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Quantifying efficient information exchange in real
network flows
Giulia Bertagnolli 1,2✉, Riccardo Gallotti 1 & Manlio De Domenico 1✉

Network science enables the effective analysis of real interconnected systems, characterized

by a complex interplay between topology and network flows. It is well-known that the

topology of a network affects its resilience to failures or attacks, as well as its functions. Many

real systems—such as the Internet, transportation networks and the brain—exchange

information, so it is crucial to quantify how efficiently system’s units communicate. Measures

of parallel communication efficiency for weighted networks rely on the identification of an

ideal version of the system, which currently lacks a universal definition. Consequently, an

inattentive choice might hinder a rigorous comparison of network flows across scales or

might lead to a descriptor not robust to fluctuations in the topology or the flows. We propose

a physically-grounded estimator of flow efficiency valid for any weighted network, regardless

of scale, nature of weights and (missing) metadata, allowing for comparison across disparate

systems. Our estimator captures the effect of flows heterogeneity along with topological

differences of both synthetic and empirical systems. We also show that cutting the heaviest

connections may increase the average efficiency of the system and hence, counterintuively, a

sparser network is not necessarily less efficient.
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Complex systems store energy, process and, very often,
efficiently exchange information to perform complex
tasks. The universal mechanisms behind this behavior are

unknown, although pioneering works have shown that the
robustness of this type of systems to random failures or targeted
attacks1 might emerge from the trade-off between the cost of
exchanging information and the importance of guaranteeing
communication dynamics for functioning2–4. Therefore, it is
crucial for units in a complex network to route information
through shortest paths, broadcasting, or according to some
dynamics between these two extremes5,6, as it happens for
instance in the Internet7. For several applications of interest, even
the inverse problem, of identifying either the origin or the des-
tination of the flow from the observation of pathways, is
relevant8,9. This framework enables the description of a wide
variety of systems, from cell signaling to individuals exchanging
information in social/socio-technical systems such as human
flows through different parts of a city by public or private
transportation means. In the following we focus our attention on
flow networks, systems characterized by the exchange of flows—
e.g., number of streets between different parts of the city or
human movements within a city, migration between different
geographic areas, goods traded among countries, packets routed
among servers, electricity in a power grid—through edges10–13.
System’s units and their connections have a limited capacity and,
in absence of sources and sinks, the sum of the overall incoming
and outgoing flows is constant.

Two descriptors traditionally employed to characterize the
structure, and hence indirectly the information flow, of
unweighted, simple, sparse, and connected networks are the
characteristic path length L and the clustering coefficient C2. L is
defined as the average length over all shortest paths in the net-
work, while C is the average local clustering coefficient over all
nodes in the network and quantifies the network transitivity.
Those networks having both a small characteristic path length
L—typical of random graphs—and a large clustering coefficient
C—typical of regular lattices—display the so-called “small-world”
property2, which is found in real world networks and is related to
how efficiently the information is exchanged in a system3,14.

One widely accepted measure of efficiency in information flow
is the communication efficiency, that has been used to highlight
the possible designing principles responsible for neural, man-
made communication, and transportation systems3. This measure
of efficiency was introduced in 20013, as a physically grounded
and more general way to characterize networks displaying the
small-world property. Instead of the two descriptors—L and C—
for two apparently different kinds of properties of these networks,
the communication efficiency evaluated at different scales is able
to identify both structural features, indeed, 1/L and C have been
shown to be approximations of the efficiency at the global and
local scale, respectively. If the clustering coefficient finds a nat-
ural, physical generalization in the local communication effi-
ciency, one main difference between the global communication
efficiency and the characteristic path length remains: the first
concerns the parallel, while the second the sequential information
exchange in a system. This discrepancy is negligible if the dis-
tances in the network are not too diverse, while it becomes sig-
nificant if they are highly heterogeneous, as, for instance, in the
Internet3,14. A further advantage of the efficiency over the original
characterization of small-world networks through L and C, is that
it does not require the connectedness and sparseness of the net-
work and, subject to an appropriate normalization, not even its
unweightedness.

The topology of a complex network influences the information
exchange among its units and is responsible for a rich repertoire
of interaction patterns. For instance, the existence of a connection

between two neurons allows them to exchange electrochemical
signals and their communication dynamics is relevant for the
functional organization of the brain. Similarly, human flows
through different geographic areas shape the functional organi-
zation of a city and its neighborhood, or even email interactions
among individuals in an organization determine how information
reaches different teams. In these real systems we never see the
everyone-is-connected-to-everyone structure, i.e., fully connected
networks, because, even if it would be very efficient for the
information exchange, it would also be extremely costly. The
trade-off between the communication efficiency and the wiring
cost characterizes complex systems and their robustness to per-
turbation in communication dynamics15,16.

Even more importantly, many empirical systems are char-
acterized by connections with heterogeneous intensities and dif-
ferent correlations among weighted and purely topological
network descriptors are ubiquitous17, from the human brain4,18–20

to transportation networks21. Therefore, it is essential to account
for these underlying weighted architectures to gain real insights
about the hidden construction principles and mechanisms used to
transform, process, and exchange information14. An even broader
scenario is possible: think for instance at infrastructure systems,
where the units do not exchange information in parallel, where
communication is subject to queues or priorities, where noise and
failures may play an important role in the communication. In this
case to assess the efficiency of the system one needs more infor-
mation that may not be present (or be representable) in the
topology or flows of the network.

However, even assuming that information is exchanged in
parallel—which is assumed from henceforth so that when we use
the terms efficiency or communication efficiency we mean the
efficiency of parallel communication—for a wide class of weigh-
ted systems17 which are not embedded in space or for which
metadata about the underlying geometry (nodes coordinates) are
not available, the normalization of the weighted efficiency
descriptor proposed by Latora and Marchiori3,14 may fail—due to
a mathematical constraint which is not fulfilled—or may be dif-
ficult to compute—because of the nature of flows, encoded in
edge weights. As a matter of fact, we observed that in many
applications22–27 the weighted efficiency is not normalized by
comparison with the most efficient version of the network at
hand, as suggested by Latora and Marchiori3,14, but instead it is
computed upon normalized weights. This latter descriptor, to the
best of the authors’ knowledge, has not yet been studied in detail,
so we will take care of it, underlining especially its lack of sta-
tistical robustness to fluctuations in the network topology
or flows.

In this work we show that a mathematically rigorous, statisti-
cally robust, and physically grounded, normalized descriptor of
the global efficiency of parallel information exchange can be
computed without any knowledge on the system, but its weighted
network representation. We demonstrate how to define a suitable
"physical distance” between system’s units in terms of the flow
they exchange across least resistance pathways. We also show that
the quantification of the system efficiency might vary dramatically
if flows are not adequately accounted for. In fact, discarding edge
weights and considering only the topology of a network leads to
an overestimation of its communication efficiency. In the oppo-
site direction, incorporating the flows without normalizing the
weighted efficiency descriptor leads to a measure that cannot be
used to compare different systems. In between these two extremes
lie several normalizing procedures for the weighted commu-
nication efficiency, which are discussed and compared in the
remaining of this article. The normalizing procedures we propose
in this work yields an efficiency descriptor that effectively sum-
marizes both the topological and flow information encoded in the
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networks; in particular, on synthetic models we observe that the
efficiency grows not only when the flows heterogeneity decreases,
but also if the there is not a subset of privileged pathways
monopolizing the whole information flow in the network.

