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Network clique cover approximation to analyze
complex contagions through group interactions
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Contagion processes have been proven to fundamentally depend on the structural properties

of the interaction networks conveying them. Many real networked systems are characterized

by clustered substructures representing either collections of all-to-all pair-wise interactions

(cliques) and/or group interactions, involving many of their members at once. In this work,

focusing on interaction structures represented as simplicial complexes, we present a

discrete-time microscopic model of complex contagion for a susceptible-infected-susceptible

dynamics. Introducing a particular edge clique cover and a heuristic to find it, the model

accounts for the higher-order dynamical correlations among the members of the sub-

structures (cliques/simplices). The analytical computation of the critical point reveals that

higher-order correlations are responsible for its dependence on the higher-order couplings.

While such dependence eludes any mean-field model, the possibility of a bi-stable region is

extended to structured populations.
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Epidemics1, rumor spreading2, adoption3, and opinion
dynamics4 are well-known manifestations of real-world
contagion processes. One of the most remarkable achieve-

ments of network science has been the characterization of the
dependence of contagion processes on the structural properties of
the interaction network through which they spread5–8. In parti-
cular, many real-world networks of interest, especially the social
ones, boast a clustered and cycles-rich structure. Triadic closures
are indeed renowned to be a distinguishing feature of social
systems9,10, together with the presence of larger communities in
which every element is connected to (nearly) any other element in
them11. Households and workplaces are common contact-based
examples of that, while online social communities and groups in
messaging apps are information-based ones. In the language of
graph theory, such all-to-all substructures are called cliques.
Specifically, a n-clique (or clique of order n) consists of n nodes
all pair-wisely connected to each other, i.e., a complete subgraph
of n nodes.

Apart from a collection of dyadic interactions, cliques can be
also regarded as the pair-wise projection of richer substructures
representing group interactions (also known as ‘higher-order’
interactions), involving more than two agents (nodes) at once. In
fact, from few years on, a growing branch of literature dedicated
to the study of various dynamical processes involving group
interactions12–18, has been showing that such interactions can
heavily affect the dynamics, and neglecting them can therefore
lead to wrong predictions.

The interaction patterns can be properly formalized by means
of hypergraphs19,20, a generalization of graphs in which the nodes
can be grouped in hyperedges of any order—not only in pairs.
Specifically, here we make use of simplicial complexes (SCs)21,
defined as sets of faces, whereby a face is a set of nodes with the
hereditary property, stating that each of its subsets is also a face of
the SC. Associating a group interaction to each face, a SC then
represents the entire set of interactions among the nodes in it.

Going to the dynamics, we are interested in complex contagion
processes22–26, in which the outcome of a potentially spreading
interaction depends on how many different contagious agents
take part to it, and not—as in simple contagions—only on the
strength of the interaction. The presence of complex contagion
mechanisms has been assessed in various contexts27, but largely
in online social networks and forums28,29, thanks to their unique
data traceability.

Several studies have recently appeared showing the dynamical
effects of group interactions on complex contagion. They provide
either a qualitative understanding by means of mean-field
approximations30–32, finding such interactions as responsible
for critical mass effects; or a more quantitative one, reinforcing
the previous qualitative findings, but for very particular
hypergraphs33–35. All the studies considered continuous-time
dynamics and, noteworthy, uncorrelated nodes’ states. For the
case of two-dimensional SCs (i.e., consisting of edges and trian-
gles), Matamalas et al.36 provided a microscopic discrete-time
model accounting for first-order (two-nodes) and, only partially,
second-order (three-nodes) dynamical correlations. However, as
shown afterwards, the same subtle inconsistencies that make the
model applicable to any two-dimensional SC, also impede the
computation of the critical point.

In this work, looking for a discrete-time model holding for SCs
of any dimension, we reveal that fixing those inconsistencies puts
a topological condition on the interaction structure the model can
describe, namely that two group interactions can only share one
node. In order to satisfy this constraint, we introduce the notion
of edge-disjoint edge clique cover (EECC) of a SC and a heuristic
to find it. By means of our Microscopic Epidemic Clique Equa-
tions (MECLE), we provide a two-fold extension of the existent

discrete-time complex contagion models, accounting for higher-
order correlations and group interactions (if any) at the same
time. We prove those dynamical correlations to be essential to
describe how the critical point depends on the higher-order
couplings. Lastly, different approaches to treat group interactions
sharing multiple nodes are also discussed, while hinting at easy
adaptations of ours.

Results and discussion
The over-counting problem. Let us first introduce all the basic
notions needed to state the problem. We start from the interac-
tion structures we used, SCs. A SC K is a subset of the power-set
2V of a vertex set V, endowed with the hereditary property: given
f 2 K and f 0 � f , then f 0 2 K. Note that we can neglect the
empty set from 2V, for it does not have any practical interest here.
The elements of K are called faces, and a n-dimensional face (or
n-face) is a subset of V made of n+ 1 nodes. Given a face f, its
power-set 2f is called a simplex. If f is a n-face, 2f is a n-simplex.
Giving a geometrical interpretation to K, a n-simplex is also the
n-dimensional polytope being the convex closure of its n+ 1
vertices. For example, given V= {i, j, k} and K ¼ 2V , {i} is a 0-
simplex (a point), {{i, j}, {i}, {j}} is a 1-simplex (a segment), {{i, j,
k}, {i, j}, {i, k}, {j, k}, {i}, {j}, {k}} is a 2-simplex (a triangle).

If a simplex in K is not included in any other simplex in K,
then it is said to be maximal. If d is the maximum dimension of
the faces in K, then K is d-dimensional and is called simplicial d-
complex. The underlying graph Kð1Þ of K is the graph induced by
the 1-simplices in K, i.e., the graph whose node set is V and
whose edge set is the set of all the 1-faces in K. Consequently, a n-
simplex induces a (n+ 1)-clique, made of 0:0ptnþ 12

� �
edges

(i.e., 1-faces), in Kð1Þ. If a clique is not part of a larger one, it is
said to be maximal. Finally, K is said to be q-connected if, given
any two simplices s1; s2 � K, there exists a sequence of simplices
connecting s1 and s2 such that any two adjacent simplices of the
sequence have (at least) a q-face in common; if K is connected,
then Kð1Þ is 0-connected—as any other connected graph.

To identify whether a n-clique c in Kð1Þ corresponds to a (n−
1)-simplex in K or it is just a n-clique also in K, we introduce a
binary variable g, the group classifier, defined to be 1 or 0,
respectively; by which c is regarded as a (g, n)-clique. Since a 1-
simplex is equivalent to a 2-clique, we choose to assign g= 0 to
any 2-clique, so that n⩾ 3 when g= 1. From now on, unless
explicitly specified, we refer to the g-classified cliques in Kð1Þ

simply as ‘cliques’. These are the building blocks of our
description.

