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Magnetic equivalent of electric superradiance in
yttrium-iron-garnet films
Lukas Weymann1, Alexey Shuvaev1, Andrei Pimenov1, Alexander A. Mukhin 2 & Dávid Szaller 1✉

A dense system of independent oscillators, connected only by their interaction with the same

cavity excitation mode, will radiate coherently, which effect is termed superradiance. In

several cases, especially if the density of oscillators is high, the superradiant decay of the

oscillators’ excited state may dominate the intrinsic relaxation processes. At low frequencies,

this limit can be achieved with cyclotron resonance in two-dimensional electron gases. In

those experiments, the cyclotron resonance is coupled to the electric field of light, while the

oscillator density can be easily controlled by varying the gate voltage. However, in the case of

magnetic oscillators, to achieve the dominance of superradiance is more tricky, as material

parameters limit the oscillator density, and the magnetic coupling to the light wave is rather

weak. Here we present quasi-optical magnetic resonance experiments on thin films of yttrium

iron garnet. Due to the simplicity of experimental geometry, the intrinsic damping and the

contribution of superradiance can be easily separated in the transmission spectra. We show

that with increasing film thickness, the losses due to coherent radiation prevail the system’s

internal broadening.
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S ince the current complementary metal-oxide semiconductor
(CMOS)-based electronics is soon to reach its limitations1,
the design of fundamentally new ways to forward, process,

and store information is of vital importance. One possible
direction is offered by magnonics, where information is mani-
fested in the magnetic state of matter and forwarded as an
oscillating magnetic wave (magnon)2. The lifetime of such an
excited state, usually in the microwave frequency range, is a
crucial factor when designing potential applications. Besides their
use in information technology, the research of magnonic systems
with long-lifetime excitations is also motivated by their role as
model systems of fundamental physical effects, such as
Bose–Einstein condensation and other macroscopic quantum
transport phenomena3,4.

Lifetime measurement of various excited states is an essential
tool for analyzing physical, chemical, and biological processes and
making spectroscopic state assignments5. The most direct way is
to observe the transient optical signal following the excitation
pulse, typically in luminescence, and by fitting the exponential
decay, the lifetime of the corresponding excited state can be
determined6. Another approach involves the phase shift of the
response as compared to the modulated excitation signal7.

The third method utilizes Heisenberg’s uncertainty principle,
which connects the lifetime of a state to the uncertainty of its
energy8, resulting in the natural line broadening of the spectro-
scopic absorption or emission signal. However, starting from the
earliest spectroscopic experiments, the intrinsic natural broad-
ening is dominated by other phenomena, such as the collision
between particles and the Doppler effect due to thermal motion in
the atomic spectral lines of gases9. In the case of microwave
magnetic resonance measurements, where the magnetic sample is
coupled to the GHz radiation typically by a coplanar waveguide,
the two main contributions to the non-intrinsic linewidth result
from eddy currents induced either in the conducting sample10 or
in the waveguide11, which effects are termed eddy current and
radiative damping, respectively12.

In several cases, when intrinsic damping is low and the density
of oscillators is high, the damping due to coherent radiation starts
to dominate, the effect known as superradiance13. Superradiance
denotes coherent emission of uncoupled emitters when interact-
ing with the same mode of electromagnetic wave, predicted in the
Dicke model14 and observed both in gases inside of an optical
cavity15–17, in metamaterials18,19, and in two-dimensional elec-
tron gases20–23. The synchronous decay of the excited emitters
takes the form of a superradiant emission pulse, which shows a
characteristic scaling with the density of the emitters. Namely,
both the pulse amplitude and the corresponding damping rate
(inverse lifetime) grow linearly with the emitter density.
Depending on the coherently prepared/spontaneous origin of the
initial coherent excited state of the emitters, the super-
fluorescence/superradiance terminologies are established in the
literature, respectively13. Solid-state realizations, such as mole-
cular centers in a crystal24, semiconductor quantum dots25 and
quantum wells26, high-mobility two-dimensional quantum
gases20–23 and nitrogen-vacancy centers in diamond27,28, provide
experimentally more accessible ways to study superradiance
under controlled temperature or external fields.