Results
Flow exchange in complex topologies. Let us consider a complex
network G= (V, E), whose weighted adjacency matrix W ¼
ðwijÞi;j2V characterizes both its topology—indeed, wij= 0 if i, j are

not adjacent, while wij > 0 if they are—and flows—by the magnitude
of the weights wij.

The efficiency ϵij in the communication between two nodes i ≠
j∈V is assumed to be inversely proportional to their distance dij3.
It follows that if i and j belong to different connected
components, i.e., dij=∞, ϵij= 0. The global communication
efficiency of the network G is the average over pairwise
efficiencies

EðGÞ ¼ 1
NðN � 1Þ ∑

i≠j2V
d�1
ij : ð1Þ

The natural metric on unweighted networks is the shortest-path
distance. In this case the topological distances satisfy 0≤ d�1

ij ≤ 1,
implying 0 ≤ E(G) ≤ 1, with equality holding when G is a clique
and, since each pairwise communication occurs without media-
tors, information propagates the most efficiently. In case of
weighted networks, distances should also account for weights and
for what they stand for28. As a matter of fact, the algorithm
proposed by Dijkstra in 195929 (and used mostly) involves the
sum of the cost of connections to find the path of least resistance,
which means that if the edge weights encode the intensity of
interactions, their costs have to be derived before computing
weighted distances. Furthermore, weighted distances are real
valued so that, in general, E(G)∈ [0;1) and depends on the scale
of the weights. For this reason, a global indicator of efficiency
should be rescaled in [0, 1] considering an idealized proxy of G,
called Gideal, having maximum efficiency.

In3,14 the authors propose to build Gideal based on pairwise
physical distances ℓij, which are supposed (i) “to be known even if
in the graph there is no edge between i and j”, i.e. ℓij > 0 for all i ≠
j, (ii) should fulfill the constraint ℓij ≤ dij for all i, j∈V, and (iii)
should be considered along with topological information in the
computation of weighted shortest-path distances dij. Then,
EðGidealÞ ¼ 1

NðN�1Þ∑i≠j2V ‘�1
ij ≥ EðGÞ and EðGÞ

EðGidealÞ—which is hence-
forth denoted by GCE(G)—is correctly normalized. For some
spatial networks—e.g., transportation systems like the railway or
infrastructures such as the power grid—the physical distances are
well-defined by the underlying geometry, for others—among
which power stations and water resources—it might be difficult to
calculate physical distances because of the lack of direct
information about spatial coordinates of units. For nonspatial
systems—such as social and socio-technical systems—ð‘ijÞi;j2V can

be found as ad hoc transformations of connection strengths
(weights) into connection costs. For instance, in a biological
network, where wij represents the velocity of chemical reaction
along a direct connection between i and j, ℓij could be taken as its
inverse3; or, ℓij could be the minimum between 1 and the inverse
number of edges between i and j in network with multiple
unweighted edges14. Unfortunately, this apparently straightfor-
ward procedure hides several issues, e.g., if there is no direct
connection between two biochemical units in a connected
network, their physical distance is infinite according to the
previous definition, while their weighted shortest-path distance
will be some positive real number, violating (ii). Furthermore,
in case of real positive weight wij 2 Rþ one cannot take

‘ij ¼ min 1; 1
wij

n o
, since this introduces a cut-off on weights

smaller than 1. We indicate by ELM ¼ EG

EðGidealÞ the weighted
efficiency of G when Gideal is built according to3,14. Another
common method for obtaining a normalized efficiency
indicator22–26, assuming that the weight encode the interaction
intensities, consists in firstly, rescaling the weights into [0, 1],
then transforming them to costs (usually taking their reciprocals),
applying Dijkstra’s algorithm for evaluating the pairwise distances
and finally computing the efficiency by (8), without any further
comparison with a Gideal. See the “Methods” section for further
details. For instance, let us mention the max-normalization of
weights ~wij ¼

wij

max
i;j

fwijg, which leads to EMNðGÞ ¼ EðGÞ
max
i;j

fwijg and will be

used for comparison in the rest of this study. Observe as of now,
that this rescaling is particularly sensitive to outliers or extreme
values of the link weights and that, differently from the original
definition by Latora and Marchiori14, it compares every pairwise
weighted efficiency to the maximum possible efficiency in the
whole network. In conclusion, in a broad spectrum of scenarios of
practical interest for applications, there is no general recipe to
compute E(Gideal).

Rethinking efficiency of information flow in weighted archi-
tectures. To overcome the above issues, we build Gideal from the
weighted graph G so that physical distances (i) are not necessarily
calculated from metadata or accessible spatial information and
(ii) preserve a local feature.

We assume hereafter that edge weights are nonnegative real
values and represent the strength of connections. Recall that a
path is the sequence of vertices in a nonintersecting walk across
the network; the length of the path is the number of edges in—or
the sum of edge costs along—that path. Weighted shortest-path
distances are then computed minimizing the sum of the
reciprocals of weights30,31, which can be seen as costs, over all
paths between node pairs (other weighted metrics may be used28

but are not discussed here). Let us denote by SP(i, j) a weighted
and possibly directed shortest-path from i to j; its length,
dij ¼ ∑n;m2SPði;jÞ w

�1
nm, is the shortest-path distance between i and

j, while ϕij ¼ ∑n;m2SPði;jÞ wnm is the total flow along SP(i, j).
The matrix Φ ¼ ðϕijÞi;j2V represents an artificial connectivity

made of shortcuts, where total flows along shortest paths are
delivered in one topological step, as shown in Fig. 1. Gideal is then
obtained averaging between the true structureW and the artificial
connectivity, i.e., Wideal ¼ ΦþW

2 . We finally define

‘ij ¼ ðwideal
ij Þ�1

and, hereafter, GCEðGÞ indicates the global
communication efficiency normalized w.r.t. our Gideal. Note that
a stronger option than averaging between the real and the
artificial connectivity would be to take Wideal=Φ, or to define ϕij
as the average flow along SP(i, j).