Going to the dynamics of interest, we adopt, without loss of
generality, a standard epidemiological terminology. We consider
discrete-time susceptible-infected-susceptible (SIS) dynamics on a
SC. Let β(n) be the probability with which a susceptible node in a
group of n+ 1 nodes (a n-face of the SC) gets infected when all
the other n nodes are infected; and μ be the probability with
which an infected node recovers. Due to the hereditary property,
if n nodes are infected, and thus can pass the infection as a group
of n nodes, then also any subset of that group can: for any k⩽ n,
there are 0:0ptnk

� �
subsets passing the infection with probability

β(k) as a group of k nodes. In other words, to each state
configuration of the n nodes (i.e., which of them are infected)
corresponds a set of concurrent channels of infections, and these
channels are correlated. Compared to existing models36, we take a
first step forward by accounting for such correlation, allowing us
to compute the critical point. Then, when computing the
probability for a node to get infected within a group, the
contribution coming from each state configuration of the group
consists of a product over the concurrent channels that
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configuration admits. In addition, each contribution is weighted
by the probability for the group to be in that configuration.

Now, given a clique, no matter whether it conveys (g= 1) or
not (g= 0) group interactions, we want to account also for the
dynamical correlations among the states of the nodes in it.
However, if s of such cliques have m⩾ 2 nodes in common, the
contribution to the infection of one of the m nodes, coming from
the others m− 1, is counted s times instead of once. This is
because the m− 1 nodes would appear in the state configuration
probabilities associated with each of the s cliques. To note that if
the cliques are just edges, then necessarily m= 1, meaning that
the over-counting is excluded in pair-wise models.

Edge-disjoint edge clique cover. To avoid the over-counting, we
aim at covering all the edges of Kð1Þ by means of a set of cliques
such that any two of them share at most one node, giving what we
call here an EECC. Cliques sharing more than one node are
consequently decomposed in lower-order cliques. This comes
with no essential repercussions when the decomposed cliques
have all g= 0. Otherwise, some group interactions would be
ignored, implying the model to strictly apply for group interac-
tions sharing at most one node. Interestingly, as shown later on,
the model remains reliable when the over-counted interactions
are relatively scarce.

Covering the structure by cliques only, we are able to give a
unique equation holding for any order n; an impossible task via
generic, less symmetric substructures. Furthermore, since we
want to capture as many correlations and group interactions as
possible, we want the cover to consist of the least possible number
of cliques. Finding such minimal set of edge-disjoint cliques is
closely related to the edge clique cover problem, known to be NP-
complete37. Heuristics are thus necessary to estimate the solution
in large graphs. For convenience, from now on, we reserve the
acronym EECC to sets which are solutions to the problem.

If all the maximal cliques in Kð1Þ are edge-disjoint, then Kð1Þ

admits a unique EECC, simply given by the set of the maximal
cliques in it. Otherwise, Kð1Þ generally admits multiple EECCs.
See Fig. 1 for illustration.

To estimate an EECC, we propose the following greedy
heuristic (the best among several options we conceived for this
task). Given a graph G, the heuristic proceeds as follows:

1. Find the set C of all the maximal cliques in G
2. Include in the EECC and remove from C all the elements in

C that do not share edges with other elements in C
3. While C is not empty

(a) For every maximal clique c∈ C, compute the score rc,
defined as the fraction of edges that c shares with the
other elements in C

(b) Consider the elements of C with the lowest score; include
in the EECC and remove from C (one, randomly chosen,
of) the element(s) of highest order among them

Noteworthy, when dealing with highly modular structures—as
those representing many real social systems—in which commu-
nities of nodes are loosely connected among them, the search for
an (edge-disjoint) edge clique cover can be speeded up. Indeed,
each time two regions of the structure are joined by bridging
cliques (which are evidently maximal), the problem of finding the
optimal cover of the whole structure reduces to that of finding it
in each of the two, smaller regions.

Now, whenever the maximal cliques in Kð1Þ are not all edge-
disjoint, some cliques are forced to be decomposed in sub-cliques
during step 4. Since decomposing a (1, ⋅)-clique in (0-connected)
sub-cliques means also neglecting some group interactions,
whenever a (0, ⋅ )-clique and a (1, ⋅)-clique are not edge-disjoint,
we prefer to include the latter in the EECC. This additional
difficulty disappears whenever the SC is 0-connected or when it
has dimension 1 (i.e., when it is a graph). Thus, being K a SC and
Kð1Þ its g-classified underlying graph, a EECC of K is constructed
as follows:

I. Consider the subgraph G1 � Kð1Þ induced by the nodes in
the maximal (1, ⋅)-cliques in K. Find a EECC of G1; let us
call SðKÞ the resulting EECC

II. Consider the subgraph G0 ¼ Kð1ÞnG1. Find a EECC of G0;
let us call it CðKÞ

III. DðKÞ � ðSðKÞ; CðKÞÞ is the estimated EECC of K
A basic question is about the dependence of the prediction

made by the model when different EECCs are estimated for a
given structure. Indeed, while the effectiveness of the heuristic
ensures better performance of the model, its robustness is an
indispensable quality, as we look for a reliable model giving

Fig. 1 Edge-disjoint edge clique cover (EECC) of a small simplicial complex (SC). The SC, shown on the left, consists of fourteen nodes (0-simplices),
identified via letters, connected by one 3-simplex, one 2-simplex, and fourteen 1-simplices. Gray areas indicate r-simplices with r⩾ 2, including r+ 1 nodes
each. The EECC of the SC is shown on the right, where colored and dotted areas are used to visualize, respectively, the (1, r)-cliques and (0, r)-cliques in it,
with colors carrying no specific meanings. The SC is decomposed in: one (1, 4)-clique, {b, d,m, n}; one (1, 3)-clique, {i, j, k}; three (0, 3)-cliques, {c, d, e}, {f,
g,m}, {h, i,m}; and five (0, 2)-cliques, {a, b}, {a, n}, {g, h}, {k, l}, {l,m}. The underlying subgraph induced by the subset {a, b, d,m, n} originally consists of a
(1, 4)-clique and a (0, 3)-clique. To preserve the group interaction mediated by the (1, 4)-clique, is preferable to include this in the EECC and then break the
(0, 3)-clique into two (non-maximal) (0, 2)-cliques. Besides, the underlying subgraph induced by the subset {f, g, h, i,m} is made of three overlapping (0,
3)-cliques, and the EECC is in this case obtained by including {f, g,m} and {h, i,m} (and then the remaining edge {g, h}), instead of {g, h,m} first.
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certain results when fed up with a certain structure, of which a
minimal EECC is estimated. In Supplementary Note 1 and
Supplementary Figs. 1 and 2, our model is shown to be robust
under EECC variability. Therefore, given a SC, it is safe to make
use of the first EECC computed for it.

Calling m1 the maximum order of the cliques we want to
include in SðKÞ (i.e., considering simplices of dimension up to
m1− 1 in K), m1 could be smaller than ω1, the maximum order
of the cliques in G1. In such case, when looking for an EECC of
G1, those maximal cliques in G1 of order greater than m1 must be
decomposed in edge-disjoint sub-cliques (corresponding to sub-
simplices in K) of variable order m0 2 f1; ¼ ;m1g. Clearly, the
higher is m1, the higher is the order of the group interactions (and
of the correlations within them) included in the description.
Overall, as long as the proportion of obviated group interactions
is small enough, the deviations from the complete dynamics are
comparatively negligible; or alternatively, the error made by
including non-0-connected simplices is negligible.