In all the examples of superradiance listed above the
light–matter interaction takes place in the electronic channel,
while the superradiance of magnetic resonances seems to be more
challenging to realize. Nevertheless, superradiant response of
nuclear spins has been found29 on ms timescale at very low, T=
0.3 K temperature and electron-spin superradiance of molecular
magnets has also been proposed30–32, but has not been observed
so far. In both cases, a passive resonant electric circuit around the
sample is necessary to produce the oscillating magnetic field

which builds up the coherence of the relaxation of individual
spins33,34. Recently, another magnetic alternative is proposed35

where independent rare-earth magnetic moments are interacting
with the spinwaves of the antiferromagnetically ordered iron
spins in a magnetoelectric crystal. Here the expected super-
radiance of the rare-earth moments would appear as secondary-
excited magnons of the iron system.

In this work, we present the optical transmission investigations
of possible superradiance at the magnetic resonance in thin films
of yttrium iron garnet (YIG). Based on Maxwell’s equations, we
separate the effects of the geometrical and magnetic parameters of
the sample on the broadening of the resonance signal. Thus, the
intrinsic damping due to the limited lifetime of the magnon
excitation can be restored by following the frequency dependence
of the absorption linewidth. Since the magnetic resonance is
excited coherently, the radiative broadening, caused by the re-
emission of a secondary electromagnetic wave, is also originating
from a coherent process, showing similarities to the superradiance
broadening effect observed in the same frequency-range cyclotron
resonance of a three-dimensional topological insulator36. Unlike
other proposals of electron-spin superradiance30–34, our method
does not require a surrounding passive electronic resonator cir-
cuit, since the amplification of the radiated mode is produced by
the sample itself, as the substrate gadolinium-gallium-garnet
(GGG) layer plays the role of the resonance cavity.

Results and discussion
Magnon damping in thin magnetic films. To address the effects
of the intrinsic and radiative decay processes of magnons in thin
magnetically ordered films, in the following a quasi-classical
formalism is presented. The coherent magnetization dynamics is
described by the Landau–Lifshitz–Gilbert model37, while the
electrodynamical problem of optical transmission is treated
within the thin-sample approximation38,39 utilizing the boundary
conditions resulting from Maxwell’s equations. Thus, the resulted
formulae for damping inherently assume a collective decay of the
magnetic excitation. In the case of our sample, YIG, the choice of
a coherent model is justified by the strong exchange coupling of
the individual moments, which leads to their coherent motion in
the long-wavelength limit. The classical formalism captures all
features of superradiance40, only the assumption of an intrinsic
damping, i.e. non-infinite lifetime of magnetic excitations, relies
on quantum mechanics. However, an initial decay process is
necessary to trigger the collective emission of the superradiant
wave, while, on the other hand, the intrinsic decay should not
dominate the radiation damping. Similar to the case of cyclotron
superradiance in semiconducting films13,36, the radiative damp-
ing effect can only be observed in samples which are thin com-
pared to the radiation wavelength. In the opposite case of the
thick sample, the secondary wave is re-absorbed, thus forming the
propagation wave within the material.

The response of the magnetic moment M of YIG to an external
magnetic field H is given by the Landau–Lifshitz–Gilbert
equation of motion37

dM
d t

¼ �γμ0 M ´Hð Þ þ α

M0
M ´

dM
d t

� �
; ð1Þ

where γ denotes the gyromagnetic ratio, M0 the saturation
magnetization, α the dimensionless Gilbert damping parameter,
and μ0 the vacuum permeability.

In the case of an incoming THz beam with angular frequency ω
and within Faraday geometry (wave propagation is parallel to
the magnetic field, see Fig. 1 for the experimental setup),
the magnetic field in the film is given by H ¼ ðhxeiωt ; hyeiωt ;H F

0 Þ.
Here hx,yeiωt is the oscillating (AC) field in the sample plane,
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H F
0 is the strength of the static (DC) magnetic field in the

material given by H F
0 ¼ jH0 �M0j, with the applied external

field H0. Linearizing Eq. (1), we finally get the standard result for
the magnetic susceptibility for the circularly polarized light in the
Faraday geometry:

χ F
± ¼ m±

h±
¼ γM0

ωF
0 � ωþ iαω

; ð2Þ

where m±, h± are the circularly polarized AC magnetization and
field, respectively, and ω F

0 ¼ γjH0 �M0j is the angular frequency
of the ferromagnetic resonance.