When G is connected, Gideal is completely connected and ℓij

is finite ∀ i ≠ j. If otherwise G is not connected, Gideal will
be disconnected as well. If there is no path between i, j both ℓij=
dij=∞ and their pairwise efficiency contribute neither to E(G)
nor to E(Gideal). Note that in this case we are computing the
average communication efficiency, a global indicator, of dis-
connected subnetworks, which may not be meaningful. Finally, it
is possible to prove (using the Cauchy–Schwarz inequality, see
“Methods” section) that the constraint ℓij ≤ dij ∀ i ≠ j is always
satisfied, hence ℓij are well-defined physical distances that can be
calculated for any weighted systems. Having defined the
mathematical tools, we now analyze some synthetic networks
with a tunable structure. This enables us to separate the effects of
topology and flows on the global efficiency of the network.
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Global efficiency of synthetic networks. We start with the
simplest combination of topology and weights: upon a full net-
work (a clique) with N= 30 nodes, we generate two ensembles of
weighted networks sampling edge weights from different families
of probability distributions. The topological efficiency ET, i.e., (1)
with shortest-path distances computed ignoring weights, is 1 for
all networks, since they are fully connected. We therefore focus
on the weighted descriptors ELM, EMN, and GCE. The trivial case,
wij=w > 0 constant, leads to ELM= EMN=GCE= 1. We impose
more realistic homogeneous flows sampling from a Poisson dis-
tribution PðλÞ with varying λ. Since zero belongs to the support of
the distribution, we add one to each sample to keep the complete
connectedness of the network. The heterogeneity in the weighted
structure is instead modeled with wij following power-laws(α)
with a lower bound xmin= 532. For each value of the parameters λ
and α we take 30 random samples from the respective distribu-
tion and generate 30 synthetic weighted networks. Figure 2a)
shows their GCEs summarized through boxplots, as a function of
λ and α. The five statistics of the GCEs distribution shown in the
boxplots are: the first (Q1) and third (Q3) quartiles, or quantiles
of order 25 and 75% (resp. lower and upper box hinges)—the
width of the box shows the interqaurtile range (IQR=Q3−Q1)
—the median (middle line in the box), the smallest observation
greater than or equal to Q1− 1.5 ⋅ IQR (lower whisker) and the
largest observation smaller than or equal to Q3+ 1.5 ⋅ IQR.
Outliers, observations falling outside the expanded IQR are
shown as dots. All these synthetic networks are topologically
equally efficient since they are fully connected, however,
accounting for the weights can lead to dramatically different
results. The extreme heterogeneity of edge weights, characteristics
of power-law distributions with small scaling exponent, strongly
reduces the average communication efficiency of the network.
Furthermore, as the tails of the weight distributions become
lighter, the weighted GCE tends to the topological one. As the
parameters λ and α grow the heterogeneity of weights decreases,
since the tailness of the distributions decreases. A measure of the

tailness of a distribution is the kurtosis, the standardized central
moment of order 4. Usually, one evaluates the kurtosis minus
three, which is called the excess kurtosis, and represents the
excess w.r.t. the kurtosis of any normal distribution, which is
always equal to three. For the Poisson distribution, the excess
kurtosis is λ−1; for the power-law the excess kurtosis is finite only
for α > 5 and, for α > 5, it decreases as a function of α, tending to 6
as α→∞. More details in the Supplementary Note 1.
This reduction in the weights distribution tailness can also be
seen in Fig. 2b), where we show the probability mass (resp.
density) functions for λ= 1, 12 and α= 1.5, 7.

We next study the interplay between weights heterogeneity and
topology through bond percolation, i.e., the targeted attack and
removal of the links in the network26,33. By removing edges in
decreasing weight order, we trim the tail of the weights
distributions, reducing their heterogeneity. In Fig. 2c) we plot
the four efficiency quantifiers as functions of the fraction f of
removed edges and averaged over 30 random realizations of each
model. Shaded areas indicate the standard deviation from the
mean. We denote by Gf the damaged network obtained from G
removing f % of its heavier links. G0 is, topologically, a clique, so
ET(G0)= 1. In ET(Gf) the denominator is always N(N− 1), hence
Gf is compared with a clique, by definition and ET(Gf) decreases
monotonically. On the other side EMN, ELM (Fig. S4), and GCE
use the flows of Gf to build the corresponding Gideal

f and are,
consequently non-monotone functions of f. It might seem a
limitation nevertheless, it allows us to compare a series of
networks Gf with slightly different topologies, increasingly
sparser, and flows that become increasingly homogeneous. In
the “Methods” section we propose a modification of the GCE to
overcome this possible limitation in percolation applications.
EMN and GCE behave similarly, although EMN has larger
fluctuations because at each step the edge with maximum weight
is removed. As expected, there are clear differences in the
percolation plots of Poissonian and power-law network flows, but
in both cases removing the heaviest links produces an increase in

Fig. 1 Computing physically-grounded ideal flows. a A simple weighted graph G with four nodes u, q, r and v, link weights in dark gray, and link costs in
magenta, and its weighted adjacency matrix W. Costs are obtained by inverting link weights. b The artificial flows added to G and their matrix Φ. c Gideal

characterized by the weighted adjacency matrix Wideal ¼ WþΦ
2 . If the shortest path between two nodes coincides with the edge connecting them, as for u

and q, then ϕuq=wuq= 1.5 and the edge weight in Gideal is the same as in G. Non adjacent vertices in G (e.g., u, r) have an artificial flow given by the sum of
link weights along a shortest paths connecting them (ϕur=wuq+wqr) and in Gideal those vertices are connected by edges with a weight proportional to the
artificial flows (w ideal

ur ¼ ϕur
2 ¼ 1:5þ4

2 ). Finally, there may be pairs of nodes with very weak connections, where topologically longer paths have smaller
weighted distances, as for q and v: the cost of the path (q, r, v) is 1

4 þ 1
2 ¼ 3

4<1 ¼“cost of the link {q, v}”. In this case the total flow is the sum of the weights
along the path (q, r, v), i.e., ϕqv=wqr+wrv= 6 (dashed edge). In Gideal this artificial flow is averaged with the weight of the direct edge
w ideal
qv ¼ ϕqv þwqv

2 ¼ 3:5.
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the average communication efficiency. In both cases, when the
flows become more homogeneous the GCE depends largely on
the topology, Finally, when the network is disrupted—near the
critical threshold fc indicated by the maximum of the second
largest component size34,35 (insets of Fig. 2)—the GCE has a
break-down point, since we are averaging the efficiencies of
many, small, distinct (and maybe individually efficient) discon-
nected networks.

Before moving to synthetic networks with realistic topologies,
let us spend few words on the comparison between the GCE and
EMN. The latter is, apparently, more attractive than the GCE,
because it is easier to compute. A more attentive look, however,
reveals some issues: firstly, the sample maximum is the least
robust order statistic, i.e., it is very sensitive to extreme values and
outliers. If this is not a strong enough reason to avoid it, have a
look at Fig. 3. The GCE converges to 1 as the weights become
more homogeneous, while EMN remains approximately below 0.5;
and these are very specific networks, they are fully connected.
What is then the meaning of a descriptor normalized into [0, 1],
when the maximum value is so difficult to reach?

