV for the
X+/X− trion15) and with the latest experimental observations on
the MoSe2/WSe2 heterobilayer system (10/15 meV for the X+/X−

trion23 and 28 meV for the X− trion24, respectively). In the table,
the largest differences between the positive and negative trion
binding energies are those for MoSe2, due to a significant me and
mh difference yielding σ= 0.8, which makes this homobilayer
energetically favorable for the positive CIE Wigner crystallization
for the interlayer distances d ranging between 3 and 5 Å. As d
increases from 3 to 6 Å, for all types of bilayers tabulated, both
jEXþ j and jEX� j quickly decrease and get closer together while still
remaining significant in magnitude, to make the normal unlike-
charge trion crystallization energetically favorable. In the case of

Fig. 4 Major characteristics of charged interlayer excitons in homobilayers. a An example of the MoSe2 homobilayer embedded in bulk hBN (hexagonal
boron nitride) material to present the positive (X+) and negative (X−) charged interlayer exciton (CIE) binding energy surfaces jEX ± j as functions of the
interlayer separation d and the screening length parameter r0 in physical units (eV for energy and Å for distance, respectively). b The fixed-d crosscuts of
(a) as functions of r0 with the vertical dashed lines indicating the points of maxima to give the actual X+ and X− binding energy absolute values for the
interlayer separations d fixed. c The data table to summarize the charged interlayer exciton (CIE) characteristics obtained for the four types of the hBN-
encapsulated homobilayers. The homobilayers analyzed are collected in the left column. The next two columns present their respective electron me, hole
mh and reduced μ ¼ ðm�1

e þm�1
h Þ�1

effective masses in units of the free electron mass m0 (reported previously from the density functional calculations47),
and the effective exciton Bohr radia a�B along with the effective exciton Rydberg energies Ry* we obtain and use in our analysis. The other columns (left to
right) are divided in three groups to show the screening length parameters rX

±

0 and the absolute values of the binding energies jEX ± j of the positive and
negative charged interlayer excitons (CIEs) for the three values of the interlayer separations d in the four bilayers presented.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00624-1

6 COMMUNICATIONS PHYSICS |           (2021) 4:134 | https://doi.org/10.1038/s42005-021-00624-1 | www.nature.com/commsphys

www.nature.com/commsphys


MoSe2, this implies a crossover from the Wigner crystal phase of
the positive trions to the normal crystal phase of the unlike-
charge trions. A similar crossover from the Wigner crystallization
of the negative trions to the normal crystallization of the unlike-
charge trions, although not as pronounced as for MoSe2, might
also be the case for WS2 and WSe2 according to our data
tabulated. For MoS2, on the contrary, only the normal unlike-
charge trion crystallization is energetically favorable as jEXþ j and
jEX� j there are about the same over the entire range of the
interlayer distances d presented.

Using a�B and Ry* obtained as scaling units, it is quite
straightforward to estimate the critical parameters for many-
particle CIE systems in TMD homobilayers tabulated in Fig. 4c.
As our scaling units are very close for all homobilayers presented
(an immediate corollary of being embedded in bulk hBN), from
Fig. 3b, c one can get kBT

ðNÞ
c � jUminj � 0:3 eV at d= 6Å,

critical density ncX ± � 1012 � 1013cm−2 and kBT
ðWÞ
cX ± � 6 meV

(to give T ðWÞ
cX ± � 70 K). The fact of kBT

ðNÞ
c being much greater

than our jEX ± j tabulated tells that the dipole-ordered normal 1D-
crystal phase is the actual ground state of the many-particle
unlike-charge trion system. The obtained ncX ± and T ðWÞ

cX ± are,
respectively, close to and exceed those reported experimentally
for IEs23,27, suggesting that the Wigner crystallized CIE phase can
be realized in properly fabricated vdW heterostructures with the
twofold overbalance of negative (as in Fig. 1b) or positive charge
carriers. Crystallized CIE photoemission is expected to feature
properties similar to those previously reported for crystallized
IEs9, with a series of advantages to offer though such as being
tunable by external electro-/magneto-static fields and being
controllable by the interlayer separation adjustment for bilayer
systems.

Conclusion. In summary, we study the properties of charged
interlayer excitons in highly excited vdW heterostructures—a
compound fermion system with the permanent dipole moment
observed recently in TMD bilayers10,23. We predict the existence
of strongly correlated collective CIE states, the long-range ordered
phases of the excited heterostructure—the crystal phase and the
Wigner crystal phase. We evaluate the critical temperatures and
density for the formation of such many-particle cooperative
compound fermion states. We demonstrate that they can be
selectively realized with bilayers of properly chosen electron-hole
effective mass ratio by just varying their interlayer separation
distance. Compound fermion systems featuring permanent elec-
tric dipole moments are of both fundamental and practical
importance due to their inherently unique many-body correlation
effects between electric-dipole and spin degrees of freedom. The
spin in such systems could potentially be used for quantum
information processing and its correlation with the dipole
moment provides an opportunity for spin manipulation through
optical means. Fundamental cooperative crystallization phe-
nomena we predict herewith for bilayer vdW heterostructures can
be used for both experimental exploration and device technology
development to increase the potential capabilities of such quan-
tum systems.