Similarly, in the Voigt geometry (wave propagation perpendi-
cular to the magnetic field) with linearly polarized light H= (H0,
hyeiωt, 0) the susceptibility is obtained as

χ V
y ¼ ðωV

0 Þ2M0=H0

ωV
0

� �2 þ α� ið Þ2ω2
; ð3Þ

with ωV
0 ¼ γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H0ðH0 þM0Þ

p
resonant angular frequency.

To obtain the radiative contribution to the damping, we
consider the transmission through a magnetic sample in the thin
film approximation38,39. In this approximation, the boundary
conditions are rewritten, taking the thin film as a part of the
boundary. For the Faraday geometry with circularly polarized
light, we use the Maxwell equations

I
∂A

E � d l ¼ �
Z Z

A

∂B
∂t

� dA
I
∂A

H � d l ¼
Z Z

A

∂D
∂t

� dA
ð4Þ

to obtain the fields on both sides of the film:

e0± � e r± þ ebr± � et± ¼ iωdμ0 h± þm±

� �
h0± þ h r

± þ hbr± � ht± ¼ iωde± εε0:
ð5Þ

On the left-hand side of Eq. (5), (e) and (h) are the AC electric
and magnetic fields of the incident (0), reflected (r) and
transmitted (t) wave. The reflected wave is partially back-
reflected from the other surface of the substrate, as indicated by
the e br± ¼ f ðωÞe r± , h br

± ¼ f ðωÞh r
± terms, where f(ω) shows the

changes in the phase and amplitude due to the twice propagation
trough the substrate and due to the reflection from the substrate-
vacuum interface. In our experiments, considering the refractive
index and absorption coefficient of the GGG substrate, this term
causes a frequency-dependent modulation of the transmission
amplitude with ∣f(ω)∣ ~ 0.2 relative amplitude due to the Fabry-
Pérot interference. On the right-hand side of Eq. (5), within the
thin-sample approximation, the linear dependence of the AC
electric and magnetic fields along the surface normal of the
sample is assumed. Thus, e±, h± and m± are the mean values of
the corresponding fields and of the magnetization inside the film.
Here d denotes the film thickness, and ε, ε0 stand for the electric
permittivity of YIG and vacuum, respectively. To obtain Eq. (5),
the integration path in the Maxwell equations must be taken
across both sides of the sample.

The AC electric and magnetic fields are connected via e=
Z0h/n1,2, where Z0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
μ0=ε0

p
is the impedance of free space, and

n1,2 is the refractive index of the dielectric media on both sides of
the film. To further simplify the final expressions, for frequencies
close to the ferromagnetic resonance, we assume χ F

±

�� �� � 1 and
neglect all smaller terms. After some simple algebra, the
transmission coefficient is obtained as:

t F± ¼ ht±
h0±

¼ nþ 1� f ðωÞðn� 1Þ
2

þ iωndμ0χ
F
± ð1� f ðωÞÞ
2Z0

� ��1

;

ð6Þ
where n stands for the refractive index of the substrate (GGG in
our case).

In order to obtain relative transmission due to the magnetic
resonance in YIG, Eq. (6) should be normalized by the
transmission through the pure substrate, t∣d=0 (in case of two
films on both sides of the substrate the transmission in the same
approximation is given by t(2d)= [t(d)]2):

t F±
tF± jd¼0

¼ 1� iΓFrad
ω0 � ωþ iαωþ iΓFrad

; ð7Þ

where we introduce the radiative damping parameter as

ΓFrad ¼
n

Z0ðnþ 1Þωdμ0γM0 1� 2
nþ 1

f ðωÞ
� �

¼ 2π
d
λ
γM0

n
nþ 1

1� 2
nþ 1

f ðωÞ
� �

:

ð8Þ

Here λ is the radiation wavelength in vacuum.
In the case of Voigt geometry, the normalized transmission for

a linearly polarized wave with hy results in the same expression as
in Eq. (7), where the superradiant damping parameter is replaced
by

ΓVrad ¼
ΓFrad
2

: ð9Þ

For comparison, in the case of electric superradiance in thin
films the corresponding equation reads36

Γrad ¼ n2De
2Z0=2m : ð10Þ

Fig. 1 Experimental setup. Mach-Zehnder interferometer using linearly
polarized light beam in Voigt (a magnetic field perpendicular to light
propagation), and transmission measurement setup with circularly
polarized beam in Faraday (b magnetic field parallel to light propagation)
geometry. The signal is detected by a bolometer operating at T= 4 K
temperature, backward-wave oscillator (BWO) serves as light source, and
optical elements are marked by numbers (1 polytetrafluoroethylene
focusing lens, 2, 2a linear polarizer, 2b circular polarizer, 3 beam-splitting
polarizer, 4 standing mirror, 5 sample in magnetic field, 6 moving mirror, 7
circularly polarized light, 8. standing mirror). Insets show the polarization
state of the incoming light (linear for Voigt and circular for Faraday
geometry).

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00593-5 ARTICLE

COMMUNICATIONS PHYSICS |            (2021) 4:97 | https://doi.org/10.1038/s42005-021-00593-5 | www.nature.com/commsphys 3

www.nature.com/commsphys
www.nature.com/commsphys


Here n2D is the density, e the charge, and m the effective mass of
two-dimensional electrons. In the electric case, to control the ratio
between intrinsic and radiation damping, the electron density can
be easily changed by variation of the gate voltage36. In the
magnetic case, the parameter responsible for the radiance intensity
is the static magnetization M0 that can be modified by tuning the
temperature. An alternative way to control the superradiance is by
changing the sample thickness d, as seen in Eq. (8).

Equation (7) provides an expression for a resonant minimum in
transmission with an effective width given by the sum of intrinsic
(αω) and radiativeðΓFradÞ parts. Since both the amplitude and the
linewidth of the peak in Eq. (7) contains ΓFrad, the peak power of
the secondary re-emitted wave grows with the square of the
number of magnetic moments due to ΓFrad / M0d. This scaling is
characteristic of coherent radiation, such as superradiance.

A quantum-mechanical approach of magnonic superradiance41,
representing the interacting magnon-photon system by bosonic
operators, results basically the same formula for the radiation
damping as our classical method in Eq. (8) in the case of a small
magnetic sample placed in a resonance cavity terminated at one
end. Identifying the cavity of the former experiments41 with the
substrate GGG layer of our study allows a one-to-one comparison
of the calculated radiation damping rates. The scaling with the
sample parameters and the wavelength, Γrad / n d

λM0, corre-
sponds to our findings. However, the quantum-mechanical
model41 also proposes a linear increase of the radiation damping
parameter with the N density of photons in the sample, Γrad∝ (1
+ 2N), originating from the commutation relation of bosonic
operators. Experimentally this quantum-mechanical effect would
correspond to a dependence of Γrad on the intensity of
the incoming radiation for high-intensity probing beam. Given
the limited power of our light sources we could not observe the
intensity dependence of the radiation damping. Thus, since in
the low-intensity, N << 1 regime the classical formalism provides
an equivalent description of radiative damping, in the following
we apply the classical formulas.

Analysis of the different contributions to the absorption line-
width. According to Eq. (7), compared to an intrinsic damping
Γint= αω, the resonance is additionally broadened by the radia-
tive damping Γrad. As illustrated in Fig. 2, the analysis of the
linewidth and amplitude of the resonance according to Eq. (7)
provides a way to directly obtain both damping parameters
independently.

Figure 3 shows the typical magnetic field-dependent transmis-
sion of YIG films on GGG substrate. The sharp minimum at 4.14
T that corresponds to the ferrimagnetic resonance of YIG is
observed on top of the broad paramagnetic resonance of the GGG
substrate. The two resonances were fitted simultaneously using
Fresnel equations for the transmission of the layered system. The
free parameters in such a fit are the saturation magnetization of
the YIG film M0, intrinsic damping α, and the resonance field
Hres. The refractive index of the GGG substrate, n= 3.43, was
obtained in a separate experiment42. The magnetic field
dependence of the paramagnetic resonance frequency in GGG
corresponds to a g-factor of gGGG= 2.26.

