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Realization of quasicrystalline quadrupole
topological insulators in electrical circuits
Bo Lv1,7, Rui Chen2,3,4,7, Rujiang Li 5✉, Chunying Guan1, Bin Zhou2, Guohua Dong1, Chao Zhao1, YiCheng Li1,

Ying Wang1, Huibin Tao6✉, Jinhui Shi1✉ & Dong-Hui Xu2✉

Quadrupole topological insulators are a new class of topological insulators with quantized

quadrupole moments, which support protected gapless corner states. The experimental

demonstrations of quadrupole-topological insulators were reported in a series of artificial

materials, such as photonic crystals, acoustic crystals, and electrical circuits. In all these

cases, the underlying structures have discrete translational symmetry and thus are periodic.

Here we experimentally realize two-dimensional aperiodic-quasicrystalline quadrupole-

topological insulators by constructing them in electrical circuits, and observe the spectrally

and spatially localized corner modes. In measurement, the modes appear as topological

boundary resonances in the corner impedance spectra. Additionally, we demonstrate the

robustness of corner modes on the circuit. Our circuit design may be extended to study

topological phases in higher-dimensional aperiodic structures.
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S ince the discovery of topological insulators (TIs), tre-
mendous effort has been devoted to the search for exotic
topological phases of matter1–10. Recently, a novel class of

exotic insulators with higher-order band topology, dubbed
higher-order TIs (HOTIs), have been proposed11–26. The fasci-
nating characteristic of HOTIs is that d-dimensional nth-order
TIs have (d-n)-dimensional gapless boundary states11–16. For
instance, two-dimensional (2D) second-order TIs with a quan-
tized quadrupole moment, which is predicted by generalizing the
fundamental relationship between the Berry phase and quantized
polarization, support corner-localized modes lying in the middle
of the energy gap17. Following the theoretical proposals of
quadrupole TIs (QTIs), the topological corner states were
observed experimentally in phononic18–20 and photonic21–26

systems.
The understanding of topological phases of matter has always

been based on the topological band theory, which is defined in
crystalline materials with long-range order and periodicity. To the
best of our knowledge, topological phases are observed only in
one-dimensional quasicrystals27. Although there are predictions
of topological phases in 2D quasicrystals28–43, the experimental
observations have never been reported.

Highly customizable electrical circuits have emerged as a new
platform to engineer various topological states44–59. In this study,
we report the realization of the 2D quasicrystalline QTIs in
electrical circuits and observe the corner states experimentally. To
realize the QTIs, we construct the Ammann–Beenker (AB) tiling
circuits with two types (thin and fat) of rhombuses and we
implement the nearest- and next-nearest-neighbor hoppings
using lumped elements to realize rotational symmetry. Using
impedance measurement, the corner states protected by quan-
tized quadrupole moment are directly observed in the circuits.
The robustness of topological corner states is also demonstrated.
Our work provides the experimental evidence of topological
phases in 2D quasicrystalline systems. We expect more topolo-
gical states can be observed in circuits based on similar
implementations.

Results
Quasicrystalline QTIs. We construct the QTI on an AB tiling
quasicrystal by only considering nearest- and next-nearest-
neighbor hoppings35. The tight-binding Hamiltonian is

H¼A0 ∑
j
cyj Γ2 þ Γ4
� �

cj þ
A1

2
∑
j≠k

cyj T ϕjk

� �
ck; ð1Þ

where

T ϕjk

� �
¼

Γ4 � iΓ3; � π=4≤ϕjk<π=4;

Γ2 � iΓ1; π=4≤ ϕjk<3π=4;

Γ4 þ iΓ3; 3π=4≤ ϕjk<5π=4;

Γ2 þ iΓ1; 5π=4≤ ϕjk<7π=4;

8
>>>><

>>>>:

ð2Þ

and ϕjk indicates the polar angle of bond between site j and k with

respect to the horizontal direction. Here, cyj ¼ cyj1; c
y
j2; c

y
j3; c

y
j4

� �
is

the creation operator in cell j. The first and second terms are the
intracell and intercell hoppings with amplitudes A0 and A1,
respectively. Γ4 ¼ τ1τ0 and Γυ ¼ �τ2τν with ν= 1,2,3. τ1,2,3 are
the Pauli matrices and τ0 is the identity matrix. This model has a

fourfold rotational symmetry C4 =UR, where U ¼ 0 iτ2
τ0 0

� �

and R is an orthogonal matrix permuting the sites of the tiling to
rotate the whole system by π/4.

The rotational symmetry C4 results in a quantized quadrupole
moment Qxy= 0,e/2. Thus, Qxy is a natural topological invariant,

which can be calculated in real space60,61. By numerical
calculations, we confirmed that the AB tiling quasicrystal has
the non-trivial quadrupole moment Qxy= e/2 under the hopping
ratio λ > 2.5(λ= A1/A0) (see Supplementary Note 1). The
quantized quadrupole moment indicates the occurrence of the
quadrupole insulator with protected corner states.

