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A no-go theorem for the persistent reality of
Wigner’s friend’s perception
Philippe Allard Guérin 1,2,3✉, Veronika Baumann 1,2, Flavio Del Santo1,2 & Časlav Brukner1,2

The notorious Wigner’s friend thought experiment (and modifications thereof) has received

renewed interest especially due to new arguments that force us to question some of the

fundamental assumptions of quantum theory. In this paper, we formulate a no-go theorem for

the persistent reality of Wigner’s friend’s perception, which allows us to conclude that the

perceptions that the friend has of her own measurement outcomes at different times cannot

“share the same reality”, if seemingly natural quantum mechanical assumptions are met.

More formally, this means that, in a Wigner’s friend scenario, there is no joint probability

distribution for the friend’s perceived measurement outcomes at two different times, that

depends linearly on the initial state of the measured system and whose marginals reproduce

the predictions of unitary quantum theory. This theorem entails that one must either (1)

propose a nonlinear modification of the Born rule for two-time predictions, (2) sometimes

prohibit the use of present information to predict the future—thereby reducing the predictive

power of quantum theory—or (3) deny that unitary quantum mechanics makes valid single-

time predictions for all observers. We briefly discuss which of the theorem’s assumptions are

more likely to be dropped within various popular interpretations of quantum mechanics.
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One of the most puzzling scenarios one can encounter in
quantum physics is the so-called Wigner’s friend thought
experiment1,2. It allows to investigate the applicability of

the quantum formalism beyond its usual limits, by considering a
certain physical system—called “the friend”— simultaneously as a
quantum system and as a user of quantum theory (observer). In
this thought experiment, a superobserver (Wigner) describes,
using the pure quantum formalism, his friend who is performing
a quantum measurement on a spin system. After the friend’s
measurement has taken place, we are in a counter-intuitive
situation where Wigner describes the friend in a quantum
superposition of observing two different outcomes, while from
the friend’s perspective a definite outcome must be perceived.

There has been a number of recent works that cast new light onto
this thought experiment3–17, many of which originated as reactions
to a paper by Frauchiger and Renner18. The latter work can be
regarded as showing that, in quantum mechanics, it may be pro-
blematic to treat observational knowledge of other agents as if it
were one’s own, and to logically compare such indirect knowledge
with that gained through direct observation. In the words of these
authors, in a scenario where “multiple agents have access to dif-
ferent pieces of information, and draw conclusions by reasoning
about the information held by others,” it can be shown that “in the
general context of quantum theory, the rules for such nested rea-
soning may be ambiguous”18; a conclusion that is reminiscent of
the QBist interpretation of quantum theory19,20. Other works3,4,9,15

show that a no-go result can be obtained when the assumption that
superobservers can treat other observer’s outcomes as “facts of the
worlds” is combined with a locality assumption. What all of the
above-cited works have in common is that they reach their no-go
results by combining the observations of multiple observers as if
those all belonged to the same “classical reality.”

In the present paper, we put forward a no-go theorem for the
persistent reality of Wigner’s friend’s perception that has perhaps
more counter-intuitive and drastic consequences: even a single
observer, when making predictions about his or her observations
at two different times, can conflict with the linear dependence of
quantum mechanical probabilities on the density operator of the
system being measured. This will occur if the said observer is
subjected to a measurement by a superobserver between these two
times and uses unitary quantum mechanics (i.e., “no-collapse”
quantum mechanics) to make his or her predictions. Our result is
in line with a different understanding of the Frauchiger–Renner
argument, where it is taken to primarily show that inferences
made on the basis of a quantum state assigned at a certain time
are not necessarily valid at later times, especially not if “someone
Hadamards your brain” in between21.

Indeed, one conclusion that can be drawn from this no-go theo-
rem is that treating a piece of information from the past as if it was
still presently existing (even when one takes into account a possible
subjective uncertainty) cannot, in general, be upheld together with
the conjunction of the above seemingly natural assumptions within
the domain of quantum theory. We will show that in a particular
instance of the Wigner’s friend experiment, our assumptions imply
that, even in cases where the theory states that no change would take
place in the quantum state of the friend’s laboratory, the perceptions
of the friend have a nonzero probability to change from before to
after Wigner’s measurement. Finally, we will briefly discuss how
different interpretations of quantum mechanics might comply with
the no-go theorem, by identifying which of the assumptions are most
likely to be abandoned within these interpretations.