The ferrimagnetic resonance field Hres of YIG shows an
approximately linear dependence on the angular frequency ω (see
the inset of Fig. 2), which is expected in high magnetic fields
H0≫M0. From the fits to these data we estimate the value for the
saturation magnetization μ0M0(T= 200K)= 0.2 ± 0.03 T, in rea-
sonable agreement with the literature values43 and with the static
data, μ0M

VSM
0 ¼ 0:198 T, measured on the same sample using

vibrating-sample magnetometry.

Figure 2 demonstrates that the ferrimagnetic resonance
linewidth of YIG in the transmission is indeed substantially
higher than the actual resonance linewidth in the magnetic
permeability, μ(H). Moreover, the radiative correction in Faraday
geometry is twice as large as in Voigt configuration, in agreement
with Eq. (9). The transmission spectra allow us to extract the
relevant electrodynamic parameters using different approaches.
In a first approach, it can be done using the exact Fresnel
expressions44 including the magnetic permeability given by Eqs.
((2), (3)). Here the radiative damping is not a free parameter36

but is obtained via Eq. (8). The second way to compare intrinsic
and radiative damping is to use the simplified Eq. (7). In this case,
the width of the resonance curve directly gives the total damping
parameter Γint+ Γrad, and the intrinsic damping is extracted from
the amplitude of the resonance curves.

The values of intrinsic damping obtained from the present
experiments are shown in Fig. 4a. As expected, the α Gilbert
damping parameters of our samples are approximately
frequency-independent and agree reasonably well with each
other and with former reports45–58.

Figure 4b shows the frequency dependence of the dimension-
less radiative damping parameter, Γrad/ω, at the magnetic
resonance field. As expected from Eq. (8), Γrad is proportional
both to the frequency and to the sample thickness. Moreover, the
frequency-dependent oscillation of Γrad/ω corresponds to the
expected behavior due to the Fabry-Pérot interference of the

Fig. 2 Ferrimagnetic resonance linewidth in yttrium-iron-garnet (YIG) at
ν= 104 GHz frequency. Resonance curves show the γαω intrinsic damping
in the imaginary part of the magnetic permeability (ImðμÞ, green, on the
inverse scale of the right axis) together with the observed transmission in
the Faraday (magnetic field parallel to light propagation direction, red open
diamonds) and Voigt (magnetic field perpendicular to light propagation
direction, red filled diamonds) geometries. In the latter cases, the further
line broadening is attributed to the radiative damping, ΓVrad. γ, α, and ω stand
for the gyromagnetic ratio, the dimensionless intrinsic damping rate, and
the angular frequency, respectively. The horizontal axis shows the magnetic
field H relative to the corresponding resonance field H0. Labels on the left
vertical axis belong to the experimental curves and indicate the transmitted
light intensity I relative to the gadolinium-gallium-garnet (GGG) substrate’s
transmission baseline IGGG, which can be measured without the YIG layer.
The frequency dependences of the ferrimagnetic resonance fields (open/
filled symbols for Faraday/Voigt geometry experiments) in two YIG films of
different thicknesses (blue squares for d= 3 μm and red diamonds for d=
6.1 μm) are presented in the inset, where dashed/solid lines show
theoretical expectations of the resonance frequencies for Faraday/Voigt
geometry. On the scale of the inset, symbols corresponding to the two
samples at a given frequency are completely superposed and are bigger
than the corresponding error bars.
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direct light beam and the beam reflected from the substrate-
vacuum surface. To numerically validate our model in Eqs. (8)
and (9), we compared the radiative damping rates, rid of the
experimental and material parameters, to the universal values of π
and 2π for Voigt and Faraday geometries, respectively. As
presented in Fig. 4c, despite the scattering of the individual data
points, the median value of the universal radiative damping

Γrad=
d
λ γM0

n
nþ1 1� n

nþ1 f ðωÞ
� 	� 	

agrees reasonably well with the

model. Comparing the values of the intrinsic (Fig. 4a) and
radiative (Fig. 4b) damping parameters, we see that in the thinner
film with d= 3 μm, the intrinsic damping dominates, while in the
thicker film both contributions are of comparable values: α ~
Γrad(d= 6.1 μm)/ω. Thus, in thicker films the observation of
relaxation in the form of a superradiant pulse might be possible.