Finally, we compare the two descriptors on synthetic networks
generated from models of real-systems, in particular small-world
networks (Watts–Strogatz (WS) model2) and scale-free networks
(Barabási–Albert (BA) model36). Again we consider 30 realiza-
tions of each topology, each having N= 256 nodes, average

degree 〈k〉≃ 12 and around 5% of all possible edges. We indicated
by A ¼ ðAijÞ the adjacency matrix of each network. Upon these,
the edge weights are assigned following the two following rules:

wij ¼ kβi ð2Þ

wij ¼ eβij ð3Þ
where ki ¼ ∑N

j¼1 Aij is the degree of node i, eij is the (topological)
edge-betweenness of the link {i,j}, and β is a free parameter
allowing us to tune the flow structure. The betweenness37 of the
edge {i,j} is the number of the shortest paths between any pairs of
nodes s, t that go through {i,j}, here indicated by gsijt, over the
total number of shortest paths between the nodes s and t:
eij ¼ ∑s≠t

gsijt
gst
. First observe that (2)38 generates asymmetric

weights; for positive β hubs have strong out-going links, while
for negative values of β the intensity of the connections decreases
with the degree. The case β= 0 leads to unweighted systems.
Results are summarized in Fig. 4. The poor robustness of EMN

emerges in the plot: the distributions of EMN over the ensembles
are skewed and have greater variance. Therefore, we focus on the
GCE for the between models comparison. Topologically, BA
networks are slightly more efficient than WS networks, but as
soon as weights are introduced the panorama changes: the degree
distribution of small-world networks is less heterogeneous w.r.t.

Fig. 2 Communication efficiency of full networks with homogeneous and heterogeneous flows. a Global communication efficiency (GCE) as a function of
the free parameter λ of the Poisson α and power-law distributions from which flows are simulated. The GCE distribution over 30 networks for each
parameter value is summarized by the boxplots. In particular the box extends from the first (Q1) to the third (Q3) quartile, the line in the box indicates the
median and the whiskers expand the interquartile range (IQR=Q3−Q1) by ~1.5 in each direction (see the legend). As α and λ increase the heterogeneity
of the weights decreases and the GCEs tend to 1, the efficiency of a fully connected, unweighted network. For the highlighted values of λ and α, we report
the probability mass/density function of edge weights wij (all nodes are adjacent) in panel b. c Targeted bond percolation over the same synthetic networks
as in a for λ= 2 and α= 2.5. The descriptors are the topological ET, max-normalized EMN, and Latora–Marchiori ELM efficiency, and our GCE. Lines
represent the average descriptor value over the 30 networks, while shaded areas the standard deviations. The average GCE benefits from the removal of
heavy links which forces the network to rearrange its paths. The insets show the behavior of the size of the largest and second largest connected
component for f∈ [0.5, 1]. Vertical black lines indicate critical thresholds fc (corresponding the maximum of the second largest component size). Values on
the y axis have been cut to the range [0, 1]—full plot in Fig. S4).
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the scale-free leading to less heterogeneous weights generated by
(2) and higher efficiency, independently from the sign of β. On
the other side, when links strengths are related to their topological
betweenness, BA networks are generally more efficient than WS
networks and when β > 0 the networks are more efficient, because
those edges that are very in-between shortest paths are also very
efficient. Notice that here, differently from the previous example
where all possible links were present, communication paths are
unlikely to be able to “reorganize” (i.e., choose a different
sequence of edges) in response to weights changes.

Global efficiency of real interconnected systems. We use our
framework to study the efficiency of four real systems (see
Table 1). From the FAO worldwide food trade network we
selected the layers of cocoa, coffee, tea, and tobacco. From the
migration dataset we selected internal migration flows inside three
Asian regions: India, China, and Vietnam. From the worldwide air
traffic network we extracted the traffic in and between Europe and

Africa. Finally, we consider the structural connectivity of human
brain, quantified through diffusion tensor imaging (DTI) and fiber
tractography methods.

These real networks have different properties, among which
edge density and weight distribution. Based on the results of our
analysis of synthetic networks and on previous studies14,26, we
expect the weighted efficiency of these real networks to be smaller
than their topological efficiency. Thanks to our normalizing
procedure, which can be applied unchanged to all networks, it is
legitimate to compare the weighted efficiencies of diverse systems
and we expect the trade networks to have the smallest efficiency.
As a matter of fact, observing the boxplots in Fig. 5 (and Fig. S8 of
the Supplementary Note 2) we can see that the distributions of
the network flows in the trade networks are highly heterogeneous.
The whiskers in the boxplots extend from the minimum to the
maximum of the distribution to highlight the presence of extreme
outliers or very heavy tails. Let us then look at the results of the
analysis.

Fig. 3 Comparison of weighted efficiency descriptors for full networks with homogeneous and heterogeneous flows. The descriptors are the global
communication efficiency GCE and the max-normalized efficiency EMN. For each parameter value the GCE and EMN are evaluated for 30 synthetic networks
and their distributions are summarized through boxplots. The five statistics in the boxplots are: the first (Q1) and third (Q3) quartiles, or quantiles of order
25 and 75% (resp. lower and upper box hinges), the median (middle line in the box), the whiskers extend from the smallest to the largest observation in
the range [Q1− 1.5 ⋅ (Q3−Q1), Q3+ 1.5 ⋅ (Q3−Q1)]. Observations falling outside this range are outliers, shown as dots. The GCE converges to 1 as the
heterogeneity of the weights distributions decreases (i.e., as λ and α increase), while EMN remains approximately below 0.5.

Fig. 4 Comparison of weighted efficiency descriptors for synthetic networks with different topologies and flows. Topologies are generated from the
Barabasi–Albert (BA) and Watts–Strogatz (WS) models while flows are generated according to (2) and (3) for varying β∈ [−5, 5] as specified at the top of
each column. The parameter β controls the agreement—direct (inverse) proportionality for β≥ 0 (β < 0)—between the outgoing strength of the nodes and
their degree (in the plot labeled “node degree”) and between the weight of edges and their edge-betweenness (in the plot labeled “edge-betweenness”).
The descriptors are the global communication efficiency GCE and the max-normalized efficiency EMN. See Fig. 2 for the detailed legend of boxplots.
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Figure 6 shows the curves corresponding to ET(Gf) and GCE
(Gf). Independently from the system, ignoring the network flows
leads to an overestimation of the average efficiency, especially
when flows are highly heterogeneous. The network of internal
migration, is the most efficient, but it also has the highest cost
being a clique. The tea trade network is the most inefficient.
Finally the brain and the airports network have similar GCEs
until the first 25% of their edges are removed, with the brain
remaining afterwards more efficient w.r.t the reduced flows.
Observe that the total flow could be restored, while keeping a
specific efficiency value, redistributing the removed flow on the

remaining links. In general, removing those edges monopolizing
shortest paths forces their reallocation inducing an increase of the
global weighted efficiency.