In the building of an EECC, different values m0⩾ 2 for the
maximum order to be considered for (0, ⋅ )-cliques can also be
chosen. The higher is m0, the higher is the order of the captured
dynamical correlations within the cliques in K. In any case, m0⩽
ω0, being ω0 the maximum order of the cliques in G0.

Summarizing, the couple (m0,m1) identifies the considered
implementation of the MECLE.

Microscopic epidemic clique equations. Given a (g, n)-clique
{i1,…, in} in DðKÞ, with n⩽m � maxfm0;m1g, we indicate with
P
σ i1 ¼ σ in
i1 ¼ in;g

the joint probability that node i1 is in the state σ i1 , node
i2 is in the state σ i2 , etc., where fσ i1 ; ¼ ; σ ing 2 fS; Ign. Besides,
with P

σ i1 ¼ σ ik�1
σ ikþ1

¼ σ in jσ ik
i1 ¼ ik�1ikþ1 ¼ injik;g we indicate the conditional probability

that nodes i1,…, ik−1, ik+1,…, in are in their respective states
σ i1 ¼ σ ik�1

σ ikþ1
¼ σ in , given that node ik is in the state σ ik . Clearly,

the normalization condition must hold:

∑
fσik gk¼1;¼ ;n

P
σi1 ¼ σ in
i1 ¼ in;g

¼ 1 ð1Þ

Indicating with fσ ikgk¼1;¼ ;n
the states at time t and with

fσ 0ikgk¼1;¼ ;n
those at time t+ 1, the MECLE model dynamic

equation governing the evolution of the state of a (g, n)-clique
{i1,…, in} reads

P
σ 0i1 ¼ σ 0in
i1 ¼ in;g

t þ 1ð Þ ¼ ∑
fσ i1 ;¼ ;σ in g

P
σ i1 ¼ σ in
i1 ¼ in;g

tð ÞΦg fσ ikg; fσ
0
ik
g; fβðsÞg; μ

� �
ð2Þ

where

Φg fσ ikg; fσ
0
ik
g; fβðsÞg; μ

� �
¼

Yn
k¼1

ϕik;g fσ ikg; σ
0
ik
; fβðsÞg; μ

� �
ð3Þ

is the transition probability from the starting state fσ ikgk¼1;¼ ;n
to

the arrival state fσ 0ikgk¼1;¼ ;n
. It is understood that Φg is computed

at time t. This is expressed as a product over the single-node

transition probabilities fϕik;gg, given by

ϕik;g fσ ikg; σ
0
ik
; fβðsÞg; μ

� �
¼1 σ ik ¼ I; σ 0ik ¼ I

h i
1� μ
� �

þ 1 σ ik ¼ I; σ 0ik ¼ S
h i

μ

þ 1 σ ik ¼ S; σ 0ik ¼ I
h i

1�
wðn�1Þ
NI ;g

qðn�1Þ
ikð:ikÞ;g

Y
ðg 0 ;rÞ

qðrÞik;g 0

2
4

3
5

þ 1 σ ik ¼ S; σ 0ik ¼ S
h i wðn�1Þ

NI ;g

qðn�1Þ
ikð:ikÞ;g

Y
ðg 0 ;rÞ

qðrÞik;g 0

2
4

3
5
ð4Þ

where 1[p] gives 1 if condition p is fulfilled and 0 otherwise;

NI ¼ fik¼1;¼ ;njσ ik ¼ Ig
��� ��� is the number of infected nodes in the

starting state; wðn�1Þ
NI ;g

� wðn�1Þ
NI ;g

fβðsÞg� �
is the probability that a

susceptible node (ik) does not get infected within a (g, n)-clique
({i1,…, ik,…, in}) whose state configuration (NI⩽ n− 1) is
known, reading

wðn�1Þ
NI ;g

¼ 1½g ¼ 0� 1� βð1Þ
� �NI þ1½g ¼ 1�

YNI

s¼1

1� βðsÞ
� � NI

sð Þ ð5Þ

and qðrÞik;g 0 � qðrÞik;g0 fβðsÞg� �
is the probability that node ik does not

get infected via any of the ðg 0; r þ 1Þ-cliques incident on it, that is

qðrÞik;g 0 ¼
Y

fj1 ;¼ ;jr g
2ΓðrÞ

ik ;g
0

1� ∑
r

l¼1

1� wðrÞ
l;g 0

l! r � lð Þ!

"

´ ∑
r

k1≠¼≠kr¼1
PI¼ IS¼ SjS
jk1 ¼ jkl jklþ1

¼ jkr jik;g 0

# ð6Þ

where ΓðrÞik;g 0 indicates the set of r-tuples of indexes corresponding
to subsets of r nodes forming a ðg 0; r þ 1Þ-clique with ik, and
qðn�1Þ
ikð:ikÞ;g coincides with qðn�1Þ

ik;g
expect for excluding the considered

(g, n)-clique {i1,…, ik,…, in} from the product. Finally, the
products in Eq. (4) are performed over the couples fðg 0; rÞg such
that 2⩽ r⩽m0 for g 0 ¼ 0, and 3⩽ r⩽m1 for g 0 ¼ 1.

In Eq. (3) the single-node transition probabilities, ϕ, are treated
as independent from each other within the time step. This merely
derives from the implicit assumption that all the events within a
given time step are simultaneous, and therefore not causally
related. Simply put, the state of a node at time step t+ 1 only
depends on its state and on the states of its neighbors at the
previous time step t, as in any markovian model.

Importantly, to get the expression for qðrÞik;g 0 we have adopted the
following closure

P
I¼ IS¼ Sσ i1 ¼ S¼ σ in
jk1 ¼ jkl jklþ1

¼ jkr i1 ¼ ik ¼ in
¼

PI¼ IS¼ SS
jk1 ¼ jkl jklþ1

¼ jkr ik;g
0P

σi1 ¼ S¼ σ in
i1 ¼ ik ¼ in;g

PS
ik

ð7Þ

(the classifier g is assigned only to the cliques in DðKÞ). Therefore,
by definition of conditional probability, the probability

P
I¼ IS¼ Sjσ i1 ¼ S¼ σ in
jk1 ¼ jkl jklþ1

¼ jkr ji1 ¼ ik ¼ in
appears in Eq. (6) as PI¼ IS¼ SjS

jk1 ¼ jkl jklþ1
¼ jkr jik;g0

.

Intuitively, each clique in DðKÞ is treated as an independent
dynamical unit of the system, accounting for the correlations
among the states of the nodes it includes. In the form of a
generalization of the classical pair approximation38, the dynami-
cal correlations between two adjacent cliques are conveyed by the
state probability of the node they share (in the denominator to
avoid double counting). In this regard, the larger the adjacent

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00618-z

4 COMMUNICATIONS PHYSICS |           (2021) 4:111 | https://doi.org/10.1038/s42005-021-00618-z | www.nature.com/commsphys

www.nature.com/commsphys


cliques, the smaller the expected influence of the state of the
shared node on all the other ones. For this reason, the presented
closure—and consequently the MECLE—is expected to gain
further accuracy with the increasing of the order of the cliques.