The collective nature of the radiative relaxation is visible in the
interference pattern of the frequency dependence of Γrad/ω in
Fig. 4b. Since the refractive indices of YIG59 and that of the
GGG42 substrate agree within 5%, the fields treated in the general
description of Eq. (5) as reflected from the YIG-GGG interface in
the reality correspond to the secondary radiation field of the YIG
layer. Thus, the interference pattern in Fig. 4b produced by the
secondary radiated field of YIG reflected back from the GGG-
vacuum interface is a clear sign of the coherent secondary
radiation. When comparing the frequency dependence of
the intrinsic (Fig. 4a) and radiative (Fig. 4b) damping rates, the
oscillations only appear in the latter case, corresponding to the
model of coherent emitters in Eq. (8).

Alternatively, the collective nature of the secondary radiation
can be studied on the dependence of Γrad on the number of
emitters. Namely, for coherent emission the radiative damping
parameter grows linearly with the magnetic moment per unit area
of the quasi two-dimesional structure, Γrad∝M0d. In Fig. 4b the
proportionality of Γrad∝ d is observed, while the temperature
dependence of Γrad is presented in Fig. 5. Intuitively, one would

expect an increasing damping at higher temperatures, which is
indeed observed for the intrinsic relaxation α. On the contrary,
with increasing temperature, the dimensionless radiation damp-
ing Γrad/ω is decreasing, following the tendency of M0. As both
the temperature dependence of M0 in Fig. 5 and the M0d
dependence of Γrad/ω in the inset of Fig. 5 indicate, the Γrad∝M0d
relation holds in the experiments, indicating a collective radiation
damping process.

Fig. 3 Magnetic field dependence of the transmission of an yttrium-iron-
garnet/gadolinium-gallium-garnet (YIG/GGG) system at ν= 111 GHz
frequency. On the vertical axis, the transmitted light intensity I is shown
relative to the GGG substrate’s transmission baseline I0 far from the
paramagnetic resonance. The solid orange curve shows the experiment and
the dashed green line the fit using the Fresnel equations44. The broad
minimum around a magnetic field of 4.0 T corresponds to the paramagnetic
resonance in GGG, while the sharp minimum at 4.15 T is due to the
ferrimagnetic resonance in YIG. The inset shows the expanded view of this
resonance in YIG. The underlying physical processes, namely resonant
magnetic absorption and coherent emission, are depicted in the schematic
cartoons.

Fig. 4 Frequency dependence of the damping parameters. Dimensionless
intrinsic (α, a) and radiative damping (Γrad/ω, b, c) parameters are
obtained from fits of the transmission according to Eq. (7). Damping rates
of yttrium-iron-garnet (YIG) samples with different thicknesses (d) are
indicated by symbol shape (6.1 μm - red diamond, 3 μm - blue square),
while full/empty fillings correspond to Voigt/Faraday geometries
(magnetic field perpendicular/parallel to light propagation), respectively
(a, b). Radiative damping of the Voigt experiments in b) is scaled up by a
factor of 2, according to Eq. (9), to allow a numeric comparison with the
Faraday-geometry measurements. Mean values of the intrinsic damping
parameters belonging to the two samples are indicated by constant lines
(6.1 μm—solid, 3 μm—dashed line), while standard deviations of the
datasets are shown by bands (a). Frequency-dependent oscillations of the
radiative damping parameters belonging to the two samples are indicated
by fits of Γrad=ω / 1� n

nþ1 fðωÞ
� 	

, while root mean squares of the
deviations of the data points from the fits are shown by bands (b). Here ω,
n and f(ω) stand for the angular frequency, refractive index and the
dimensionless correction term due to interference of multiply reflected
waves inside the substrate. Universal radiative damping rate,
Γrad=