Methods
The charged interlayer exciton binding energy. A sketch of a charged interlayer
exciton (CIE, or trion) in a TMD bilayer is presented in Fig. 5a for the negative
trion case (X−). The positive trion case (X+) can be obtained by the charge sign
inversion. The CIE we deal with here is a charged three-particle complex of an
interlayer (indirect) exciton (IE) and an extra hole (h) or electron (e), in which two
like charge carriers confined to the same layer share an unlike charge carrier on the
other layer. Such a CIE complex can be viewed as being formed by the two
equivalent indistinguishable symmetric IE configurations with an extra charge
carrier attached to the left or right IE, respectively, as shown in Fig. 5a for the

negative trion case34. For such a quantum system the effective configuration space
can be represented by the two independent in-plane projections ρ1 and ρ2 of the
relative e-h coordinates (relative to the center of mass) of each of the IEs, whereby
the X± ground-state Hamiltonian takes the following form33

Ĥðρ1; ρ2;Δρ; dÞ ¼ � 1
ρ1

∂

∂ ρ1
ρ1

∂

∂ ρ1
� 1

ρ2

∂

∂ ρ2
ρ2

∂

∂ ρ2

þ VC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ21 þ d2

q� �
þ VC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ22 þ d2

q� �
þ VC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ1 ±ΔρÞ2 þ d2

q� �

þ VC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ2 � ΔρÞ2 þ d2

q� �

þ 2
VKRðjσðρ1 � ρ2Þ=λþ ΔρjÞ ! Xþ

VKRðjðρ1 � ρ2Þ=λ� ΔρjÞ ! X�

�
:

ð6Þ

The “atomic units” are used with distance and energy measured in the
units of exciton Bohr radius a�B ¼ 0:529 Å ε=μ and Rydberg energy
Ry� ¼ _2=ð2μ m0a

�2
B Þ ¼ e2=ð2εa�BÞ ¼ 13:6 eV μ=ε2, respectively37–41,

μ=me/(λm0) with λ= 1+ σ stands for the exciton reduced effective mass
(in the units of free electron mass m0), σ=me/mh is the electron-to-hole

Fig. 5 Configuration space view. a The structure of a negatively charged
interlayer exciton (CIE) complex in a transition metal dichalcogenide
(TMD) bilayer of the interlayer separation d. The complex can be viewed as
a pair of equivalent interlayer excitons (IEs) sharing the same hole—both
represented by their relative electron-hole distance in-plane projections ρ1
and ρ2 treated independently, with ΔρX� being the interexciton center-of-
mass-to-center-of-mass distance. b The same structure in the orthogonal
configuration space (ρ1,ρ2) of the two equivalent independent IEs separated
by the center-of-mass-to-center-of-mass distance Δρ (¼ ΔρX� for the
negative CIE here). The diagonal crosscut illustrates the tunnel exchange
between the two equivalent IEs in (a). The system tunnels through the
potential barrier formed by the two single-exciton Coulomb interaction
potentials (bottom, yellow) given by the second line in Eq. (6), between the
equivalent states (top, green) represented by the isolated two-exciton wave
functions in Eq. (13). Due to the IE ground-state splitting, this tunnel
exchange coupling lowers the ground-state energy of the system by the
amount of JX� ðΔρÞ, the tunnel exchange integral given by Eq. (17), to form
the negative CIE complex.
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effective mass ratio, and ε represents the effective average dielectric constant
of the entire bilayer structure37. The image-charge effects are neglected.

The first two lines in Eq. (6) describe the kinetic and potential energy,
respectively, for the two non-interacting IEs. Their individual e-h attractive
Coulomb potentials screened, generically of the form

VCðrÞ ¼ � 1
r
¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ d2
q ð7Þ

(atomic units) with ρ being the in-plane intercharge distance, are symmetrized to
account for the presence of the neighbor a distance Δρ away as seen from the ρ1-
and ρ2-coordinate systems assigned to originate at the respective IE centers-of-
mass and treated independently; see Fig. 5a. The last line is the interexciton
exchange Coulomb interaction (or the like-charge Coulomb repulsion potential
inside the trion)—h-h for X+ and e-e for X−, respectively. We use the repulsive KR
interaction potential to represent this interaction (atomic units)

VKRðρÞ ¼
π

ðϵ1 þ ϵ2Þr0
H0

ρ

r0

� �
� N0

ρ

r0

� �� �
; ð8Þ

in order to properly take into account the screening effect for the like charges
confined to the same monolayer42,43. Here, N0 and H0 are the 0th order Neumann
and Struve functions, respectively, r0 is the screening length defined in Eq. (3) for a
2D material45, and ϵ1,2 are the dielectric permittivities of its surroundings. To
facilitate the analytical calculations, we approximate Eq. (8) by its accurate
alternative (3) written in terms of elementary functions as discussed and proposed
for atomically thin layers previously44.

For the CIE complex of two identical configurations with an extra charge
attached to the left or right IE, the total wave function must be either symmetric or
antisymmetric with respect to their interchange due to the conservation of parity.
This can generally be achieved with coordinate wave functions of the form

Ψg;u � 1ffiffiffi
2

p ϕIX ðρ1; ρ2Þ± ϕIXðρ2; ρ1Þ
� � ¼ 1ffiffiffi

2
p ϕIXðρ1; ρ2Þ±ϕIX ðρ1 � Δρ; ρ2 þ ΔρÞ� �

;

ð9Þ
where ϕIX(ρ1, ρ2)= ψIX(ρ1, d) ψIX(ρ2, d) with ψIX being the IE wave function. This
involves the two terms localized at ρ1= ρ2= 0 and ρ1=− ρ2= Δρ, respectively, to
represent the two equivalent configurations in terms of the two independent
relative e-h coordinates ρ1 and ρ2 as shown in Fig. 5a. Since the total wave function
of the quantum ground state must be nodeless38, for large Δρ≫ 1 the ground-state
wave function of two IEs (two bosons) must be symmetric in coordinates to hold
with Ψg in Eq. (9). At shorter Δρ≳ 1 it can be multiplied by an even function of
coordinates to be found from the Hamiltonian (6) in the manner similar to that
developed in the past for the hydrogen molecule and molecular ion in seminal
works by Landau, Gor’kov, Pitaevski, Holstein and Herring38–41 and more recently
by one of us for biexcitons and trions in quasi-1D/2D semiconductors33–36.
Assuming further that for both configurations their respective IEs are in the
spin-singlet states as dictated by the hyperfine interactions of their unlike-charge
spin-1/2 fermionic (electron and hole) constituents52, one arrives at the CIE
complex featuring the ground state with two identical like-charge collinear-spin
fermions in the same layer, which are thereby forced both by the Coulomb
repulsion and by the Pauli exclusion principle to avoid each other at short Δρ < 1.
Such a CIE complex is therefore only possible to form due to the asymptotic
Coulomb exchange coupling at Δρ≳ 1, the domain our theory applies for.