The probability PI
i for the single node i of being infected is

computed as a marginal probability from any (g, n)-clique
including i, as

PI
i t þ 1ð Þ ¼ ∑

fσ:ig
PIfσ:ig
if:ig;g t þ 1ð Þ

¼PI
i tð Þ 1� μ

� �þ PS
i tð Þ 1�

Y
ðg;rÞ

qðrÞi;g

0
@

1
A ð8Þ

in which {¬i} and {σ¬i} indicate, respectively, the set of the other
n− 1 nodes in the clique and their states. Equation (8) is,
consistently, also found taking n= 1 in Eq. (2) (wð0Þ

NI ;g
¼ 1,

qð0Þi;g ¼ 1). The average value ρ of the single node probabilities,

ρ tð Þ ¼ 1
N

∑
N

i¼1
PI
i tð Þ ð9Þ

is the epidemic prevalence, which is also the order parameter of
the system.

It is important to note that the used closure, Eq. (7), apart from
preserving the n-node state correlations of a considered (g, n)-
clique, is the only one making feasible the marginalization of Eq. (2)
to get Eqs. (8) and (9) and, consequently, get the expression for the
epidemic threshold, through Eqs. (15)–(19) in “Methods”.

At any time step t, Eq. (8) yields one constraint for each of the
n nodes in a (⋅, n)-clique, leaving 2n− n− 1 independent state
probabilities to be determined, one being fixed by the normal-
ization. Therefore, if K has N nodes and DðKÞ consists of C(n)

(⋅, n)-cliques, n⩽m, the MECLE is defined by a system of
N þ∑m

n¼2 2n � n� 1ð ÞCðnÞ independent equations.
To help in the understanding of the model, we show in

Supplementary Note 2 all the equations for the particular case of
the simplicial 2-complexes, i.e., the (3, 3) implementation of
the MECLE.

Finally, we can frame the existent models in the (m0,m1)
notation. As m1= 2 implies SðKÞ ¼ +, fðm0; 2Þg2⩽m0⩽ω0

is the
class of models accounting for correlations within cliques of order
up to m0 on graphs (simple contagion). In particular, (2, 2) gives
the Epidemic Link Equations (ELE) model39. The Microscopic
Markov Chain Approach (MMCA)40 is then recovered from (2, 2)
by assuming that PIS

ji ¼ PI
j P

S
i (i.e., P

IjS
jji ¼ PI

j in Eq. (6)). Considering
group interactions, the simplicial ELE and MMCA36 fall outside the
MECLE class of models, for they do not account for the correlations
among the concurrent channels of infection within simplices. This,
alongside the consideration of higher-order dynamical correlations
among nodes’ states, is precisely the refinement made here.

Results for simplicial 2-complexes. We apply here the developed
formalism to the case of simplicial 2-complexes. As we are only
using synthetic structures, the SCs are constructed from some
graph (the future underlying graph) converting into (1, 3)-cliques
(i.e., 2-faces) a fraction p△ of the 3-cliques allowed by the EECC
of the graph, while considering as (0, 3)-cliques the remaining
fraction 1− p△. Specifically, if all the 3-cliques are converted
(p△= 1.0), the resulting SCs are the clique complexes of the
respective original graphs. To better appreciate the improvement
made here, we mainly show results for clique complexes, although
notable improvements can be generally found for any value of p△
depending on the used structure. Conveniently, if p△ is not
specified then the structure is understood to be a clique complex.

We identify a such generated SC adding ‘SC’ to the name of the
graph model used for it: a ‘Dorogovtsev-Mendes SC’, for instance,
is built upon a graph given by the Dorogovtsev-Mendes generative
model41. Specifically, the ‘random SC’ is obtained as follows: first
we generate a simplicial 2-complex through the random SC
model30; then we consider its underlying graph and compute its
EECC; finally, the random SC is got, as before, by converting 3-
cliques in 2-faces, in this way ensuring the SC to be 0-connected.

In Fig. 2 we compare the prevalence ρ obtained using Monte
Carlo (MC) simulations (see Methods for details), the MECLE
model, and the other discrete-time markovian models, i.e., the
simplicial ELE and MMCA models36, for different 0-connected
clique complexes. For all structures, the improvement brought by
the MECLE with respect to the simplicial ELE is substantial, in
both predicting the epidemic prevalence and, even more, locating
the critical point, for which the relative errors εβð1Þ are reported.
Note that the predictions is expected to improve for increasing
order of the cliques, since the precision of the used closure, Eq.
(7), grows with it as well, especially in the case of populations
arranged in lowly inter-connected dense communities.

We then leverage the prominent jump of the discontinuous
transition found for random SCs, to illustrate, in Fig. 3, the
existence of a hysteresis cycle, enclosing a bi-stable region. This is
in line with recent findings30,31,33–36. Again, the simplicial ELE is
outperformed by the MECLE, especially in predicting the
‘backward’ curves, as the overestimation made by the former
(see next subsection) is emphasized in that case.

More interestingly, our analysis clearly shows that models with
uncorrelated nodes’ states generally fail to pinpoint the (‘forward’)
epidemic threshold at even a qualitative level. Indeed, by
neglecting those dynamical correlations, Eq. (22) (see “Methods”)
predicts βð1Þcr , the value of β(1) at which the epidemic-free state
becomes unstable, to be independent from the values of the
higher-order infection probabilities, fβðsÞgs > 1. In particular, in
the case of two-dimensional SCs, increasing enough β(2) results in
the appearance of a bi-stable region, but βð1Þcr does not change
in those models30,31. On the contrary, when the actual structure of
the interactions is retained, increasing β(2) does lead βð1Þcr to
decrease, as arises from MC simulations and correctly predicted by
the MECLE. We show this dependence in Fig. 4, while it can also
be grasped by comparing panels (c) and (d) in Fig. 2.

The calculation of the critical point in the MECLE (see
“Methods”), together with the evidences coming from the MC
simulations, reveal the necessity of accounting for higher-order
dynamical correlations. An interaction (infection) of order s, with
coupling (infection probability) β(s), requires s nodes in a simplex
to be active (infected). Therefore, in order to preserve its
contribution near the critical point, the state probability with s
active nodes must not be neglected—as done instead in models
with uncorrelated nodes’ states. In other words, near the epidemic
threshold, higher-order interactions rely exclusively on compara-
tively higher-order correlations, so that their effect when varying
the higher-order couplings, fβðsÞgs > 1, is observed only if such
correlations are preserved. Accordingly, such dependence eludes
the MF and MMCA approximations of the system. Besides, as
second-order correlations within triangles are partially accounted
for in the simplicial ELE, the latter predicts this dependence, but
not as accurately as MECLE does. Finally, in the endemic state
and away from the threshold, low-order correlations suffice to
sustain higher-order interactions. Nevertheless, the higher the
order of the accounted correlations, the more accurate is the
quantification of the prevalence.