Conclusion
Exchanging information is one of the main functions of many
real complex systems and quantifying how efficiently they per-
form this task is of great interest for different disciplines. Con-
sequently, the concept of communication and transport efficiency
is relevant for a broad range of applications, from public trans-
portation to the human brain and the Internet. Defining the
efficiency and telling which system is efficient from which is not,
is still an open and debated question. It depends on the context
—“Are we interested in the efficiency of a system in relation to an
objective, such as a maximum cost, a performance level, or in an
absolute efficiency measure?”—on the amount of information
available on the system—“Do its units have to wait before passing
a massage?”, “Is this information encoded (or even, can this
information be encoded) in the network representing the sys-
tem?”—etc. For instance, communication and transport processes
in many real systems may involve waiting times, error rates and
technical inefficiency of the networked system, and possibly, also
other variables that cannot be encoded as purely topological
network features. In this case, characterizing the efficiency of the
system by link weights and weighted shortest-path distances is an
oversimplification.

However, given a network, without any metadata, we can
reasonably assume that nodes connected by a link are closer or
more similar than disconnected nodes, and that connected nodes
communicate more easily and efficiently than disconnected ones.
Furthermore, we can assume that strong, heavy links bring the
nodes nearer, reducing the cost of their interaction and com-
munication. Hence, our approach on system’s efficiency is based
on the assumptions (i) of parallel information exchange between
units and (ii) that the network representation of the system is
enough for assessing its communication efficiency. Under these
assumptions, we studied systems represented by flow networks,
where links encode volumes of people, electrochemical junctions,
packets, etc. While there is a widely adopted descriptor for the
global communication efficiency in case of unweighted networks,
we have found that its generalization to the case of weighted
networks might not be suitable in all relevant cases. In this work
we have identified and explained the mathematical limitations of
the current measures.

Fig. 5 Edge weights distributions of selected real-world networks. The
number of nodes and edges of each network is specified in Table 1.
Heterogeneity and scale vary across the datasets. The statistics of the
boxplots are the first and third quartiles of the weights distribution are
displayed as the lower and upper hinges of the box, the line in the box
represents the median, whiskers extend from the minimum to the
maximum weight.

Fig. 6 Targeted bond percolation of real interconnected systems. The
descriptors are the topological efficiency ET and the global communication
efficiency GCE of real networks where edges are removed in decreasing
order according to their weight. The networks are: The tea trade network,
the internal migrations in Vietnam, the air traffic between airports in Europe
and Africa, and the human brain network. See also Figs. S9 and S10 in the
Supplementary Note 2.

Table 1 Real-world flow networks and corresponding scales.

Dataset ∣V∣ ∣E∣ Ref.

FAO cocoa 159 2081 39

coffee 184 7760
tea 172 3297
tobacco 183 3623

Migrations China 30 870 40,41

India 32 992
Vietnam 63 3906

Transportation airports 299 12,919 43

Biological human brain 188 10,836 42

∣V∣ indicates the number of nodes and ∣E∣ the number of edges in the networks. Multiple edges
have been aggregated and loops removed.
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A direct consequence of our analysis is that an estimation of
global efficiency can be trusted only under specific conditions: i.e.,
the analysis of efficiency in the case of real network flows cannot
be performed or, alternatively, when it is performed it might lead
to important underestimation or overestimation of results, which
agrees with previous results26. Since flow networks are ubiqui-
tous, here we have proposed the most general definition of the
global communication efficiency for weighted directed networks,
which does not assume any other (meta-)information on the
system.

Using our physically grounded definition of flow network
efficiency, our results indicate that one can achieve a desired level
of efficiency by wisely redistributing weights, instead of altering
the underlying topology. This result is relevant for practical
applications, since it is not always guaranteed that one can rewire
or dramatically change with other interventions the network
connectivity. In fact, altering network structure is usually
expensive in economic or energetic terms. Our framework works
under mild assumptions about the underlying topology and about
the ideal and most efficient network, with no metadata, nor
additional spatial (e.g., geographic) information on the system,
allowing for trustworthy applications to empirical problems. It
also allows for a complementary view of bond percolation from a
functional perspective, allowing us to gain new insights about
critical phases of information exchange and network flows in
addition to topological ones.

Methods
Mathematical details on the normalizing procedure. We provide the proof of
dij ≥ ℓij ∀ i ≠ j∈V, which is a sufficient condition for the GCE to be correctly
normalized in [0, 1]. Recall that SP(i, j) denotes a weighted (directed) shortest-path
from i to j and dij ¼ ∑n;m2SPði;jÞ w

�1
nm . Observe also that, if the shortest-path

between i, j coincides with their link (i, j) the number of vertices in the sequence is
∣SP(i, j)∣= 2 and their shortest-path distance is dði; jÞ ¼ 1

wij
. The total flow between i

and j through the shortest-path SP(i, j) is defined as ϕij ¼ ∑n;m2SPði;jÞ wnm .
Before proving our main statements we write an inequality, which will be

extensively used in the following proofs. The Cauchy–Schwarz inequality for

vectors u, v in an inner product space reads ∣〈u, v〉∣2≤〈u, u〉 ⋅ 〈v, v〉. Taking u ¼
1ffiffiffiffi
x1

p ; ¼ ; 1ffiffiffiffi
xn

p
� �

and v ¼ ffiffiffiffiffi
x1

p
; � � � ;

ffiffiffiffiffi
xn

p� �
the inequality becomes

n2 ¼ ∑
n

i¼1

ffiffiffiffi
xi

p
ffiffiffiffi
xi

p
� �2

≤ ∑
n

i¼1

1
xi

� �
∑
n

i¼1
xi

� �

n2 ∑
n

i¼1
xi

� ��1

≤ ∑
n

i¼1

1
xi

� �
:

ð4Þ

(4) states that for nonnegative real numbers x1,…, xn the inverse of their sum is
smaller or equal to the sum of their reciprocals.

Since we have assumed edges weights to be positive we can apply the inequality,
which leads us to

∑
n;m2SPði;jÞ

wnm

� ��1

≤ jSPði; jÞj2 ∑
n;m2SPði;jÞ

wnm

� ��1

≤ ∑
n;m2SPði;jÞ

w�1
nm: ð5Þ

Observe that ∣SP(i, j)∣≥2 if G is connected, therefore the first inequality is actually
strict.

From (5) we can derive useful inequalities involving wij, ϕij, dij, and ℓij:

ϕ�1
ij ¼ ∑

n;m2SPði;jÞ
wnm

� ��1

≤ ∑
n;m2SPði;jÞ

w�1
nm ¼ dij ð6Þ

note that if wij ≠ 0, it also holds dij ≤
1
wij
.

It is also possible to prove that ϕij ≥ wij, ∀ i, j∈V. Indeed, if i, j are not adjacent
then wij= 0 but, since G is connected, there is a path between them with ϕij > 0. If
instead, they are adjacent, either ϕij=wij meaning that the weighted shortest-path
coincides with the edge (i, j), or there is a shortest-path going through other
vertices, such that dij ¼ ∑n;m2SPði;jÞ w

�1
nm<

1
wij

and the claim follows from (6).