Realization in electrical circuits. The quasicrystalline lattice can
be mapped to an electrical circuit. To realize quasicrystalline QTI,
we design an electrical circuit depicted in Fig. 1a. The circuit is
characterized by the Kirchhoff’s law

Ipa ¼ ∑
qb
Jpa;qb ωð ÞVqb ωð Þ; ð3Þ

where Ipa tð Þ ¼ Ipa ωð Þeiωt Vqb tð Þ ¼ Vqb ωð Þeiωt
h i

is the current

(voltage) at site a(b) in cell p(q) and ω is the frequency of the
circuit. The circuit Laplacian is Jpa;qb ωð Þ ¼ iωHpa;qb ωð Þ, where

Hpa;qb ωð Þ ¼ Cpa;qb �
1
ω2

Wpa;qb; ð4Þ

with Cpa,qb being the capacitance between two sites and Wpa;qb ¼
L�1
pa;qb being the inverse inductivity between two sites. Here, the

subscript g means the ground. Hpa,qb can be equivalent to the
Hamiltonian of quasicrystal in Eq. (1) if the diagonal elements
are zero at ω0. For the diagonal components with pa= qb, the
grounded elements are chosen for satisfying Cpa;pa ¼ �Cpa;g�
∑q0b0 Cpa;q0b0and Wpa;pa ¼ �L�1

pa;g �∑q0b0 L
�1
pa;q0b0 .

As shown in Fig. 1a, the solid and dashed lines correspond to
hoppings with positive and negative values, which can be realized
by the capacitors and inductors, respectively. We choose
capacitor C1 and inductor L1 for intracell hopping, and C2 and
L2 for intercell hopping. The nearest-neighbor couplings between
cells are introduced to stabilize the corner states in small size
systems35. If these couplings are negleted, the exact AB tiling is
restored and the physical results do not change qualitatively.

Under a suitable choice of the grounded elements, the tight-
binding Hamiltonian of the QTI on a quasicrystalline lattice in
Eq. (1) is mapped to the circuit Hamiltonian in Eq. (2). It is
noteworthy that there exists a relation C2/C1= L1/L2= A1/A0.

The two-point impedance is:

Zab ¼
Va � Vb

Iab
¼ ∑

n

ψn;a � ψn;b

���
���
2

jn

ð5Þ

where Va(b) is the voltage on site a(b), Iab is the current between
the two sites, and jn and ψn

�� 	
are the eigenvalue and eigenstates of

the matrix J(ω), respectively22. The two-point impedanace Zab
diverges in the presence of zero-admittance modes (jn= 0) with
ψn;a≠ψn;b. Hence, the corner states with zero-admittance can be
observed by measuring the two-point impedance.

We consider the QTI on an AB tiling 2D quasicrystalline
lattice. A circuit that realizes the QTIs is depicted in Fig. 1a. The
unit cell of the circuit contains four sites denoted by labels 1, 2, 3,
and 4. Each unit cell consists of three capacitors for positive
coupling and one inductor for negative coupling, which can
generate a synthetic magnetic π flux threading the unit-cell
plaquette (equivalent to half the magnetic flux quantum,
1=2
� �

Φ0 ¼ h= 2eð Þ, where h is the Planck constant). The existence
of this non-zero flux opens the spectral gap for maintaining the
corner-localized mid-gap modes. We use two pairs of capacitors
and inductors (C1, L1) and (C2, L2), which have the same resonant
frequency ω0¼1=

ffiffiffiffiffiffiffiffiffiffi
L1C1

p ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
L2C2

p
, as the intracell and

intercell wirings between the sites, respectively. The intracell
and intercell elements are related by C2= λC1 and L2= L1/λ. The
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circuit is governed by the linear circuit theory with a circuit
Laplacian J(ω)22. The circuit has a square-open boundary, which
satisfies the global C4 symmetry at the resonant frequency ω0.
Suitable grounded elements on the sites are chosen (site colors
depicted in Fig. 1a indicate the values of the grounded capacitors
and/or inductors) to sustain chiral symmetry at ω0, which pins
the topological boundary modes in the middle of the bulk energy
gap. The symmetry characteristic and quantized quadrupole
moment of circuit indicate the occurrence of the QTI associated
with topologically protected states localized on the corner sites.
The edge states are gapped and merged with the bulk
states. Hence, it is difficult to observe them experimentally (see
Supplementary Note 2).

To realize the QTI experimentally, a circuit with 69 unit cells
was fabricated as shown in Fig. 1b. The intracell elements with
C1= 10 nF and L1= 1 mH result in a resonant frequency
50.3 kHz (parameters for other elements are given in “Methods”).
Here we set the coupling ratio λ= 10, to get highly localized
corner states, which can be observed by two-point impedance
measurements between the corner/edge/bulk site and another
bulk site using an impedance analyzer.