While a closed equation for βð1Þcr is generally inaccessible for
complex interaction structures, in Supplementary Note 3 and
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Fig. 3 Hysteresis cycle of the epidemic prevalence ρ with respect to the edge infection probability β(1) on different two-dimensional simplicial
complexes (SCs). Results obtained from Monte Carlo (MC) simulations are depicted by dots, while lines represent the analytically computed prevalence
using the simplicial Epidemic Link Equations (ELE) model and the Microscopic Epidemic Clique Equations (MECLE) model. The ʻforward' and ʻbackward'
curves are obtained through small equilibrium transformations taking as initial value ρ0 the equilibrium value of ρ got at the next smaller and next greater
value of β(1), respectively. The hysteresis cycle reveals the bi-stable region. The computed value of the (forward) epidemic threshold is marked with a
vertical dotted line. The recovery probability is fixed to μ= 0.2. a Random SC with k

ð0;1Þ ¼ 4:10, k
ð0;2Þ ¼ 1:58 and k

ð1;2Þ ¼ 2:37 (p△= 0.6), being k
ðg;rÞ

the
mean number of (g, n+ 1)-cliques incident on a node, and triangle infection probability β(2)= 0.25; the relative errors in locating the epidemic threshold are
ε for:
βð1Þ

� 0:14 and ε back:
βð1Þ

� 0:10 for MECLE, and ε for:
βð1Þ

� 0:18 and ε back:
βð1Þ

� 0:38 for ELE. b Random SC with k
ð0;1Þ ¼ 4:10, k

ð0;2Þ ¼ 0:00 and k
ð1;2Þ ¼ 3:95

(p△= 1.0), and β(2)= 0.15; ε for:
βð1Þ

� 0:06 and ε back:
βð1Þ

� 0:15 for MECLE, and ε for:
βð1Þ

� 0:09 and ε back:
βð1Þ

� 0:47 for ELE.

Fig. 2 Epidemic prevalence ρ as a function of the edge infection probability β(1) on different 2-dimensional simplicial complexes (SCs). Results obtained
from Monte Carlo (MC) simulations are depicted by dots, while lines represent the analytically computed prevalence using the indicated models. MMCA
and MMCA(MECLE) refer to the Microscopic Markov Chain approximation of, respectively, the simplicial Epidemic Link Equations (ELE) model and the
Microscopic Epidemic Clique Equations (MECLE) model, as obtained by considering the state probabilities of the nodes as uncorrelated; while MF and MF
(MECLE) refer to their homogeneous mean-field approximations (see Methods). Note that MF and MF(MECLE) are indistinguishable at the used scale.
The value of the epidemic threshold, as computed in the MECLE through Eqs. (15)–(19) in Methods, is marked with a vertical dotted line. The recovery
probability is fixed to μ= 0.2. a Periodic triangular SC with k

ð0;1Þ ¼ 0:00, k
ð0;2Þ ¼ 0:00 and k

ð1;2Þ ¼ 3:00, being k
ðg;rÞ

the mean number of (g, n+ 1)-cliques
incident on a node, and triangle infection probability β(2)= 0.25; the relative error in locating the epidemic threshold is εβð1Þ � 0:08 for MECLE and
εβð1Þ � 0:12 for ELE. b Random SC with k

ð0;1Þ ¼ 4:10, k
ð0;2Þ ¼ 0:00 and k

ð1;2Þ ¼ 3:95, and β(2)= 0.15; εβð1Þ � 0:06 for MECLE and εβð1Þ � 0:09 for ELE.
c Dorogovtsev-Mendes SC with k

ð0;1Þ ¼ 1:10, k
ð0;2Þ ¼ 0:00 and k

ð1;2Þ ¼ 1:45, and β(2)= 0.25; εβð1Þ � 0:07 for MECLE and εβð1Þ � 0:16 for ELE. d Same as
c but with β(2)= 0.50; εβð1Þ � 0:23 for MECLE and εβð1Þ � 0:50 for ELE.
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Supplementary Figs. 3 and 4, we explicitly derive the monotonous
decrease of βð1Þcr with respect to the higher-order infection
probabilities for selected symmetrical structures. In particular,
we study regular SCs, like the herein studied periodic triangular
SC, and SCs built upon Friendship graphs, taken as proxies for
homogeneous and heterogeneous structures, respectively. We
prove that βð1Þcr decays with β(2) whatever the system size N, and
that the dependence considerably increases with the structural
heterogeneity.

It should be noted that the herein observed and proved
dependence of the critical point on the higher-order couplings,
already showed up in previously reported numerical simulations,
especially in SCs built from real data30. However, it went
seemingly overlooked, eventually leading to claim42 that only
pair-wise interactions govern the value of βð1Þcr . Even though we
have considered a discrete-time dynamic, instead of the
continuous-time’ used in those works upon which that claim is
based on, we predict the qualitative shift brought by our analysis
to hold in continuous-time as well. The continuous-time limit
is here recovered by neglecting all those terms in the equations
appearing as second or greater powers of any combination of the
infection probabilities {β(s)} and the recovery probability μ, i.e.,
allowing only single-node state changes. Still, the linear terms
proportional to any of the infection probabilities show up in Eq.
(19), thus contributing to the value of the critical point. In
Supplementary Note 4, we derive the continuous-time limit of the
MECLE equations for simplicial 2-complexes. Taking the
example of a Dorogovtsev-Mendes SC, the predicted dependence
of the critical point on β(2) is shown in Supplementary Fig. 5.

Lastly, considering clique complexes with some fraction ps of
edges shared by two or more 2-faces, we have studied how the
MECLE behaves out of the bounds of the 0-connectedness. As
shown in Fig. 5, when ps is low enough, it performs comparably
to or still better than the simplicial ELE. As expected, the value of
ps above which the MECLE performs worse turns out to
specifically depend on the structure, preventing us to find a
simple relation. Precisely, that value resulted to be around 0.06 for
Dorogovtsev-Mendes SCs and around 0.04 for RSCs.

Possible approaches for group interactions sharing multiple
nodes. In discrete-time models, allowing groups to share two or
more nodes comes with the drawback of impeding the

computation of the epidemic threshold, as shown in “Methods”.
Forgoing the latter, let us discuss some approaches which may
still come in handy.

The first option is the simplicial ELE model36. It describes a SIS
dynamics in simplicial 2-complexes by means of a pair
approximation that, via a specific triangle closure, is able to
partially account for second-order correlations. However, con-
sidering the multiple channels of infection within a simplex as
mutually uncorrelated, it is not possible to marginalize the 1-faces
equations to get the single nodes one, hence neither the epidemic
threshold. To further elucidate the effects of disregarding the
correlations among the concurrent infections within a simplex, let
us consider the toy example of a triangle upon the set of nodes {i,
j, k}. In the MECLE model, the probability for i to be infected by j
and k, reads

βð1Þ PISjS
jkji þ PSIjS

jkji
� �

þ 1� 1� βð1Þ
� �2

1� βð2Þ
� �h i

PIIjS
jkji

In particular, taking β(1)= 1, the dependence on β(2) correctly
disappears: no matter the infectiousness β(2) of the couple {j, k},
the probability for node i to be infected equals the probability that
at least one node between j and k is infected. On the contrary, the
simplicial ELE neglects that correlation, and the above infection
probability becomes

1� 1� βð1ÞPIjS
jji

� �
1� βð1ÞPIjS

kji
� �

1� βð2ÞPIIjS
jkji

� �
where PIIjS

jkji is expressed in terms of edge probabilities. Here,
taking β(1)= 1, there is still a dependence on β(2), with the effect
of both overestimating the probability of infection, hence the
prevalence, and wrongly anticipating the position of the epidemic
threshold. Evidently, the error grows with both β(2) and PII∣S. To
notice that this analysis does not make any reference to the
correlations among nodes’ states a model considers. Conse-
quently, a similar comparison holds also between the MMCA and
MF approximations of the MECLE and those of the simplicial
ELE, with the latter overestimating more the prevalence.