Starting from the definition of physical distances ℓij, using simple inequalities
and (5)

‘ij ¼ 2 wij þ ϕij

� ��1
≤ 2 ∑

n;m2SPði;jÞ
wnm

� ��1

≤ jSPði; jÞj2 ∑
n;m2SPði;jÞ

wnm

� ��1

≤ ∑
n;m2SPði;jÞ

w�1
nm ¼ dij:

ð7Þ

Again, for a connected network G the strict inequality ℓij < dij holds.
Finally, ϕij= 0 if and only if i and j lie in disconnected components and,

consequently, the ideal network is disconnected as the original one. In this case
both dij ¼ 1

ϕij
¼ 1 and the missing links among disconnected components will not

produce an underestimation of the efficiencies of the subgraphs. Of course, if the
network is very fragmented, the GCE, a global descriptor, will not be very
informative. Below, we propose a variant of the GCE, which is most appropriate in
this case and in percolation simulations in general.

Comparisons with other weighted efficiency measures. In this work we
introduced existing measures of topological and weighted efficiency, more speci-
fically, ET the topological efficiency defined in3, ELM defined by Latora and
Marchiori in ref. 14, EMN obtained evaluating the efficiency on the network with
max-normalized weights.

Let us recall the definition of efficiency3

EðGÞ ¼ 1
NðN � 1Þ ∑

i≠j2V
d�1
ij : ð8Þ

where we have the sum of the reciprocal values of pairwise distances ∑i≠j2V d�1
ij

divided by the number of non-diagonal entries in the distances matrix, i.e., N(N−
1). In the topological case this last term plays the role of a normalizing factor, since
the sum of inverse shortest-path distances in a clique is exactly equal to N(N− 1).
We refer to the efficiency (8) evaluated without edge weights, or in other words
with topological shortest-path distances ðdijÞ, as the topological efficiency and
indicate it by ET. Then ET naturally lies in [0, 1].

The main difficulty arising in the definition of a weighted efficiency descriptor,
have to do with the diversity of information that can be encoded as edge weights in
a network. Usually weights represent connection strengths and connection costs
are obtained as a function (e.g., inverse) of weights. Given the connection costs, one
can compute weighted shortest-path distances28–31, which vary in [0+∞] and
therefore, the efficiency computed according to (1) E(G)∈ [0+∞) and needs to be
rescaled (or normalized) in order to be comparable among different systems.

EMN, which has been used, for instance, in refs. 22,24–26 is the simplest
generalization of ET to the weighted case: rescaling the weights to [0, 1] implies that
shortest-path distances dij ≥ 1, since weighted shortest paths are those paths
minimizing the sum of edge costs, that is, inverse weights. Consequently, being
dij ≥ 1, (8) results to be normalized. Different rescaling transformations of weights
are possible, the most common is the max-normalization (from which the
superscript MN) ~wij ¼

wij

max
i;j

wij
. The cost of edges is then ~w�1

ij . We show, now, that

EMNðGÞ ¼ EðGÞ
wmax

, where E(G) is (8) calculated on weighted geodesic distances

without the max-normalization of weights. Let wmax be the maximum weight over
all edges of a weighted network G= (V, E) and let SP(i, j) be a weighted shortest
path between i, j∈ V. Observe that the max-normalization of weights does not
affect the shortest path, but it does affect the shortest-path distance

~dij ¼ ∑
n;m2SPði;jÞ

1
~wij

¼ ∑
n;m2SPði;jÞ

wmax

wij
¼ wmaxdij:

Finally,

EMNðGÞ ¼ 1
NðN � 1Þ ∑

i≠j2V
~d
�1
ij ¼ 1

wmax
EðGÞ:

This fact, could be appealing for computational reasons, but it is definitely not from
a statistical point of view: the sample maximum and minimum are the least robust
statistics, they are maximally sensitive to outliers. For this reason EMN may have
very wild fluctuations over topologically similar networks but with different
maximum weights, which makes this indicator not well suited for comparisons
between different systems. To make it clearer, using this descriptor you might not
be able to tell if your systems show different global efficiency values because they
are characterized by different topologies and interplay between topology and flows,
or because their maximum weights are, or are not, outliers to their weights
distributions, a very global and extreme feature of the network. Of course, not only
the max-normalization and inverse are available, for instance, in ref. 23 weights are
wavelet correlation coefficient between regions in the brain and the cost of the
connection between regions i and j is defined as cij= 1−wij.

ELM is the weighted generalization of E(G) proposed by Latora and Marchiori in
ref. 14. The idea is to normalize E(G) considering an ideal case Gideal, where all
possible edges are present in the idealized graph and the information propagated

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00612-5

8 COMMUNICATIONS PHYSICS |           (2021) 4:125 | https://doi.org/10.1038/s42005-021-00612-5 | www.nature.com/commsphys

www.nature.com/commsphys


most efficiently. Then,

EðGÞ
EðGidealÞ

¼
1

NðN�1Þ ∑
i≠j2V

d�1
ij

1
NðN�1Þ ∑

i≠j2V
l�1
ij

≤ 1: ð9Þ

Observing that a sufficient condition for (9) is 0 ≤ ℓij ≤ dij for all i, j,∈V, defining
Gideal reduces to building the matrix ð‘ijÞi;j . They called ℓij physical distances, in

contrast to shortest-path distances, highlighting that the latter are computed using
“the information contained both in the binary adjacency matrix and in ð‘ijÞi;j”.
Observe that the matrix ð‘ijÞi;j is, in every respect, a matrix of connection costs. In

ref. 14 (Sec. 3) the authors give some examples to ℓij from edge weights. For
instance, if weights wij ≥ 1 one can define ‘ij ¼ minf1; 1

wij
g, which is the

transformation adopted in this work to compute ELM.
We refer to the Supplementary Note 2 (Figs. S2 and S3) for the full plot

corresponding to Fig. 2b) of this study. The GCE converges faster to 1 as the weight
distributions become less heterogeneous (in terms of kurtosis). We claim that the
maximum of the GCE is obtained not only for full networks with constant edge
weight distribution, but it is sufficient to have a uniform edge betweenness, as
shown in Fig. S3.

Finally, the panel c) of Fig. 2 without the cut on the range of y− values is
reported in Fig. S4 of the Supplementary Note 2. The percolation simulation
consists in removing edges from an undirected weighted full network G, in
decreasing weight order. We indicate by f the fraction of edges removed from G
and by Gf the resulting, damaged, network with G0=G. We then evaluate the
efficiency of Gf by means of the already described measures: ET, EMN, ELM, and
GCE. We repeat the process 30 times, sampling the edge weights from a Poisson
distribution with parameter λ= 2 and 30 times, sampling the edge weights from a
power-law distribution with free parameter α= 2.5. We include also the plots for
common percolation indicators, such as the total weight of—i.e., the sum of the
weights in—the largest connected component (LCC) rescaled in [0, 1], the size of
the second LCC—divided by N= ∣V∣—and the number of clusters (components)—
also divided by N= ∣V∣; see Fig. S5. The second LCC size has proven better at
pinpointing the critical threshold in percolating lattices35, as well as at
distinguishing between percolation regimes34.