Figure 2 compares the experimental and theoretical results,
which demonstrates the spectral and spatial localizations of the
topological corner states. Figure 2a shows the spectrum of the
circuit Laplacian J(ω) as a function of the normalized frequency ω/
ω0. The isolated corner modes reside in the spectral gap of J(ω) at

Fig. 1 Quasicrystalline quadrupole topological insulators in electrical circuits. a Schematic of the circuit with 69 unit cells. One unit cell consists of four
sites labeled as 1, 2, 3, and 4 at the left-up corner. The colored sites are wired to grounded inductors and/or capacitors listed on the right. For example, the
black hollow point 3 is connected to the ground by the capacitor–inductor pairs C1 and L1, and the yellow point 1 is connected to the ground by L4g. The sites
in the same unit cell are wired by intracell inductors L1 (red dashed lines) and capacitors C1 (red solid lines), and the intercell elements between the unit
cells are inductors L2 (gray dashed lines) and capacitors C2 (gray solid lines). b Photo of the fabricated circuit. The yellow and black elements are capacitors
and inductors, respectively, and the wirings are indicated on overlay of the printed circuit board.
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a fixed frequency ω0. The spatial distribution of the experimentally
observed impedance of the corner states at ω0 is illustrated in
Fig. 2b. The impedance is maximum at the four corner sites and
exponentially decays at other sites. The comparison between the
experimental and theoretical impedance spectra is shown in
Fig. 2c, d, which demonstrate the spectral localization of the
corner modes. The maximum measured impedance reaches 7 kΩ.

To justify the robustness of the corner states, we consider the
effect of experimental element errors. The errors are generated in
two ways: (i) random manufacturing variations in discrete
elements and (ii) the deviation of the typical values of
commercially available circuit components from the theoretical
circuit parameters. Figure 3a shows the normalized eigenfre-
quencies ω/ω0 of the Laplacian J(ω) with element error ±5% and
the number of the samples is 300. The eigenfrequencies of corner
states (indicated by red circles) are located in the bandgap and far
away from those of other states (indicated by blue circles).
Experimentally, we construct a circuit with element error ±5%
and measure the two-point impedances as a function of the
normalized frequency ω/ω0. As shown in Fig. 3b, the corner states
are spectrally localized with a deviation from ω0. Figure 3c–f
shows the spatial impedance distributions at the frequencies of
the four corner states. Compared with the spatial impedance
distribution in Fig. 2b, although the maximum impedances are
located at only one of the four corner sites, the topological corner
states are still spatially localized. The spectral and spatial
localizations imply the robustness of corner states on the circuit.

Discussion
The quadruple insulators were always realized on periodic sys-
tems with translational symmetry and the quadruple moments
are well-defined in momentum space. Unlike the periodic struc-
tures, the quasi-periodic systems possess long-range order but do
not have translational symmetry. Therefore, quasicrystalline
insulators with a quantized quadrupole moment extend the
concept of quadruple insulators defined in crystals. The realiza-
tion of quadruple isolator in this work opens a way for the
implementation of corner states in more quasi-periodic systems.

The circuit implementation of the 2D quasicrystalline QTIs
confirms the existence and robustness of the corner states on the
circuit. This work provides an experimental evidence for the first
time to implement the topological phase in a 2D quasicrystalline
system and extends the territory of topological phases beyond
crystals to higher-dimensional aperiodic systems. The highly
customizable circuit platform can also readily be applied to other
2D quasicrystals with different symmetries and to three-
dimensional quasicrystalline structures62, which may realize
more exotic topological states.

Methods
We choose the capacitors C1= 10 nF, C2= 100 nF, C1g= 100 nF, C2g= 200 nF,
and the inductors L1= 1000 μH, L2= 100 μH with high Q factors (Q > 70 @
50 kHz). The grounded elements are L1g= 83 μH, L2g= 100 μH, L3g= 45 μH,
L4g= 31 μH, L5g= 23 μH, L6g= 500 μH, and L7g= 50 μH. After delicately choos-
ing, the errors of the circuit elements are < ±1%. The intracell elements C1 and L1
result in a resonant frequency 50.3 kHz. Here we set the coupling ratio λ= 10 in

Fig. 2 Corner states on the circuit. a Spectra of the Laplacian J vs. the frequency that is normalized to the resonant frequency ω0. The isolated mode
crossing in the gap corresponds to the topological corner states. b The experimental impedance distribution at the resonant frequency ω0 demonstrates
the spatial localization of the corner states. c The experimental two-point impedances measured between the left-up corner/edge/bulk site and another
bulk site. d The theoretical two-point impedances. Both the experimental and theoretical results demonstrate the spectral localization of the corner states.
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order to get highly localized corner states and the two-point impedance
measurement is carried out using an Impedance Analyzer 4192A LF.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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