Figure 5b shows a diagonal vertical crosscut of the potential energy surface
(bottom) as given for X− by the second line of Eq. (6) in the two-coordinate
configuration space (ρ1, ρ2). On the main diagonal, this surface has two
symmetrical minima separated by the potential barrier. The minima represent the
two equivalent isolated IE states (top) given by the solution to the ground-state
eigenvalue problem defined by the first two lines of the Hamiltonian (6). This
solution is the product of the two ground-state IE wave functions. The interlayer
(or indirect) exciton eigenvalue problem was previously studied by Leavitt and
Little37. Their ground-state energy EIX and the wave-function ψIX are as follows
(atomic units)

EIX ðdÞ ¼ α2 � 4αþ 4α4d2E1ð2αdÞ expð2αdÞ
1þ 2αd

; ð10Þ

where E1ðxÞ ¼
R1
x dt e�t=t is the exponential integral, α ¼ 2=ð1þ 2

ffiffiffi
d

p
Þ, and

ψIX ðρ; dÞ ¼ N exp �α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ d2

q
� d

� �� �
; ð11Þ

with N ¼ 4=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

ffiffiffi
d

p
þ 8d ð1þ

ffiffiffi
d

p
Þ

q
as per the normalizationR1

0 dρ ρ jψIX ðρ; dÞj2 ¼ 1.
We start the CIE binding energy calculation with the (ρ1, ρ2)-configuration

space transformation to the new coordinates as follows

x ¼ ðρ2 � ρ1 � ΔρÞ= ffiffiffi
2

p ! Xþ

ðρ1 � ρ2 � ΔρÞ= ffiffiffi
2

p ! X�

(
; y ¼ ρ1 þ ρ2ffiffiffi

2
p : ð12Þ

This transformation places the origin and both axes of the new coordinate system
(x, y) as shown in Fig. 5b—in the middle of the potential barrier that separates the

two potential wells representing the two equivalent isolated IE states—to capture
the maximal tunnel flow JX ± ðΔρÞ between the two indistinguishable IE
configurations33,34. An approximate solution to the Schrödinger equation with
Hamiltonian (6) can be constructed using Eq. (11). By converting Eq. (11) to the
(x, y)-space per Eq. (12), we define the product wave function

ϕIX ðx; yÞ ¼ ψIX ½ρ1ðx; yÞ; d� ψIX ½ρ2ðx; yÞ; d�;

ρ1;2ðx; yÞ ¼
ðy � xÞ= ffiffiffi

2
p � Δρ=2 ! Xþ

ðy ± xÞ= ffiffiffi
2

p
±Δρ=2 ! X�

(
;

ð13Þ

to describe the motion with the energy EIX inside the potential well centered at ρ1
= ρ2= 0 (or x ¼ �Δρ=

ffiffiffi
2

p
, y= 0), while being exponentially damped outside. In

just the same way, the function ϕIX(−x, y) describes the motion with the same
energy inside the well centered at ρ1=−ρ2= Δρ for the X− case shown in Fig. 5b
and at ρ2=−ρ1= Δρ for the X+ case (both corresponding to x ¼ Δρ=

ffiffiffi
2

p
, y= 0).

Both of these functions are properly normalized to unity within their respective
potential wells. Both of them are even in x and y with respect to their respective
well-center positions, whereby ∂ϕIXð�Δρ=

ffiffiffi
2

p
; yÞ=∂x ¼ ∂ϕIX ðx; 0Þ=∂y ¼ 0.

When the small probability of the underbarrier tunneling is taken into account,
the energy level EIX splits into EIX � JX ± ðΔρÞ and EIX þ JX ± ðΔρÞ. Then, the correct
zero-approximation wave functions corresponding to these levels are
ϕIX ðx; yÞ±ϕIX ð�x; yÞ� �

=
ffiffiffi
2

p
, and since ϕIX(x, y)ϕIX(−x, y) is vanishingly small

everywhere, they are normalized so that the integrals of their squares over both
wells are unity. This suggests that the actual eigenfunctions of the eigenvalues Eg,u
can be written as

ψg;uðx; yÞ ¼
1ffiffiffi
2

p ψX ± ðx; yÞ±ψX ± ð�x; yÞ� �
; ð14Þ

where ψX ± ð�Δρ=
ffiffiffi
2

p
; yÞ ¼ ϕIX ð�Δρ=

ffiffiffi
2

p
; yÞ, with the unknown function ψX ± ðx; yÞ

representing an approximate solution to the Schrödinger equation with the
Hamiltonian (6) brought to the (x, y)-space per Eq. (12) to take the form

Ĥðx; y;Δρ; dÞ ¼ T̂ðx; y;ΔρÞ þ Uðx; y;Δρ; dÞ: ð15Þ

Here the kinetic and potential energy terms are as follows

T̂ ¼ � ∂2

∂x2
� ∂2

∂y2
� 2

ðx þ Δρ=
ffiffiffi
2

p Þ ∂=∂x � y ∂=∂y

ðx þ Δρ=
ffiffiffi
2

p Þ2 � y2
;