Results
Wigner’s friend thought experiment. Let us begin by reviewing
the Wigner’s friend thought experiment within a unitary formalism

to set up some basic notation and to clarify what we mean by
“unitary quantum mechanics” for the particular scenario that we
consider. It is common to assume that the following description
provided by unitary quantum mechanics is empirically adequate in
all situations: any observer who uses this formalism will predict
probabilities that match the relative frequencies that would be
observed if the experiment was repeated many times.

The experiment features an observer, the friend (F), perform-
ing measurements on a qubit (e.g., a spin-1/2 particle), the system
(S), in a sealed laboratory. The system is initialized in the state
ψ
�
�
�

S ¼ α "
�
�
�

S þ β #
�
�
�

S, where α and β are complex numbers that
obey ∣α∣2+ ∣β∣2= 1, and the possible outcomes of the measure-
ment are recorded by the friend as U or D, respectively standing
for “up” and “down.” Another (super-)observer, Wigner (W),
located outside the laboratory performs a measurement on both
the system and the friend. The initial state of the friend (which
encompasses any other possible degree of freedom in the isolated
lab) is known by Wigner, and is initially in a macroscopic “ready”
state 0j iF. The state of Wigner himself is also in a macroscopic
“ready” state 0j iW.

The initial state (at time t0) of the whole setup is therefore

Ψðt0Þ
�
�

� ¼ ψ
�
�
�

S
0j iF 0j iW ¼ α "

�
�
�

S
þ β #

�
�
�

S

� �

0j iF 0j iW: ð1Þ

At time t1, the friend measures the spin in the z-basis, and the
state becomes

Ψðt1Þ
�
�

� ¼ α "
�
�
�

S
Uj iF þ β #

�
�
�

S
Dj iF

� �

0j iW; ð2Þ

where the states Uj iF; Dj iF correspond to the friend having
observed outcome “up” or “down,” respectively. Later, at time tW,
Wigner measures the friend and system in some entangled basis,
with binary outcomes corresponding to the orthogonal states

1j iSF ¼ a ";U
�
�

�þ b #;D
�
�

�

2j iSF ¼ b� ";U
�
�

�� a� #;D
�
�

�
;

with a, b being complex numbers obeying ∣a∣2+ ∣b∣2= 1. Strictly
speaking, there should be two other outcomes corresponding to
the rank-2 projector, ";D

�
�

� ";D� �
�þ #;U

�
�

� #;U� �
�, but these

outcomes are never actualized in the experiment.
At a slightly later time t2 > tW, the measurement is over and we

have the final state

jΨðt2Þi ¼ ðαa� þ βb�Þ 1j iSF 1j iW þ ðαb� βaÞ 2j iSF 2j iW
¼ aðαa� þ βb�Þ "

�
�
�

S
Uj iF 1j iW

þbðαa� þ βb�Þ #
�
�
�

S
Dj iF 1j iW

þb�ðαb� βaÞ "
�
�
�

S
Uj iF 2j iW

�a�ðαb� βaÞ #
�
�
�

S
Dj iF 2j iW;

ð3Þ

where 1j iW and 2j iW are pure quantum states corresponding to
Wigner seeing the outcome “1” or “2,” respectively. Note that the
state Ψðt2Þ

�
�

�
depends on the specific unitary realization of

Wigner’s measurement; different purifications can lead to
different states Ψðt2Þ

�
�

�
.