Curiously, when the 0-connectedness is heavily broken
(making the MECLE unreliable), the simplicial ELE appears to
gain accuracy, especially in locating the critical point36. However,
while we could explain the reasons why the MECLE outperforms
the simplicial ELE in (nearly) 0-connected SCs, the unexpected
improvement of the latter for higher connectedness remains
unclear. Changes in topological factors, like the spectral
dimension (note that, independently from their geometrical
dimension, 0-connected SCs have spectral dimension very close
to that of a random tree43) or the triangles’ percolation, are
probably able to soften the approximations of the model. Future
work addressing the role of those factors may help to better
understand the limits of the simplicial ELE, while giving new,
general insights about the relation between dynamical correla-
tions and topology.

An alternative approach, assuming the considered contagion
would make it usable, is to opt for more general hypergraphs by
dropping the hereditary property out. One could then generalize
the approach of Matamalas et al.36 to any hypergraph, but at the
aforementioned cost of accepting some inconsistencies in the
marginalization of the probabilities. Besides, referring to the class
of simple hypergraphs19, i.e., those in which a hyperedge—what
in a SC is a face—cannot be a subset of any other hyperedge, one
can still resort to the fully consistent approach of the MECLE.
Indeed, in such structures, to each configuration of the group
corresponds a unique channel of infection, so the necessity of
constraining groups to share not more than a single node can be
relaxed. A model can then be easily constructed adapting Eq. (2)
by solely modifying the form of wðrÞ

l;1 , being g= 1 for hyperedges

Fig. 4 Dependence of the epidemic threshold on the triangle infection
probability β(2). βð1Þcr , computed via Eqs. (15)–(19) in Methods, is shown
against β(2) for a Dorogovtsev-Mendes simplicial complex with k

ð0;1Þ ¼ 1:10,
k
ð0;2Þ ¼ 0:00 and k

ð1;2Þ ¼ 1:45, being k
ðg;rÞ

the mean number of (g, n+ 1)-
cliques incident on a node. Note that Eq. (22), disregarding dynamical
correlations, wrongly predicts βð1Þcr ¼ μ=k ¼ μ=4, ∀ β(2).
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including more than two nodes. For example, supposing the
contagion to be maximally conservative, we would write
wðrÞ
l;1 ¼ 1½l ¼ r� 1� βðrÞ

� �
. Moreover, for linear hypergraphs19, in

which two hyperedges can only share one node, the critical point
is again calculable.

Lastly, in a regime of both high and rapid infectiousness and
recovery, each set of nodes shared by a sufficient number of
groups (e.g., two partners carrying out many of their activities
together) could be effectively treated as a single super-node,
whose state always represents that of each of the nodes it
contains. This effective approach can be combined with any of the
ones that have been discussed.

Methods
Epidemic threshold. Here we derive the critical point βð1Þcr , defined as the value of
β(1) at which the inactive (epidemic-free) state becomes unstable, thus marking the
onset of the active (endemic) state. In the presence of a bi-stable region, it identifies
the rightmost transition.

We linearize Eq. (2) by regarding of the same order ϵ≪ 1, all the state
probabilities containing at least one infected node, i.e., P

σ i1 ¼ σ in
i1 ¼ in ;g

� OðϵÞ iff
9k : σ ik ¼ I; and consequently, PS¼ S

i1 ¼ in ;g
� 1�OðϵÞ. Without this assumption,

higher-order dynamical correlations would be lost, and the critical point would not
be correctly located. This can be interpreted as an extension of the results in
Matamalas et al.39, where it is shown that PII � OðϵÞ for the state probability of an
edge having both nodes infected.

Being interested in stationary states, the value of the time step is omitted from
now on. All the states appearing in qðrÞik ;g 0 , see Eq. (6), include at least one infected
node, therefore it takes the form,

qðrÞik ;g 0 ¼ 1� ∑
fj1 ;¼ ;jr g
2ΓðrÞ

ik ;g
0

∑
r

l¼1

1� wðrÞ
l;g 0

l! r � lð Þ!

"

´ ∑
r

k1≠¼≠kr¼1
PI¼ IS¼ SS
jk1 ¼ jkl jklþ1

¼ jkr ik ;g
0

#
þOðϵ2Þ

ð10Þ

where the squared brackets contain OðϵÞ terms only. It is important to remark that,
if in the considered clique there is at least another node i~k forming with ik an edge

included in some other clique, let us say a ðg 0; rÞ-clique, qðrÞik ;g 0 cannot be linearized,
since the product corresponding to that ðg 0; rÞ-clique would be made of state
probabilities conditioned to the state of both ik and i~k (not of ik only, as in Eq. (10)).
Indeed, those states in which i~k is in state I, would give Oð1Þ terms, for both

numerator and denominator would be OðϵÞ. This is the reason why in markovian
models, when aiming to account for the dynamical correlations within some
subsets of nodes (e.g., cliques), a consistent expression for the critical point can be
given only when those subsets are edge-disjoint.

Returning to the derivation, since PS¼ S
i1 ¼ in ;g

is fixed by the normalization
condition,

PS¼ S
i1 ¼ in ;g

¼ 1� ∑
fσ1 ;¼ ;σn g
≠fS;¼ ;Sg

P
σ i1 ¼ σ in
i1 ¼ in ;g ð11Þ

we only need the linearized equations for arrival states with at least one infected
node, i.e., fσ0i1 ; ¼ ; σ 0in g≠ fS; ¼ ; Sg. Retaining the OðϵÞ terms in ϕik ;g , after some
algebra, we find

P
σ 0i1 ¼ σ 0in
i1 ¼ in ;g

¼ ∑
fσi1 ;¼ ;σin

g
≠fS;¼ ;Sg

P
σ i1 ¼ σ in
i1 ¼ in ;g

1� μ
� �NI!I μNI!S 1� wðn�1Þ

NI ;g

� �NS!I

wðn�1Þ
NI ;g

� �NS!S

� �

þ 1½9!k : σ 0ik ¼ I � ∑
ðg 0 ;rÞ≠ðg;n�1Þ

∑
fj1 ;¼ ;jr g
2ΓðrÞ

ik ;g
0

∑
r

l¼1

1� wðrÞ
l;g 0

l! r � lð Þ! ∑
r

k1≠¼≠kr¼1
PI¼ IS¼ SS
jk1 ¼ jkl jklþ1

¼ jkr ik ;g
0

" #8>><
>>:

þ ∑
fj1 ;¼ ;jn�1 g
2Γðn�1Þ

ik ;g
nf:ik g

∑
n�1

l¼1

1� wðn�1Þ
l;g

l! n� 1� lð Þ! ∑
n�1

k1≠¼≠kn�1¼1
PI¼ IS¼ SS
jk1 ¼ jkl jklþ1

¼ jkn�1
ik ;g

" #9>>=
>>;þOðϵ2Þ

ð12Þ

where Nσ!σ 0 ¼ fik¼1;¼;njσ ik ¼ σ; σ 0ik ¼ σ 0g
��� ��� is the number of nodes going from

state σ to state σ 0 . The terms in curly brackets derive from those transitions starting
in state {S,…, S} and arriving to a state with exactly one infected node.