U ¼ ∑
1

α;β¼0
VC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x þ ð�1ÞαΔρ=

ffiffiffi
2

p
þ ð�1Þβy

h i2
=2þ d2

r( )
þ 2

VKR j ffiffiffi
2

p
σx � Δρj=λ	 
 ! Xþ

VKR j ffiffiffi
2

p
x� σΔρj=λ	 
 ! X�

(
:

ð16Þ
In general, the function ψX ± ðx; yÞ is supposed to preserve the parity and the

behavior of the function ϕIX(x, y), to only depart noticeably from ϕIX(x, y) in the
very tail area x ~ y ~ 0 under the potential barrier and to overlap with ψX ± ð�x; yÞ in
there; see Fig. 5b. The overlap enables the tunnel exchange between the two
indistinguishable configurations represented by ϕIX(x, y) pinned to the potential
well centered at ρ1= ρ2= 0 (x ¼ �Δρ=

ffiffiffi
2

p
, y= 0) and by ϕIX(−x, y) pinned to the

other potential well at ρ1=−ρ2= Δρ or ρ2=−ρ1= Δρ (x ¼ Δρ=
ffiffiffi
2

p
, y= 0) for X−

and X+, respectively. Under these restrictive assumptions about ψX ± ðx; yÞ in
Eq. (14), it is possible to write down the two Schrödinger equations as follows

ðT̂ þ UÞψX ± ðx; yÞ ¼ 2EIXψX ± ðx; yÞ; ðT̂ þ UÞψg ðx; yÞ ¼ Egψg ðx; yÞ;

where T̂ and U are those of Eq. (16). We multiply from the left the former by
ψg(x, y) and the latter by ψX ± ðx; yÞ, subtract one from another, and integrate over
x from−∞ to 0 and over y from−∞ to+∞. This includes the potential well
positioned at x ¼ �Δρ=

ffiffiffi
2

p
, y= 0, so that

Z 0

�1
dx

Z 1

�1
dy ψX ± ðx; yÞψg ðx; yÞ ¼

1ffiffiffi
2

p
Z 0

�1
dx

Z 1

�1
dy ψ2

X ± ðx; yÞ

� 1ffiffiffi
2

p
Z 0

�1
dx

Z 1

�1
dy ϕ2IXðx; yÞ ¼

1ffiffiffi
2

p ;

and we find

2EIX � Eg ¼
ffiffiffi
2

p Z 0

�1
dx

Z 1

�1
dy ψg ðx; yÞT̂ψX ± ðx; yÞ � ψX ± ðx; yÞT̂ψg ðx; yÞ
h i

:

In here, with T of Eq. (16) it can be seen that its last term might only be significant
at or close to x ¼ �Δρ=

ffiffiffi
2

p
, y= 0, but the partial derivatives of relevance are zero

there, and so this term can be dropped for smallness over the entire integration
domain. What remains can be integrated by parts. Bearing in mind that
ψg ð0; yÞ ¼

ffiffiffi
2

p
ψX ± ð0; yÞ, ∂ψg(0, y)/∂x= 0 and all the functions involved as well as

their derivatives must vanish at infinity, this after numerus cancelations gives

2EIX � Eg ¼ 2
Z 1

�1
dy ψX ± ð0; yÞ ∂ψX ± ð0; yÞ

∂x
:

From here, with just a tiny adjustment for practical application purposes, we obtain
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the tunnel exchange splitting integral in Eq. (1) of the following final form

JX ± ðΔρÞ ¼
Z Δρ=

ffiffi
2

p

�Δρ=
ffiffi
2

p dy ψX ± ðx; yÞ ∂ψX ± ðx; yÞ
∂x



x¼0

: ð17Þ

Here, we take into account the fast exponential drop-off of the integrand away
from the y= 0-plane, whereby the integration limits can be shrunken to only
include the physically significant cross-section region, see Fig. 5b, that controls the
under-barrier tunnel probability flow—a positive quantity we wish to stress by
taking the absolute value of. Such a tunnel exchange coupling binds the three-
particle system to form a stable CIE state.

The trion wave function. We seek the function ψX ± ðx; yÞ of Eq. (17) in the following
form

ψX ± ðx; yÞ ¼ ϕIX ðx; yÞ exp½�SX ± ðx; yÞ�: ð18Þ

Here, the unknown function SX ± ðx; yÞ is to be chosen so that SX ± ðx¼�Δρ=
ffiffiffi
2

p
; yÞ¼0

to fulfill the condition ψX ± ð�Δρ=
ffiffiffi
2

p
; yÞ ¼ ϕIX ð�Δρ=

ffiffiffi
2

p
; yÞ as per Eq. (14), while

also being smooth and slowly varying in the domain jxj; jyj<Δρ=
ffiffiffi
2

p
under the

barrier, whereby its second derivatives should be negligible. Additionally, as was
mentioned above, for our three-particle X± complexes the equivalency of the two
IEs sharing the same hole (or electron) implies their identity and leads to the fact of
the like-charge carriers having collinear spins. The Coulomb repulsion strength-
ened by the Pauli exclusion principle forces them to avoid each other at short
interexciton center-of-mass-to-center-of-mass distance Δρ < 1, making it possible
for a stable CIE complex to only form at Δρ≳ 1, which is why 1/Δρ can be used as a
smallness parameter in analytical calculations.