Using the states in Eqs. (1)–(3) and the Born rule, one can find the
expected statistics for any of the friend’s or Wigner’s measurement
outcomes using unitary quantum mechanics. This is achieved by
applying a projectorΠx onto the state where the respective observer is
seeing outcome x to the state at the time of interest, that is,

pðxÞ ¼ tr Πx ΨðtÞ
�
�

�
ΨðtÞ� �

�
� �

; ð4Þ
where, in the case relevant for this work where there are two
outcomes U and D, the probability of the friend seeing for example
outcome x=U is obtained with ΠU ¼ Uj i Uh jF.
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The states in Eqs. (1)–(3) represent the unitary evolution of the
full quantum state at all times. While the latter is commonly
associated with the many-worlds interpretation22,23, or with
Bohmian mechanics24–26, it is also compatible with a timeless
formulation of quantum theory as introduced by Page and
Wootters27. Even without necessarily accepting the picture of the
world provided by the many-worlds interpretation, Eq. (4) can be
used by any observer to make predictions about their observed
outcome at some time. In particular, we assume that the friend
has enough information about the experimental setup in order to
use Eq. (4) for her probability assignments.

In the following, we will also be interested in cases where the
initial state of the system is a mixed state ρS. Such a state can be
decomposed as ρ ¼ λ ψ

�
�
�
ψ
� �

�þ ð1� λÞ ϕ
�
�
�
ϕ
� �

�, where ψ
�
�
�
; ϕ
�
�
�
are

orthonormal states and 0 ≤ λ ≤ 1. Then we have the analog of
expressions (1)–(3) for the mixed state Σ(t) of the whole setup at
different times

ΣðtÞ ¼ λ ΨðtÞ
�
�

�
ΨðtÞ� �

�þ ð1� λÞ ΦðtÞ
�
�

�
ΦðtÞ� �

�; ð5Þ
where ΨðtÞ

�
�

�
and ΦðtÞ

�
�

�
are states analogous to Eqs. (1)–(3) with

initial system states ψ
�
�
�

S
and ϕ

�
�
�

S
, respectively. Furthermore,

probabilities are now given by pðxÞ ¼ tr ΠxΣðtÞ
� �

.
In the standard analysis of the Wigner’s friend thought

experiment, the friend is usually assumed to describe the
dynamics of her lab by using the state-update rule instead of
Eq. (2). She, therefore, would assign probabilities to Wigner’s
measurement that are different from those assigned by Wigner
based on Eqs. (2) and (3), which leads to an inconsistency
between the predictions of both observers6.

Probability assignments in a scientific theory. A necessary
requirement for an empirically adequate scientific theory is that it
should be able to give (quantitative) predictions, such as to have
testable empirical content. Throughout the paper, by the term
“prediction,” we merely mean the assignment, by an agent using a
physical theory, of a probability distribution, and we do not
strictly commit to any particular (operational) interpretation of
probability, such as in terms of betting quotients. Namely, a
theory should be able to associate a measure of likelihood to an
event y to happen, given that certain conditions—which, in turn,
are captured by another event x– have already occurred. In the
words of Wigner,

One realises that all the information which the laws of
physics provide consists of probability connections between
subsequent impressions that a system makes on one if one
interacts with it repeatedly, i.e., if one makes repeated
measurements on it.1

The theory should thus be able to answer questions of the
form: “given that I observed event x at time t1, how likely is it that
I will observe event y at a later time t2?” Mathematically speaking,
such a question is answered by specifying conditional probability
distributions p(y∣x). In situations where a user of the theory does
not have enough information to uniquely determine p(y∣x) (e.g.,
some other agent could intervene in an unknown way), the theory
should be able to provide a list of all the information, which, if it
were known, would determine p(y∣x). For lack of a better
alternative, the user of the theory can subjectively assign their best
guess for a probability distribution over these unknown variables,
which in turn allows to compute p(y∣x). On that note, a recent
work about the emergence of physical laws is based on the idea
that the primary purpose of such laws is to give the conditional
probability distributions relating events perceived by an observer
at two subsequent times28.

