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Recent works1,2 argued that Rényi entropies Sα with indices
α > 1 exhibit a sub-ballistic, / ffiffi

t
p

, growth in systems with
diffusive transport. A subsequent work by Žnidarič3 claims

that such sub-ballistic growth occurs only in certain cases (in
particular, d= 1 dimensional systems with q= 2 states per site)
and is generically replaced by ballistic growth in the absence of
further fine-tuning. Below, we try to make precise the conditions
needed for diffusive (rather than ballistic) Rényi growth and
argue that they apply to a much wider class of systems than what
is suggested by Žnidarič3. In particular, the examples presented
by Žnidarič that avoid diffusive growth do so because of the
presence of additional non-conserved degrees of freedom, not
merely their larger local Hilbert space.

Žnidarič3 considers U(1)-symmetric Floquet systems and
claims that to have Sα> 1 �

ffiffi

t
p

requires that all on-site diagonal
operators (in some preferred basis) correspond to conserved
quantities, with transport behavior that is diffusive (or slower).
This is automatically satisfied in a system with q= 2 states per
site (e.g., a spin-1/2 system) with a single U(1) symmetry (e.g.,
∑jS

z
j being conserved), but it is not generally the case for q > 2,

leading to the claim that in such systems, Sα>1 ~ t, unless addi-
tional conserved densities are present (e.g., if ∑jðSzj Þ2 is also
separately conserved). We now present evidence that this claim is
incorrect and that generically the conservation of Sz alone is
sufficient to induce

ffiffi

t
p

growth for arbitrary finite q. We also
highlight the assumptions Žnidarič makes that we expect are
responsible for this disagreement.

A direct refutation of the above claim is obtained by evaluating
S2 in a system with q= 3. This is readily achieved in a random
circuit model, extending earlier results where the same was done
for a q= 2 chain1. To be concrete, we consider a chain where
the on-site Hilbert space resembles a Hubbard model in the
infinite interaction limit (i.e., with double occupancies projected
out): the three on-site states correspond to an empty site ( 0j i), or
a site occupied by a spin-up/spin-down particle ( "

�

�

�

, #
�

�

�

respectively). We evolve the system with a brick-wall circuit of
2-site random unitaries which conserve the total number of
particles but not the spin.

In this case, Žnidarič3 would predict Sα>1 ~ t because q= 3 and
there is only a single conserved density. On the contrary, calcu-
lating the annealed average of S2 numerically1 we find (Fig. 1)
that SðaÞ2 / ffiffi

t
p

for initial states that are superpositions of both
empty and occupied sites (if all sites are occupied then the circuit

precisely reduces to a q= 2 random circuit without symmetries,
which has∝ t growth4,5; however, such initial states are finely-
tuned).

In fact, this result is expected: the proof2 of
ffiffi

t
p

growth ori-
ginally derived for q= 2 extends straightforwardly to this model,
and to many other q > 2 systems6. Rather than the particular
value of q, the relevant condition for the proof is the existence of
‘empty’ regions where no dynamics can occur due to the sym-
metry; let us call this the “frozen region condition” (FRC). For
example, in our q= 3 model, in an empty region, the state cannot
evolve until some particles propagate into the region from the
outside.

A more precise definition of the FRC follows. Consider a
system of some finite size and make use of the symmetries to
block-diagonalize the time-evolution operator. We say that the
FRC is satisfied if there exist blocks containing only a single state
for any system size. Entanglement growth should be at most
/

ffiffiffiffiffiffiffiffiffiffiffi

t log t
p

for any such system, as argued previously1,2,6. Note
that FRC is not a property of the dynamics per se, but only of how
the U(1) symmetry is represented on the local Hilbert space.

The FRC is satisfied for a large class of systems, including many
experimentally relevant ones. For example, it holds for any model
where the local degrees of freedom are spin-S variables and ∑jS

z
j

is conserved: states that are fully polarized in the z directions are
frozen. As seen above, it also applies to systems of fermionic
particles (or hard-core bosons), as long as their total number is
conserved. On the other hand, this discussion highlights why
certain systems do have Sα>1 ~ t despite their U(1) symmetry: it
can be the case that the symmetry only acts on some subset of the
degrees of freedom, while others are unconstrained by it, such
that no frozen regions can exist. This happens for example in a
two-leg ladder if only the magnetization on one of the legs is
conserved1,3. While such exceptions exist, they are in fact much
less common than what would be implied by the conditions
stated by Žnidarič3.

Let us comment on the source of the above-mentioned dis-
agreement. Žnidarič3 provides a non-rigorous theoretical argu-
ment, aiming to connect the growth of S2 to the decay of
correlations of diagonal operators. The assumption made in this
argument is that, while densities of explicitly conserved quantities
(e.g., Szj ) have power-law decaying correlations, most diagonal
operators are insensitive to the symmetries and would decay
exponentially. For example, according to Žnidarič3, ðSzj Þ2 should
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have exponential correlations, unless ∑jðSzj Þ2 is explicitly con-
served; this leads to the statement about S2 ~ t.

We believe that in fact the conservation of ∑jS
z
j is sufficient to

cause power law decaying correlations (‘hydrodynamic tails’) in
ðSzj Þ2. For example, ðSzj Þ2 can evolve into operators of the form
SzkS

z
l (l ≠ k), i.e., the product of two conserved densities, which

decay as t−d in a diffusive system. This is similar to the standard
arguments that show the existence of long-time tails in the cur-
rent operator itself7. For this reason, we expect that the class of
operators with power-law decaying correlations is much larger
than expected by Žnidarič3, which helps explain why Sα>1 �

ffiffi

t
p

is
in fact much more prevalent.

We now list two further and distinct criticisms of Žnidarič’s
work3. Firstly, apart from the role of the size of the local Hilbert
space q, Žnidarič3 also raises the question about the validity of the
ffiffi

t
p

result in dimensions d > 1. Žnidarič’s numerical results are in
fact consistent with the claim, made in our earlier work1, that the
sub-ballistic growth is present in any dimension. However, the
way these results are presented could make this appear to be a
finite-size effect. This is due to a choice of units: Žnidarič3

measures time in units that depend on the overall system size
(effectively rescaling t→ tL1−d). In the more standard time units
set by the microscopic couplings, the diffusive growth sets in at a
system-size independent timescale.

Secondly, we make one final remark about the interpretation of
these results that we believe might be confusing for readers of
Žnidarič3. There, it is claimed that one can think of eS2 as a
measure of the number of degrees of freedom needed to describe
the corresponding state. If this were so, the result S2 �

ffiffi

t
p

would
be rather powerful, indicating that systems obeying the FRC are
much easier to simulate on a classical computer than other types
of dynamics. However, this is not so. It was one of the important
insights of earlier works1,2 that the long-time dynamics of Sα>1 is
dominated by the largest eigenvalue of the reduces density matrix.
As such, knowing about these higher entropies tells us very little
about the full complexity of the state; the lower Rényi entropies
(Sα≤1) might give a better characterization of the information in a
state8, and indeed these appear to grow linearly in time1,9.
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Fig. 1 Time derivative of the half-chain annealed average S2 in a random
circuit with q= 3 states per site and only a single U(1) symmetry. The
red curve corresponds to an initial state which is a superposition of spin-up
and spin-down particles only, with no empty sites; in this case the
derivative is constant (ballistic). For a generic initial state that is the
superposition of all three possible states (blue curve) the derivative decays
as 1=

ffiffi

t
p

(diffusive).
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