For the negative CIE, plugging Eq. (18) into the Schrödinger equation with the
Hamiltonian (15), (16), to the first non-vanishing order in 1/Δρ one obtains

∂SX�

∂x
� Δρffiffiffi

2
p

αΔρ� 1
	 
 VKR

j ffiffiffi
2

p
x � σΔρj
λ

� �
; ð19Þ

where the second-order derivatives of SX� are neglected. To find the analytical
solution to this differential equation in the domain of interest jxj; jyj<Δρ=

ffiffiffi
2

p
, we

use Veff of Eq. (3) to replce VKR in the right-hand side of Eq. (19). The solution to
fulfill the boundary condition SX� ð�Δρ=

ffiffiffi
2

p
; yÞ ¼ 0 is then given by

SX� ðx; yÞ ¼ Δρffiffiffi
2

p
αΔρ� 1
	 
 Z x

�Δρ=
ffiffi
2

p dt Veff
j ffiffiffi

2
p

t � σΔρj
λ

� �
¼ Δρffiffiffi

2
p

αΔρ� 1
	 
 Iðx;ΔρÞ:

ð20Þ
To calculate the integral I(x, Δρ) here, we first use the unit step function to write

Veff
j ffiffiffi

2
p

t � σΔρj
λ

� �
¼ θ t � σΔρffiffiffi

2
p

� �
Veff

ffiffiffi
2

p
t � σΔρ

λ

� �
þ θ

σΔρffiffiffi
2

p � t

� �
Veff

σΔρ� ffiffiffi
2

p
t

λ

� �
;

followed by the change of variable τ ¼ ð ffiffiffi
2

p
t � σΔρÞ=λ to obtain

Iðx;ΔρÞ ¼ λffiffiffi
2

p θ x � σΔρffiffiffi
2

p
� � Z 0

�Δρ
dτ Veff ð�τÞ þ

Z ð ffiffi
2

p
x�σΔρÞ=λ

0
dτ Veff ðτÞ

" #(

þ θ
σΔρffiffiffi

2
p � x

� �Z ð ffiffi
2

p
x�σΔρÞ=λ

�Δρ
dτ Veff ð�τÞ

)
:

Of three terms here, only the third is seen to provide the solution in the domain
x < σΔρ=

ffiffiffi
2

p
that includes the region x ~ 0 of interest to us. With Veff of Eq. (3), this

term can be easily calculated analytically using integration by parts. One obtains

Iðx<σΔρ=
ffiffiffi
2

p
;ΔρÞ ¼ λffiffiffi

2
p ln

1þ p
1þ s

þ ln
s

1þ s

� �s 1þ p
p

� �p

þ ðln 2� γÞðe�s � e�pÞ
� �

with s ¼ ðσΔρ� ffiffiffi
2

p
xÞ=λr0 and p= Δρ/r0. A close inspection of this expression

reveals that since s < p , the first summand is predominant there and the other two
are negligible for all 1 < s < p regardless of how big s and p individually are. After
dropping the negligible terms, Eq. (20) in the domain of interest takes the final
form as follows

SX� ðx; yÞ � λΔρ

2 1� αΔρ
	 
 ln

1� ffiffiffi
2

p
x=ðλr0 þ σΔρÞ

1þ Δρ=ðλr0 þ σΔρÞ : ð21Þ

For the positive CIE, plugging Eq. (18) into the Schrödinger equation with the
Hamiltonian (15), (16) yields to the first non-vanishing order in 1/Δρ the equation
as follows

∂SXþ

∂x
� Δρffiffiffi

2
p

αΔρ� 1
	 
 VKR

j ffiffiffi
2

p
σx � Δρj
λ

� �
: ð22Þ

It is easy to see that this equation can be obtained from Eq. (19) by the simple
replacement 1/λ↔ σ/λ. Its solution in the domain of interest can then be obtained

by applying this replacement to Eq. (21). This gives

SXþ ðx; yÞ � λΔρ

2σ 1� αΔρ
	 
 ln

1� ffiffiffi
2

p
σx=ðλr0 þ ΔρÞ

1þ σΔρ=ðλr0 þ ΔρÞ : ð23Þ

The tunnel exchange coupling integral. It is noteworthy that both Eqs. (21) and
(23) are fully consistent with the result reported for σ= 1 previously33. The
functions ψX ± one obtains by plugging these equations into Eq. (18) can be used to
evaluate the tunnel exchange coupling integrals JX ± in Eq. (17). The differentiation
therein can be conveniently done using the following easy-to-prove rule:

if Fðx; yÞ ¼ F0ðx; yÞe�Aðx;yÞ with F0ðx; yÞ ¼ Ce�γBðx;yÞ; then

F
∂F

∂ðx; yÞ ¼ � ∂A
∂ðx; yÞ þ γ

∂B
∂ðx; yÞ

� �
F2 and � γ

∂B
∂ðx; yÞ ¼

1
F0

∂F0

∂ðx; yÞ :

Here ∂/∂(x, y) stands for either ∂/∂x or ∂/∂y. With this, after simplifications and
elementary integration over y one obtains JX ± ðΔρÞ in the form of Eq. (2) above.

Seeking the extremum for JX ± ðΔρÞ must only include the leading term in small
1/Δρ to be consistent with the procedure of finding SX ± described above. Taking
the derivative of JX ± over Δρ, equating it to zero, and solving the polynomial
equation obtained to the first infinitesimal order in 1/Δρ, results in ΔρX ± in the
form of Eq. (4) above.