In particular, Eq. (8), the dynamic equation for a single node, becomes

PI
i ¼ PI

i ð1� μÞ þ ∑
ðg;rÞ

∑
fj1 ;¼;jr g
2ΓðrÞ

i;g

∑
r

l¼1

1� wðrÞ
l;g

l! r � lð Þ!

"

´ ∑
r

k1≠¼≠kr¼1
PI¼ IS¼ SS
jk1 ¼ jkl

jklþ1
¼ jkr i;g

#
þOðϵ2Þ

ð13Þ

At this point, to get an expression for the critical threshold, we put Eq. (13) in
the form of an eigenvalue equation for the vector of single-node probabilities
PI ¼ fPI

i gi2V
� �

. To this purpose, given a (⋅, n)-clique {i1,…, in}, we need to express
every joint probability over its nodes states as a linear combination of the marginal
probabilities, PI

i1
; ¼ ;PI

in
. Eq. (12) provides a linearized equation for each of the

2n− 1 unknown state probabilities, hence a system admitting a unique solution. At
this point, instead of the n equations for the transition to a state with a single node
in state I (second term in Eq. (12)), we use the n consistency relations for the

marginal probabilities, i.e., PI
ik
¼ ∑fσ:ik g

P
Ifσ:ik g
ikf:ikg;g , ∀ k∈ {1,…, n}. In this way, the

Fig. 5 Epidemic prevalence ρ as function of the link infection probability β(1) on 2-dimensional simplicial complexes (SCs) with low percentage ps of
shared non-maximal edges. ps is computed as the fraction of edges within 2-faces which are included in more than one 2-face. Besides, with s we indicate
the average number of 2-faces in which the edges corresponding to the fraction ps are included (s⩾ 2). Results obtained from Monte Carlo (MC)
simulations are depicted by dots, while lines represent the analytically computed prevalence using the indicated models. MMCA and MMCA(MECLE) refer
to the Microscopic Markov Chain approximation of, respectively, the simplicial Epidemic Link Equations (ELE) model and the Microscopic Epidemic Clique
Equations (MECLE) model, as obtained by considering the state probabilities of the nodes as uncorrelated; while MF and MF(MECLE) refer to their
homogeneous mean-field approximations (see “Methods”). Note that MF and MF(MECLE) are indistinguishable at the used scale. The recovery probability
is fixed to μ= 0.2. a Random SC with k

ð0;1Þ ¼ 2:25, k
ð0;2Þ ¼ 0:00 and k

ð1;2Þ ¼ 5:20, being k
ðg;rÞ

the mean number of (g, n+ 1)-cliques incident on a node;
ps= 0.03, s ¼ 2:01, and triangle infection probability β(2)= 0.15. b Dorogovtsev-Mendes SC with k

ð0;1Þ ¼ 1:10, k
ð0;2Þ ¼ 0:00 and k

ð1;2Þ ¼ 1:60, ps= 0.05,
s ¼ 2:06, and β(2)= 0.25.
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system is still made of 2n− 1 equations, hence is determined, but now it includes
the marginal probabilities. Eventually, with some algebra, one gets the
decomposition with its linear coefficients. Alternatively, asserted the uniqueness of
the solution of the linear system, the problem can be approached in the other way
around. That is, firstly expressing each of the joint probabilities as the most general
linear combination of the marginal probabilities and then inserting them into the
2n− 1 equations. Doing so, we get a new, determined linear system whose
unknowns are the linear coefficients of the original system. In the end, given a (g,
n)-clique {i1,…, in}, the most general and proper linear decomposition of P

σ i1 ¼ σ in
i1 ¼ in ;g

in terms of PI
i1
; ¼ ; PI

in
, reads

P
σ i1 ¼ σ in
i1 ¼ in ;g

¼ Xðn�1Þ
NI ;g

∑
k:σ ik¼I

PI
ik
þ Y ðn�1Þ

NI ;g
∑

k:σik¼S
PI
ik
þOðϵ2Þ ð14Þ

where we can take Y ðn�1Þ
n;g ¼ 0, being null the term it multiplies, as there are no

nodes in state S for NI= n. We get one coefficient for NI= n and two coefficients
for each NI∈ {1,…, n− 1}, leading to 2n− 1 of them in total. Summing for every
order n from 2 to m0 for g= 0, and from 3 to m1 for g= 1, we get a maximum of
m0

2 þm1
2 � 5 linear coefficients to fix. These coefficients, as functions of all the

m1 microscopic parameters of the model, fβðsÞgs¼1;¼;m1�1 and μ, weigh the
probability of finding a clique in a given state, when the system approaches the
critical point.

Once all the coefficients have been found by insertion of Eq. (14) in the original
linear system of 2n− 1 equations, we substitute them in Eq. (13) to finally get an
eigenvalue equation. To this end, we define the set of DðKÞ-dependent adjacency
matrices Að0;rÞ	 


r2f1;¼;m0�1g; Að1;rÞ	 

r2f2;¼;m1�1g

n o
, such that Aðg;rÞ

ij equals 1 if

nodes i and j share a common incident (g, r+ 1)-clique in DðKÞ, and 0 otherwise.

Besides, we define the (g, r) degree of node i, kðg;rÞi , as the number of (g, r+ 1)-

cliques incident on node i in DðKÞ, computed as kðg;rÞi ¼ ∑N
j¼1 A

ðg;rÞ
ij . Being the

decomposition edge-disjoint, only one of those matrices can have a non-zero
element in the position corresponding to a given pair of nodes. Consequently, the
DðKÞ-independent adjacency matrix of Kð1Þ, the underlying graph of K, is simply
obtained by the sum of all those DðKÞ-dependent adjacency matrices. It also
follows that the degree ki of node i in Kð1Þ is computed as ki ¼ kð0Þi þ kð1Þi , where

kð0Þi ¼ ∑m0
r¼1 rk

ð0;rÞ
i and kð1Þi ¼ ∑m1

r¼2 rk
ð1;rÞ
i are the total number of neighbors of i

within, respectively, (0, ⋅)-cliques and (1, ⋅)-cliques.
Substituting Eq. (14) in Eq. (13), and doing some algebra and combinatorics,

we get

MPI ¼ DPI ð15Þ
where we have defined the matrices M and D, of elements

Mij ¼ ∑
ðg;rÞ

Aðg;rÞ
ij ∑

r

l¼1
1� wðrÞ

l;g

� � r � 1

l � 1

� �
XðrÞ
l;g þ

r � 1

r � l � 1

� �
Y ðrÞ
l;g

� �
ð16Þ

Dij ¼ δij μ� ∑
ðg;rÞ

kðg;rÞi ∑
r

l¼1

r

l

� �
1� wðrÞ

l;g

� �
Y ðrÞ
l;g

� �
ð17Þ

being δij the elements of the N ×N identity matrix. Equations (15)–(17) define a
generalized eigenvalue problem. The form taken by M and D is easily understood

in this way. Each sum multiplying Aðg;rÞ
ij inMij represents the marginal contribution

to the infection of node i coming from its neighbor j through the (g, r+ 1)-clique
they share. Given j in state I, 0:0ptr � 1a