Our normalization procedure can also be used to build a slightly modified
version of the GCE that plays the role of a weighted integrity descriptor for
percolation analysis. Let G ideal

0 be the idealized network corresponding to G0 build
as described in our study. Then

GCE�ðGf Þ ¼
EðGf Þ

EðG ideal
0 Þ ð10Þ

is normalized in [0, 1] and it is a monotone decreasing function w.r.t. f.
This variant of the GCE has been evaluated for real networks in the

Supplementary Note 2, Fig. S9.

On artificial flows. We choose to build the artificial flows integrating weights over
paths, but this is not the only possibility, provided that constraint ℓij ≤ dij is
satisfied. Now, using the same definitions and notation adopted in this study,

dij ¼ ∑
n;m2SPði;jÞ

1
wnm

≥
1

minfwnm : n;m 2 SPði; jÞg
ð11Þ

≥
jSPði; jÞj

∑n;m2SPði;jÞwnm
ð12Þ

≥
1

maxfwnm : n;m 2 SPði; jÞg ð13Þ

≥
1
ϕij

So both the minimum, the maximum, and the average weight over the path are
valid choices, as well as, the sum (our choice) and the maximum over all edges (the
already discussed max-normalization). Now, when using the sum of flows over
paths, we can combine the two sources of information W and Φ through the
arithmetic mean, while this strategy is not possible if we define ϕ�ij ¼ minfwnm :

n;m 2 SPði; jÞg (resp. max) because we cannot prove that ‘ij ¼ 2
ϕ�ijþwij

≤ dij , so we

should drop W and simply define Wideal=Φ*. We implemented these choices
corresponding to the minimum and maximum and show the results on our syn-
thetic networks ensembles in Fig. S6. The two variants, called here GCEmin,
GCEmax, converge faster to 1, since both minimizations (11)–(13) are less strict
than ours (the sum). Taking the minimum (11), in particular, may result in values
of efficiency spanning a narrow range, near 1, with a consequent difficulty in
distinguishing networks on the basis of efficiency. Furthermore, in the bottom
panel of Fig. S6 we can see a decreasing-increasing behavior of GCEmin which is,

from our point of view, not desirable. GCEmax displays, in general, a larger
variability. We opt for the sum, since it has a physical meaning in terms of total
flow of a subgraph (a path SP(i, j)), it allows us to average the artificial flows matrix
with the original flows given by W and, last but not least, it is easily worked with in
mathematical terms (simplifies rigorous proofs).

On the normalized weighted efficiency of Latora and Marchiori14. Let us take G
as the subgraph consisting of vertices q, r, v of Fig. 1 (indicated now by the indices
{1, 2, 3}) and suppose that the weights are the result of the aggregation of multiple
binary connections. Its weighted adjacency matrix is

W ¼
� 4 1

4 � 2

1 2 �

0
B@

1
CA

We can compute physical distances ℓij following the suggestions in ref. 14 and
shortest-path distances dij minimizing the sum of costs (i.e., inverse weights)

L ¼
� 1

4 1
1
4 � 1

2

1 1
2 �

0
B@

1
CA D ¼

� 1
4

3
4

1
4 � 1

2
3
4

1
2 �

0
B@

1
CA:

The global communication efficiency defined in ref. 14 is given by ELM ¼ EðGÞ
E Gidealð Þ,

where EðGÞ ¼ 1
NðN�1Þ∑i≠j

1
dij

and EðGidealÞ ¼ 1
NðN�1Þ∑i≠j

1
‘ij
. Observe that the con-

dition (which is sufficient for EðGÞ
EðGidealÞ ≤ 1)

dij ≥ ‘ij 8i≠j 2 V ð14Þ
is not satisfied for i= 1, j= 3 and this causes GCE ¼ EðGÞ

EðGidealÞ ¼
22
9

7
3

� ��1
>1.

This counter-example on the statement of (14) is not a pathological case: (14) is
violated whenever the weighted shortest-path between adjacent nodes i, j does not
traverse the direct link eij, i.e., dij<

1
wij

and it may often happen in real networks with

large heterogeneous weights.
Trying to reproduce the results in ref. 14, we considered the neural network of

the C. elegans2,14, with data from http://www-personal.umich.edu/mejn/netdata/.
Firstly, we aggregate multiple edges, obtaining a simple, directed, weighted network
with N= 297 nodes, m= 2345 edges, and weights in the range [1, 70]. If we
consider the network as undirected, we obtain m= 2148 edges and weights in the
range [1, 72]. The data are not the same used in ref. 14, so we cannot reproduce
their results exactly. Let us focus on the undirected network: Fig. S7 shows the
distance matrix D evaluated using Dijkstra’s algorithm with the reciprocal of edge
weights, and the matrix of physical distances L, with ‘ij ¼ minf1; 1

wij
g.

Real interconnected systems, additional results. Here we first apply the variant
of the GCE, i.e., GCE*(Gf) to the networks of migrations inside Vietnam and of the
human brain; secondly, we report the detailed percolation results for the real
network flows discussed in this study.

We refer to the Supplementary Note 2, Fig. S9, to show the behavior of GCE*

(G) for two of the real networks from Table 1.
Finally, we show the percolation plots for the remaining datasets studied in this

work, see Supplementary Figs. S11 and S12.

Data availability
The datasets generated during the current study are available from the corresponding
authors on reasonable request. The real networks data are publicly available through the
corresponding references39–42. The worldwide air-transportation flow data43 has been
provided by Dirk Brockmann upon request.

Code availability
The custom code that supports the findings of this study is available at the following
github repository: gbertagnolli/efficiency-networks or from the corresponding authors on
reasonable request.

Received: 10 August 2020; Accepted: 27 April 2021;

References
1. Albert, R., Jeong, H. & Barabási, A.-L. Error and attack tolerance of complex

networks. Nature 406, 378 (2000).
2. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks.

Nature 393, 440 (1998).
3. Latora, V. & Marchiori, M. Efficient behavior of small-world networks. Phys.

Rev. Lett. 87, 198701 (2001).

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00612-5 ARTICLE

COMMUNICATIONS PHYSICS |           (2021) 4:125 | https://doi.org/10.1038/s42005-021-00612-5 | www.nature.com/commsphys 9

http://www-personal.umich.edu/mejn/netdata/
https://github.com/gbertagnolli/efficiency-networks
www.nature.com/commsphys
www.nature.com/commsphys


4. Avena-Koenigsberger, A., Misic, B. & Sporns, O. Communication dynamics in
complex brain networks. Nat. Rev. Neurosci. 19, 17 (2018).

5. Yan, G., Zhou, T., Hu, B., Fu, Z.-Q. & Wang, B.-H. Efficient routing on
complex networks. Phys. Rev. E 73, 046108 (2006).

6. Rocks, J. W., Liu, A. J. & Katifori, E. Hidden topological structure of flow
network functionality. Phys. Rev. Lett. 126, 028102 (2021).

7. Huitema, C. Routing in the Internet (Prentice-Hall, 2000).
8. Goltsev, A. V., Dorogovtsev, S. N., Oliveira, J. G. & Mendes, J. F. Localization

and spreading of diseases in complex networks. Phys. Rev. Lett. 109, 128702
(2012).