Remarks on the interlayer Coulomb interaction potential. The electrostatic inter-
action potential energies (7) and (8) we use in our analysis can be shown to
consistently originate from the general solution to the electrostatic boundary-value
problem that includes two coupled parallel monolayers. Such a solution was
recently obtained by one of us (with coathors) as a byproduct in the bilayer optical
probing experiment analysis60. A bilayer system was considered to consist of the
two parallel monolayers with individual 2D-polarizabilities χ02D and χ002D (in our
notations) that are separated by a distance d and surrounded by a dielectric
medium of the static permittivity ε, with a point charge sitting at the origin of the
cylindrical coordinate system placed in the bottom layer. In order to find the
electrostatic interaction potential energy in the whole space, the Poisson’s equation
was solved in the Fourier space in the way similar to that reported previously44. In
the 2D-coordinate space, the solution obtained yields the electrostatic unlike- and
like-charge interaction energies of interest as follows (atomic units)

V2Dðρ; dÞ ¼ �
Z 1

0

dq J0ðqρÞ e�qd

ð1þ qr00Þð1þ qr000 Þ � q2r00r
00
0 e�2qd

;

V2Dðρ; 0Þ ¼
Z 1

0

dq J0ðqρÞ ½1þ qr000 ð1� e�2qdÞ�
ð1þ qr00Þð1þ qr000 Þ � q2r00r

00
0 e�2qd

;

ð24Þ

where r00 ¼ 2πχ02D and r000 ¼ 2πχ002D are the respective screening parameters for the
individual monolayers. Due to the presence of the second layer, these equations do
not seem to look similar to the solitary-monolayer KR potential case. However,
setting d=∞ to take the top layer away makes the former zero, while the latter
integrates to yield the KR potential energy (8) with the effective screening length
r0 ¼ r00 just as it should be.

A close inspection of Eq. (24) reveals that due to the oscillatory behavior of the
0th order Bessel function J0(x) for all x > 1, only q ≲ 1/ρ contribute the most to the
integrals there. In our case, ρ � ΔρX ± as can be seen from Fig. 5a. Then, in the
domain 1=ΔρX ± <1 we work within, only wave vectors q≲ 1=ρ � 1=ΔρX ± < 1
contribute the most to both integrals in Eq. (24), so that qd≲ d=ΔρX ± < d < 1 in

Fig. 6 Charged interlayer exciton size versus interlayer separation. The
ratio of the interlayer separation d in a bilayer to the equilibrium center-of-
mass-to-center-of-mass distance ΔρX ± of the two equivalent interlayer
excitons (IEs) to form the charged interlayer exciton (CIE) due to the tunnel
exchange coupling, as given by Eq. (4) for a typical set of parameters used
in this work.
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both integrals for all d we used in this work. This can also be seen from Fig. 6 we
obtained using ΔρX ± of Eq. (4). Therefore, it is legitimate to neglect q2-terms under
the integrals in Eq. (24). This gives

V2Dðρ; dÞ � � 1
ρ

Z 1

0

dx J0ðxÞ e�xd=ρ

1þ xðr00 þ r000 Þ=ρ
; V2Dðρ; 0Þ �

1
ρ

Z 1

0

dx J0ðxÞ
1þ xðr00 þ r000 Þ=ρ

;

and the second integral turns into the KR potential energy (8) with the screening length
r0 ¼ r00 þ r000 . Additionally, as per previous computational studies of monolayer
TMDs45, the monolayer screening length can be accurately represented by c(ε⊥− 1)/2
(ϵ1+ ϵ2), where c and ε⊥ are the bulk TMD out-of-plane translation period and in-
plane dielectric permittivity, respectively. For a TMD bilayer embedded in hBN with ε
= 5.87 (averaged over all three directions58), which is the case for a variety of
experiments23,32,55, the typical parameters are c ≈ 12− 13Å, ε⊥ ≈ 14− 17, ϵ1= (2ε⊥+
ε∥)/3 with ε∥≈ ε⊥/245,58 and ϵ2= ε (or vice versa), to yield r0 � cðε? � 1Þ=ð5ε?=6þ
εÞa��1

B < 1 as a�B in TMDs is consistently greater than 1 nm both by our data (see Fig. 4)
and also by others32,45,55. Then, we obtain r0=ρ � r0=ΔρX ± 	 1. With this in mind
the denominator of the first integral above can be expanded in rapidly convergent
binomial series, whereby after the term-by-term integration the interlayer electrostatic
interaction energy takes the form

V2Dðρ; dÞ � � 1
ρ

Z 1

0

dxJ0ðxÞ e�xd=ρ

1þ xr0=ρ
� � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ d2
q 1� d

ρ

1

1þ d2=ρ2
r0
ρ
þ 
 
 


� �
:

Here, the second term in parentheses comes out as the 2nd (not the 1st as one would
expect!) order of smallness since d=ρ � d=ΔρX ± <1 as demonstrated in Fig. 6, and so it
can be safely dropped along with the rest of higher infinitesimal order terms, whereby
one arrives at the interlayer Coulomb interaction (7) we used in our calculations
throughout this work. Note also that, even more generally, this series expansion can be
seen to be uniformly suitable for all ρ ≥ 0, including ρ ~ 0 as well, in which case the
second term in parentheses comes out as the 1st order of smallness in r0/d and still can
be dropped for d large enough, whereby one still arrives at Eq. (7)—now in the classical
electrostatic Coulomb interaction regime of two space-separated point charges with
intercharge distance written in cylindrical coordinates.

The pairwise interaction potentials for charged interlayer excitons. As can be
seen from the special cases shown in Fig. 7a–c, the long-range Coulomb interaction
of the pair of CIEs (trions) depends on the relative orientation of the triangles
formed by the three charges in a trion complex. The exact interaction potential
includes nine terms to couple the electrons and holes in the two spatially separated
complexes. To simulate the actual potential energy surfaces we use the Coulomb
interaction coupling of Eq. (7) for the (unlike) charges located in the distinct
monolayers and the KR interaction coupling of Eq. (8) for the (like) charges
confined to the same monolayer. The explicit coupling parameter dependence is
given by the functions VKR(R, r1, r2, r0) and VC(R, r1, r2, d) specified below, where R
is the trion-trion center-of-mass-to-center-of-mass distance and r1,2 are the dis-
tances between the like charges in the first and second trion of the interacting trion
pair. In general, r1 ≠ r2 for the unlike-charge trion-trion coupling and r1= r2 for the
like-charge trion-trion coupling as sketched in Fig. 7a–c. Using the standard tri-
angle similarity theorems, these distances come out as λΔρXþ and ðλ=σÞΔρX� for
the positive and negative trion, respectively. This is why for unlike-charge trion
pairs, r1 can only be equal to r2 if σ= 1 (or me=mh).