� �
is the number of ways in which a out of

r− 1 nodes can be chosen to be in state I (a= l− 1) or S (a= r− l− 1). Similarly,

each sum multiplying kðg;rÞi in Dii represents the contribution coming from all the
configurations of any of the (g, r+ 1)-cliques incident on node i, in which i is in
state S. 0:0ptrl

� �
is the number of ways in which l out of r nodes can be chosen to

be in state I.

Now, M is non-negative. Indeed, for any fixed (g, r), the sum multiplying Aðg;rÞ
ij

must be positive whenever Aðg;rÞ
ij >0, since it represents the by-definition positive

contribution to the infection of a node (i) coming from one of its neighbors (j).
Moreover, being K undirected and so M symmetric, it follows that M is also
irreducible44. Looking now at D, which is diagonal, the non-negativity ofM implies
the diagonal elements of D to be positive. Indeed, Eq. (15) holds for any value of
the microscopic parameters; so let us suppose μ= 0. Since the non-zero elements of

M are positive 8μ 2 0; 1½ �, the sum multiplying kðg;rÞi in Dij must be negative

whenever Aðg;rÞ
ij > 0, proving any diagonal element of D to be positive. Therefore, D

is invertible and its inverse as well, with elements D�1

 �

ii ¼ Dii

� ��1
, ∀ i= 1,…,N.

Applying D−1 to both sides of Eq. (15), we finally get the sought eigenvalue
equation,

M0PI ¼ PI ð18Þ
where we have defined the matrix M0 � D�1M, of elements M0

ij ¼ Mij=Dii . Thus,
M0 is a non-negative irreducible matrix as well and, by the Perron-Frobenius
theorem44, it admits a unique leading eigenvector PI

? . This is the only one
associated with the largest eigenvalue Λmax M0ð Þ and the only one with all its entries

positive, hence representing the unique physically acceptable expected state of the
system at the onset of the epidemic. Fixed the values of the recovery probability, μ,
and the higher-order infection probabilities, fβðsÞgs > 1, the critical threshold βð1Þcr is
implicitly found as the smallest non-negative value of β(1) such that

Λmax M0ð Þ ¼ 1 ð19Þ

Mean-field approximation. The homogeneous mean-field (MF) approximation of
Eq. (8) is found by neglecting both the state correlations and the local structural
heterogeneity among the nodes, i.e., regarding every node as the "average node” in the

structure45. Given any (g, r)-clique {j1,…, jr}, it follows PI¼ IS¼ S
j1 ¼ jl jlþ1 ¼ jr ;g

¼ ρl 1� ρ
� �r�l

;

and, for any node i, kðg;rÞi ¼ k
ðg;rÞ

, where k
ðg;rÞ

is the average value of the (g, r)-degree
of the nodes in the structure. Thus, Eq. (8) becomes

ρ t þ 1ð Þ ¼ ρ tð Þ 1� μ
� �þ 1� ρ tð Þ� �

1�
Y
ðg;rÞ

qðrÞg

0
@

1
A ð20Þ

where

�qðrÞg ¼ 1� ∑
r

l¼1

r

l

� �
1� wðrÞ

l;g

� �
ρl 1� ρ
� �r�l

� ��kðg;rÞ
ð21Þ

The stationary solution is then got imposing ρ t þ 1ð Þ ¼ ρ tð Þ in Eq. (20). The
linearization around the epidemic-free state is then implemented by taking ρ=
ϵ≪ 1. Looking at Eq. (21), the only OðϵÞ terms are given by l= 1, whatever the
couple (g, r). That is, only the pair-wise probability β(1) contributes in the MF
approximation. With few algebra, one gets the renowned formula

βð1Þcr ¼ μ
�k

ð22Þ

where �k ¼ 1
N ∑

N
i¼1 ki , is the average degree of a node in Kð1Þ.

More generally, Eq. (22) holds for any model treating the nodes states as
independent, thus including the MMCA approximation of the MECLE, the MMCA
and MF approximations of the simplicial ELE, and also, except for substituting k

with k2=k, the heterogeneous MF approximation45 of both. The same result is
found in continuous time31.

Numerical simulations. The equilibrium value of the prevalence ρ is computed
using synchronous Monte Carlo simulations and the quasistationary state (QS)
method46. In the specific case of the simplicial 2-complexes, for each node i∈ V, a
simulated time step proceeds as follows: (1) if i is currently infected, it recovers
with probability μ; (2) if i is currently susceptible, (2.1) it gets infected with

probability 1� ð1� βð1ÞÞn
ð1Þ
i , being nð1Þi the number of currently infected neighbors

of i through edges; (2.2) if i is still susceptible after sub-step (2.1), it gets infected

with probability 1� ð1� βð2ÞÞn
ð2Þ
i , being nð2Þi the number of currently infected

couples of neighbors of i through triangles. For higher dimensions, n > 2, step (2)
consists of n− 2 additional sub-steps, analogously defined and ordered as
shown here.

In accordance with the QS method, every time the absorbing state ρ= 0 is
reached, it is replaced by one of the previously stored active states of the system,
i.e., one of those states with at least an active individual. Since for finite systems,
when approaching the critical point, a large number of realizations end up in the
absorbing state, the QS method properly reduces to a single run the wasteful
method of performing many simulations. We have made use of 50 stored active
states and an update probability of 0.25. We have given the systems a transient time
of 105 time steps, and then calculated ρ as an average over 2 × 104 additional
time steps.

Connectivity structures. We have referred to various interaction structures. For
the numerical evaluation, we have made use of synthetic simplicial 2-complexes
with around N= 104 nodes, presenting dissimilar structural properties: regular
structures, as the clique complexes built from a triangular lattice; homogeneous
structures, generated from the random SC model30, in which both the (⋅, 1)- and
the (⋅, 2)-degree follow a Poisson distribution; heterogeneous structures, derived
from the Dorogovtsev-Mendes model41, having (⋅, 1)- and (⋅, 2)-degree distribu-
tions nearly following power-laws with exponent around 3.

Data availability
Data sharing not applicable to this article as no datasets were generated or analyzed
during the current study.

Code availability
The code for estimating a minimal edge-disjoint edge clique cover (EECC) of a graph has
been implemented as the DisjointCliqueCover.jl47 package for the Julia language,
available at github and archived at zenodo.org.
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