d
λ γM0

n
nþ1 1� n

nþ1 fðωÞ
� 	� 	

, c, agrees with π and 2π for Voigt (full
circles, median shown by solid black line) and Faraday (empty circles,
median indicated by dotted black line) geometry measurements,
respectively. Here λ, γ and M0 stand for the wavelength, gyromagnetic
ratio and the magnetization of the YIG layer. Symbols are obtained by
averaging corresponding measurements on the two samples at the given
frequency and bands show the standard deviation of the datasets.
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Conclusions
We have presented a method to separate the intrinsic and
radiative contributions to magnetic thin films’ resonance line-
width in optical absorption experiments. Compared to previous
microwave studies47–49,54, the higher frequency (ν ~ 100GHz) of
our optical approach provides a more precise way to determine
the intrinsic Gilbert damping parameter α. Moreover, the free-
standing sample in transmission experiments offers a universal
method to eliminate the damping effect of the measurement
setup, such as the induced currents in the waveguide or resonator
cavity.

In the case of thin samples, the re-emission of the electro-
magnetic radiation by the individual magnetic moments occurs in
a coherent process, resulting in a quadratic scaling of the emitted
power with the magnetization of the material, and with the
volume of the sample. The coherent nature of the radiative line-
broadening mechanism allows its identification as the magnetic
equivalent of superradiance, opening a fundamentally different
way to study this collective phenomenon in the dynamics of
magnetic systems. The characteristic frequency of magnetic
excitations is by several orders of magnitude lower than that of
the other extensively investigated quantum-optical systems60,
granting the possibility of time-resolved detection of the magnetic
superradiant dynamics.

Methods
Sample preparation. In this work, we investigated two different YIG/GGG sys-
tems (Y3Fe5O12 thin film on Gd3Ga5O12 substrate) grown by liquid epitaxy. The
first sample is a commercial 3 μm thick YIG film on 537 μm GGG. The second
sample consists of three identical pieces arranged next to each other to increase the
optical area. Each piece contains two 6.1 μm YIG films on both sides of a 471 μm
thick GGG substrate.

Since the thickness of the thin films is crucial for the interpretation of the
optical experiments, for quality control, static magnetization measurements were
performed in a vibrating-sample magnetometer and in the temperature range of
5–300 K. The thickness of the YIG layer in the sample was accurately determined
from the magnitude of the observed magnetization step at a small magnetic field,
corresponding to the switching of the ferrimagnetic magnetization of the YIG film.

Sub-THz spectroscopy. As presented in Fig. 1, magnetic resonances were detected
by quasi-optical experiments61, performed in a sub-THz Mach-Zehnder
interferometer62,63, equipped with a 7 T magnet, which produces magnetic field
with less than 0.1% inhomogenity at the sample position. Except for the
temperature-dependent study in Fig. 5, during the other measurements the sample
temperature was kept at 200 K. We distinguish between the Faraday and the Voigt
geometry, where the magnetic field was applied parallel and perpendicular to the
direction of the incident light beam, respectively. The monochromatic radiation
was generated by a set of backward-wave oscillators covering the frequency range
of 40 GHz–1 THz. Metal wire-grids were used to achieve a linear polarization of
light in Voigt geometry, while a combination of an additional wire grid and a
mirror (producing a π/2 phase shift between two linear polarizations) was used to
obtain circularly polarized light for the Faraday geometry.

Data analysis. The transmission spectra have been analyzed using the Fresnel
optical equations for a multilayer system44, assuming a Lorentzian line-shape for
the ferri/paramagnetic resonance in the magnetic permeability of the YIG film and
the GGG substrate, respectively. Then by comparing to the simplified expressions
for the transmission coefficient in Eq. (7), one is able to visualize the effects of
magnetic superradiance. This procedure allows a direct estimate of the relevant
material parameters from the spectra.

Data availability
The data that support the findings of this study are available from the corresponding
authors on reasonable request and also accessible at https://doi.org/10.5281/
zenodo.4593751.
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