The pairwise interaction potentials for unlike-charge trions. In this case, two most
likely relative orientations are supported by symmetry for a pair of triangle-shaped
complexes in bilayer structures we deal with. They are the coplanar and parallel
biplanar orientation. Their side and top views are shown in Fig. 7a, c, respectively.
For the former, counting e-h couplings in Fig. 7a counterclockwise from top left,
the total interaction potential energy U takes the form

U ¼ u1 þ u2 þ u3; ð25Þ

u1 ¼ VKRðRþ r1=2Þ þ VC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ ðr1 � r2Þ=2
� �2 þ d2

q� �
þ VC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ ðr1 þ r2Þ=2
� �2 þ d2

q� �
;

u2 ¼ VKRðR� r2=2Þ þ VKRðRþ r2=2Þ þ VC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ d2

p� �
;

u3 ¼ VKRðR� r1=2Þ þ VC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R� ðr1 þ r2Þ=2
� �2 þ d2

q� �
þ VC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R� ðr1 � r2Þ=2
� �2 þ d2

q� �
:

For the latter, from Fig. 7c the total interaction potential W comes out as

W ¼ 2w1 þ w2; ð26Þ

w1 ¼ VC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr1 � r2Þ2=4þ R2 þ d2

q� �
þ VKR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21=4þ R2

q� �
þ VC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr1 þ r2Þ2=4þ R2 þ d2

q� �
;

w2 ¼ 2VKR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22=4þ R2

q� �
þ VC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ d2

p� �
:

The calculated interaction potentials U and W are presented in Fig. 3a and in
Fig. 7d, respectively. The former is seen to be over an order of magnitude more

attractive than the latter in the same parameter range, which is why the W
interaction potential energy is neglected in our analysis.

The pairwise interaction potentials for like-charge trions. In this case, both coplanar
and parallel biplanar relative orientations of the triangle-shaped complexes are
strongly repulsive and, in general, are different for positively and negatively
charged trion pairs. The side view of the coplanar orientation of two positive trions
is shown in Fig. 7b. The top view of their parallel biplanar orientation can be
obtained from the sketch in Fig. 7c by setting r1= r2 and relabeling e↔ h in one of
the trions. For the former, counting e-h couplings in Fig. 7b counterclockwise from
top left, the total interaction potential energy V takes the form

V ¼ v1 þ v2 þ v3; ð27Þ

v1 ¼ VKRðRÞ þ VC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR� r2=2Þ2 þ d2

q� �
þ VC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRþ r2=2Þ2 þ d2

q� �
;

v2 ¼ VKRðRÞ þ VKRðRþ r2Þ þ VC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRþ r2=2Þ2 þ d2

q� �
;

v3 ¼ VKRðR� r2Þ þ VKRðRÞ þ VC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR� r2=2Þ2 þ d2

q� �
:

For the latter, the total interaction potential energy �V can be obtained
from Eq. (26) by setting r1= r2 and simultaneously swapping VKR↔VC and
R2↔ R2+ d2. This gives

�V ¼ 2�v1 þ �v2; ð28Þ

�v1 ¼ VKRðRÞ þ VC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22=4þ R2 þ d2

q� �
þ VKR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 þ R2

q� �
;

�v2 ¼ 2VC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22=4þ R2 þ d2

q� �
þ VKRðRÞ:

For a negatively charged trion pair, r2 should be replaced with r1 in both of these
equations.

A close inspection of Eqs. (27) and (28) reveals their very similar repulsive
behavior and in fact their coincidence when R is greatly different from r2 (both
greater and less than). The calculated interaction potential V of Eq. (27) is
presented in Fig. 3a.

Like-charge trion Wigner crystallization parameters. An ensemble of repul-
sively interacting particles (or quasiparticles, structureless or compound) forms a
Wigner lattice when its average potential interaction energy exceeds its average
kinetic energy49, so that 〈V〉/〈K〉= Γ0 > 1. For like-charge trions in Fig. 7b, the
Coulomb repulsion at large R (≫ r2) is strengthened at shorter R by the dipole-
dipole repulsion of their collinear permanent dipole moments directed perpendi-
cular to the heterostructure plane. These are the two major terms of the power
series expansion in r2/R( < 1) of the repulsive pairwise interaction potential V
presented in Fig. 3a. With rotational kinetic energy neglected for the reasons
explained above, the like-charge trion critical density ncX ± and temperature T ðWÞ

cX ±

can be obtained by drawing an analogy to the 2D electron gas system49 to include
the extra dipole-dipole repulsion term.