9. Pinto, P. C., Thiran, P. & Vetterli, M. Locating the source of diffusion in large-
scale networks. Phys. Rev. Lett. 109, 068702 (2012).

10. Lima, A., De Domenico, M., Pejovic, V. & Musolesi, M. Disease containment
strategies based on mobility and information dissemination. Sci. Rep. 5, 10650
(2015).

11. Rosvall, M., Esquivel, A. V., Lancichinetti, A., West, J. D. & Lambiotte, R.
Memory in network flows and its effects on spreading dynamics and
community detection. Nat. Commun. 5, 1–13 (2014).

12. Li, D. et al. Percolation transition in dynamical traffic network with evolving
critical bottlenecks. Proc. Natl Acad. Sci. USA 112, 669–672 (2015).

13. Arianos, S., Bompard, E., Carbone, A. & Xue, F. Power grid vulnerability: a
complex network approach. Chaos 19, 013119 (2009).

14. Latora, V. & Marchiori, M. Economic small-world behavior in weighted
networks. Eur. Phys. J. B Condens. Matter Complex Syst. 32, 249–263 (2003).

15. Hens, C., Harush, U., Haber, S., Cohen, R. & Barzel, B. Spatiotemporal signal
propagation in complex networks. Nat. Phys. 15, 403–412 (2019).

16. Harush, U. & Barzel, B. Dynamic patterns of information flow in complex
networks. Nat. Commun. 8, 1–11 (2017).

17. Barrat, A., Barthelemy, M., Pastor-Satorras, R. & Vespignani, A. The
architecture of complex weighted networks. Proc. Natl Acad. Sci. USA 101,
3747–3752 (2004).

18. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis
of structural and functional systems. Nat. Rev. Neurosci. 10, 186 (2009).

19. Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci. 20, 353
(2017).

20. van den Heuvel, M. P. & Sporns, O. A cross-disorder connectome landscape
of brain dysconnectivity. Nat. Rev. Neurosci. 20, 435–446 (2019).

21. Latora, V. & Marchiori, M. Is the boston subway a small-world network? Phys.
A 314, 109–113 (2002).

22. Rubinov, M. & Sporns, O. Complex network measures of brain connectivity:
uses and interpretations. Neuroimage 52, 1059–1069 (2010).

23. Achard, S. & Bullmore, E. Efficiency and cost of economical brain functional
networks. PLoS Comput. Biol. 3, 1–10 (2007).

24. Bullmore, E. T. & Bassett, D. S. Brain graphs: graphical models of the human
brain connectome. Annu. Rev. Clin. Psycho. 7, 113–140 (2011).

25. Watson, C. G. brainGraph: graph theory analysis of brain MRI data. R package
version 2.7.3 CRAN.R-project.org/package=brainGraph (2019).

26. Bellingeri, M., Bevacqua, D., Scotognella, F. & Cassi, D. The heterogeneity in
link weights may decrease the robustness of real-world complex weighted
networks. Sci. Rep. 9, 1–13 (2019).

27. van den Heuvel, M. P. & Sporns, O. Rich-club organization of the human
connectome. J. Neurosci. 31, 15775–15786 (2011).

28. Opsahl, T., Agneessens, F. & Skvoretz, J. Node centrality in weighted
networks: Generalizing degree and shortest paths. Soc. Netw. 32, 245–251
(2010).

29. Dijkstra, E. W. A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959).

30. Newman, M. E. Scientific collaboration networks. ii. shortest paths, weighted
networks, and centrality. Phys. Rev. E 64, 016132 (2001).

31. Brandes, U. A faster algorithm for betweenness centrality. J. Math. Sociol. 25,
163–177 (2001).

32. Clauset, A., Shalizi, C. R. & Newman, M. E. Power-law distributions in
empirical data. SIAM Rev. 51, 661–703 (2009).

33. Latora, V. & Marchiori, M. Vulnerability and protection of infrastructure
networks. Phys. Rev. E 71, 015103 (2005).

34. Viles, W., Ginestet, C. E., Tang, A., Kramer, M. A. & Kolaczyk, E. D.
Percolation under noise: detecting explosive percolation using the second-
largest component. Phys. Rev. E 93, 052301 (2016).

35. da Silva, C. R., Lyra, M. L. & Viswanathan, G. M. Largest and second largest
cluster statistics at the percolation threshold of hypercubic lattices. Phys. Rev.
E 66, 056107 (2002).

36. Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science
286, 509–512 (1999).

37. Girvan, M. & Newman, M. E. Community structure in social and biological
networks. Proc. Natl Acad. Sci. USA 99, 7821–7826 (2002).

38. Motter, A. E., Zhou, C. S. & Kurths, J. Enhancing complex-network
synchronization. Europhys. Lett. 69, 334–340 (2005).

39. De Domenico, M., Nicosia, V., Arenas, A. & Latora, V. Structural reducibility
of multilayer networks. Nat. Commun. 6, 1–9 (2015).

40. WorldPop, Migration flows, https://www.worldpop.org/geodata/summary?
id=1282 (2016). Accessed 10 February 2020.

41. Sorichetta, A. et al. Mapping internal connectivity through human migration
in malaria endemic countries. Sci. Data 3, 160066 (2016).

42. Brown, J. A., Rudie, J. D., Bandrowski, A., Van Horn, J. D. & Bookheimer, S.
Y. The ucla multimodal connectivity database: a web-based platform for brain
connectivity matrix sharing and analysis. Front. Neuroinf. 6, 28 (2012).

43. Brockmann, D. & Helbing, D. The hidden geometry of complex, network-
driven contagion phenomena. Science 342, 1337–1342 (2013).

Acknowledgements
The authors thank Dirk Brockmann for providing us with the worldwide air-
transportation flow data.

Author contributions
G.B. performed the theoretical analysis, the numerical experiments, the data analysis, and
wrote the paper. R.G. performed the numerical experiments and wrote the manuscript.
M.D.D. conceived and designed the study and wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42005-021-00612-5.

Correspondence and requests for materials should be addressed to G.B. or M.D.D.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00612-5

10 COMMUNICATIONS PHYSICS |           (2021) 4:125 | https://doi.org/10.1038/s42005-021-00612-5 | www.nature.com/commsphys

http://CRAN.R-project.org/package=brainGraph
https://www.worldpop.org/geodata/summary?id=1282
https://www.worldpop.org/geodata/summary?id=1282
https://doi.org/10.1038/s42005-021-00612-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsphys

	Quantifying efficient information exchange in real network flows
	Results
	Flow exchange in complex topologies
	Rethinking efficiency of information flow in weighted architectures
	Global efficiency of synthetic networks
	Global efficiency of real interconnected systems

	Conclusion
	Methods
	Mathematical details on the normalizing procedure
	Comparisons with other weighted efficiency measures
	On artificial flows
	On the normalized weighted efficiency of Latora and Marchiori14
	Real interconnected systems, additional results

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