The Critical Density. With the commonly used notations preserved, we go on with
using the atomic units introduced previously. For trion-trion separation distances
R greater than the size of the trion (R≫ r1,2), the first order power series expansion
of the average repulsive trion-trion interaction potential takes the form

hVi ¼ 1
R

1þ d2

R2

� �
¼ ffiffiffiffiffiffi

πn
p

1þ d2πn
	 


; ð29Þ

where n= 1/πR2 is the trion surface density. Our trions are compound fermions
with the occupation number

nk ¼ 1
eβðEk��μÞ þ 1

; ð30Þ

where β= 1/kBT, Ek= ℏ2k2/2M, M ¼ MX ± and �μ being the trion total mass and
chemical potential, respectively. At zero T this turns into a unit-step function to
give n in Eq. (29) in the form

n ¼ hNi
S

¼ 2
S
∑
k
nk ¼ 2

S
S

ð2πÞ2 2π
Z kF

0
dk k ¼ k2F

2π
; ð31Þ

where S is the surface area and kF is the trion Fermi-momentum. The average
kinetic energy per particle can then be written as

hKi ¼ 2
hNi∑k Eknk ¼ 2

hNi
S

ð2πÞ2 2π
Z kF

0
dk k

_2k2

2M
¼ πS

hNi
_2

2M
k2F
2π

� �2

¼ _2

2M
πn

ð32Þ
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to result, with 〈V〉 of Eq. (29), in

Γ0 ¼
hVi
hKi ¼

2M

_2
1þ d2πnffiffiffiffiffiffi

πn
p ¼ 2

g
1þ d2πnffiffiffiffiffiffi

πn
p ; ð33Þ

where g stands for the ratio of the electron-hole reduced mass to the trion total
mass

g ¼ μ

M
¼ μ

MX ±
¼ g ± ðσÞ ¼ 3þ 1

2

� �
σ þ 2

1

� �
1
σ

� ��1

: ð34Þ

Introducing the new variable t ¼ d
ffiffiffiffiffiffi
πn

p
turns Eq. (33) into a quadratic equation

t2 � gΓ0
2d

t þ 1 ¼ 0

with two roots as follows

t1;2 ¼
gΓ0
4d

±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gΓ0
4d

� �2

� 1

s
;

of which only one, t2, stays finite as d goes down to zero. This root leads to

ncX ± ¼ 2

πd2
g ± Γ0
4d

� �2

1� 1
2

4d
g ± Γ0

� �2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4d

g ± Γ0

� �2
s2

4
3
5 ð35Þ

and reproduces the 2D electron gas result49 for d→ 0 and g±= 1.

The Critical Temperature. For arbitrary nonzero T, using Eq. (30) with the new
variable x ¼ _k

ffiffiffiffiffiffiffiffiffiffiffiffi
β=2M

p
, the trion surface density (31) can be written in a para-

metric form as follows

n ¼ hNi
S

¼ 2
S

S

ð2πÞ2 2π
Z 1

0

dk k
eβðEk��μÞ þ 1

¼ 2M

_2πβ

Z 1

0
dx x

ze�x2

1þ ze�x2
; z ¼ eβ�μ ≥ 0:

ð36Þ
Similarly, the average kinetic energy per particle of Eq. (32) takes the form

hKi ¼ 2
hNi

S

ð2πÞ2 2π
_2

2M

Z 1

0

dk k3

eβðEk��μÞ þ 1
¼ 1

β

R1
0 dx x3 ze�x2

1þze�x2R1
0 dx x ze�x2

1þze�x2

: ð37Þ

After the power series expansions of their respective denominators, these integrals
can further be represented in terms of the gamma and polylogarithm functions

Fig. 7 Charged interlayer exciton pairwise interaction geometry. a, b The coplanar pairwise interaction geometry for the unlike-charge and like-charge
interlayer trion complexes, respectively, in a bilayer of the interlayer separation d. Here, R is the trion-trion center-of-mass-to-center-of-mass distance and
r1,2 are the distances between the like charges in the first and second trion of the interacting trion pair. By the triangle similarity theorem distances r1 and r2
are related to the equilibrium center-of-mass-to-center-of-mass distance ΔρX ± of the two equivalent interlayer excitons (IEs) sharing the same electron (or
hole) to form the charged interlayer exciton (CIE, trion). They can be different for the pairs of unlike-charge trions but they are always the same for like-
charge trion pairs as shown in (a) and (b), respectively. c, d Top view of the parallel biplanar pairwise interaction geometry for the unlike-charge trion pair
and the respective pairwise interaction potential energy W as given by Eq. (26).
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following the rule

∑
1

m¼1

Z 1

0
xn �ze�x2
� �m

dx ¼ Γ ðnþ 1Þ=2� �
2

Liðnþ1Þ=2ð�zÞ

¼ Γ ðnþ 1Þ=2� �
2

∑
1

m¼1

ð�zÞm
mðnþ1Þ=2 :

ð38Þ

In the classical limit of high T and/or low density59, one has eβðEk��μÞ � 1, so that
the occupation number (30) takes the form nk ¼ e�βðEk�μÞ ¼ ze�βEk to simplify n
in Eq. (36) as follows

n ¼ 2Mz

_2πβ

Z 1

0
dx xe�x2 ¼ Mz

_2πβ
; ð39Þ

whereby the kinetic energy per particle of Eq. (37) takes the form

hKi ¼ 2Mz

_2πβ2n

Z 1

0
dx x3e�x2 ¼ Mz

_2πβ2n
¼ 1

β
¼ kBT ð40Þ

as expected from the energy equipartition theorem of classical statistical mechanics.
Plugging Eqs. (29) and (40) in Eq. (33) gives the equality

πn 1þ d2πn
	 
2 ¼ Γ0kBT

	 
2
. In this equation, to make it consistent with the

approximation Eq. (29) is valid within, one has to discard the terms with powers of
d higher than d2. The quadratic equation thus obtained gives two roots for n(T),
one of which is manifestly negative and so to be discarded. Equating the other root
to ncX ± of Eq. (35) gives the constraint for the critical temperature. Solving it for T
subject to keeping powers of d no greater than d2, leads to

kBT
ðWÞ
cX ± ¼ 4

g ± Γ
2
0

(in the units of Ry*) with g±(σ) given by Eq. (34). For g±= 1 this reproduces the 2D
electron gas result reported previously49.
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