In the context of the Wigner’s friend thought experiment, we
are thus interested in the friend’s question: “given that I saw
outcome f1 at time t1, what is the probability (attributed by using
quantum theory) that I will see outcome f2 at time t2?” We
assume that quantum mechanics is empirically adequate and is
able to answer this question by providing a conditional
probability distribution p(f2∣f1). Moreover, note that (unitary)
quantum theory also prescribes how to assign a probability for
observations at a single time (one-time probabilities) p(f1) by
Eq. (4). It is worth stressing that one-time probabilities are
fundamentally also themselves conditional probabilities, namely,
conditioned on all the possible past events that can influence the
probability of the event that we are trying to predict. Given these
elements, the standard axiomatization of probability theory
allows the definition of a joint probability distribution through
the identity p(f1, f2)= p(f1∣f2)p(f2). Thus, any theory that, like
quantum mechanics, prescribes rules to assign one-time prob-
abilities and conditional probabilities automatically allows to
assign joint probability distributions. However, as we will see,
such a joint probability distribution cannot simultaneously fulfill
three seemingly natural assumptions in a Wigner’s friend
scenario.

No-go theorem for the persistent reality of Wigner’s friend’s
perception. We now formulate a formal no-go theorem which
shows that in Wigner’s friend scenarios, the friend cannot treat
her perceived measurement outcome as having “reality across
multiple times” without contradicting what might appear to be
core assumptions of quantum mechanics. Consider the following
assumptions:

● P1 The events f1 and f2, corresponding to the perceived
measurement records of the friend at times t1 and t2,
respectively, can be combined into a joint event to which is
assigned a probability distribution p(f1, f2). Moreover, the
rules of the probability calculus imply that pðf 1Þ ¼
∑f 2

pðf 1; f 2Þ and pðf 2Þ ¼ ∑f 1
pðf 1; f 2Þ.

● P2 One-time probabilities are assigned without resorting to
the state-update rule (i.e., using unitary quantum theory,
where no “collapse” is considered to occur). Thus, when the
initial state of the qubit is ψ

�
�
�

S,

pðf iÞ ¼ trð f i
�
�

�
f i
� �

�
F
ΨðtiÞ
�
�

�
ΨðtiÞ
� �

�Þ; ð6Þ
with ΨðtiÞ

�
�

�
being the unitarily evolved global state according

to Eqs. (2) and (3).
● P3 The joint probability of the friend’s perceived outcomes

p(f1, f2) has a convex linear dependence on the initial state ρS
of the system qubit.

We will motivate these assumptions in more detail in
“Motivation of the assumptions.” We now show that these
assumptions lead to a contradiction when applied to the friend in
a Wigner’s friend scenario.

Theorem III.1 The conjunction of the assumptions P1–P3
cannot be satisfied for the Wigner’s friend thought experiment for a
general choice of Wigner’s measurement basis.

Proof Define the isometries Vi : HS ! HS �HF �HW, i= 1,
2 mapping the initial state of the spin ψ

�
�
�

S to the corresponding
state at time ti as Vi ψ

�
�
�

S
¼ ΨðtiÞ

�
�

�

SFW
. Using Eqs. (2) and (3),

these are found to be

V1 ¼ ";U ; 0
�
�

�

SFW
"�
�
�
S
þ #;D; 0

�
�

�

SFW
#�
�
�
S ð7Þ

V2 ¼ 1j iSF 1j iW ϕ1
� �

�
S
þ 2j iSF 2j iW ϕ2

� �
�
S ð8Þ

where ϕ1
�
�

�
:¼ a "

�
�
�þ b #

�
�
�
and ϕ2

�
�

�
:¼ b� "

�
�
�� a� #

�
�
�
.
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By P2 (and using P3 to extend to mixed states) we have

pðf 1Þ ¼ tr ð f 1
�
�

�
f 1
� �

�
F
� ISWÞV1ρV

y
1

� �

ð9Þ

¼ tr Vy
1ð f 1
�
�

�
f 1
� �

�
F
� ISWÞV1ρ

� �

¼ trðE1
f 1
ρÞ; ð10Þ

where we define E1
f 1
:¼ Vy

1ð f 1
�
�

�
f 1
� �

�
F
� ISWÞV1, which can be

understood as the “Heisenberg picture” operator (this is not
exactly the textbook Heisenberg picture, because V1 is an
isometry and not a unitary) corresponding to measuring
f 1
�
�

�
f 1
� �

� at time t1. It is easily checked that E1
f 1

is a positive

operator on HS and that ∑f 1
E1
f 1
¼ IS. Therefore, fE1

f 1
g is a

positive operator-valued measure (POVM). Similarly, we have

pðf 2Þ ¼ trðVy
2ð f 2
�
�

�
f 2
� �

�
F � ISWÞV2ρÞ :¼ trðE2

f 2
ρÞ: ð11Þ

The calculation of the POVM elements yields

E1
U ¼ "

�
�
� "�

�
� ð12Þ

E1
D ¼ #

�
�
� #�

�
� ð13Þ

and

E2
U ¼ jaj2 ϕ1

�
�

�
ϕ1
� �

�þ jbj2 ϕ2
�
�

�
ϕ2
� �

� ð14Þ

E2
D ¼ jbj2 ϕ1

�
�

�
ϕ1
� �

�þ jaj2 ϕ2
�
�

�
ϕ2
� �

�: ð15Þ
Assumptions P1 and P3 imply that there exists a joint POVM

fGf 1f 2
g such that

pðf 1; f 2Þ ¼ trðGf 1f 2
ρÞ; ð16Þ

and requiring that the marginals obey P2 for all states means that
∑f 1

Gf 1f 2
¼ E1

f 1
and ∑f 2

Gf 1f 2
¼ E2

f 2
. When there exists such a

fGf 1f 2
g, the POVMs fE1

f 1
g and fE2

f 2
g are called jointly measurable.

If (at least) one of the two POVM’s considered is sharp, then joint
measurability is equivalent to commutativity, and there is a
unique joint observable Gf 1f 2

¼ E1
f 1
E2
f 2

with the correct
marginals29. Since we are considering two-outcome POVMs,
and since E1 given by Eqs. (12) and (13) is sharp, joint
measurability is equivalent to ½E1

U ; E
2
U � ¼ 0. Direct calculation

yields

½E1
U ; E

2
U � ¼ ðjaj2 � jbj2Þab� "

�
�
� #�

�
�

þðjbj2 � jaj2Þa�b #
�
�
� "�

�
�:

ð17Þ

Thus, these two POVMs are not jointly measurable for general
choices of a, b, which concludes the proof. □

In the following, we make some conceptual remarks about the
proof of the above theorem. Even though our proof uses the
language of joint measurability, due to a formal equivalence with
that problem, the physical interpretation of joint measurability is
different in our scenario. Indeed, joint measurability usually refers
to the possibility to “simultaneously” measure two POVMs via a
third joint POVM. Two nonjointly measurable POVMs can
nevertheless be measured sequentially, one after the other, but the
first measurement will generally disturb the state which is the
input to the second measurement. In our Wigner’s friend
scenario, we are likewise considering measurement operators
that correspond to observed outcomes at two subsequent times.
However, assumption P2 implies Eq. (11), where ρ is not affected
by the measurement at t1. Thus, imposing P2 leads to a bypassing
of the standard information-disturbance relations30 and to a
contradiction with assumptions P1 and P3.

Furthermore, note that it is not essential for Wigner to perform
any measurement in order to derive a no-go result. Indeed,
Wigner could instead perform a “Hadamard” unitary

";U
�
�

�7! 1ffiffi
2

p ð ";U
�
�

�þ #;D
�
�

�Þ, #;D
�
�

�7! 1ffiffi
2

p ð ";U
�
�

�� #;D
�
�

�Þ,
and the same theorem would follow after making the necessary
modifications for the state Ψðt2Þ

�
�

�
.

Discussion
Motivation of the assumptions. We attempt here to motivate
each of the assumptions of our no-go theorem. We can only offer
plausibility arguments, since, as we have already shown, these
assumptions cannot in general all hold true in quantum
mechanics. It should also be noted that the assumptions are not
logically independent: for example, one cannot hold P3 without at
the same time assuming P1.

As discussed in sections “Wigner’s friend thought experiment”
and “Probability assignments in a scientific theory”, P1 is
motivated by the requirement that quantum theory—as any
other predictive theory—should provide us with conditional
probability distributions for the friend’s perceptions before and
after Wigner’s measurement, that is, p(f2∣f1), and P2 provides
single time probabilities for the friend’s perception: pðf 1Þ ¼
trðjf 1ihf 1jFjΨðt1ÞihΨðt1ÞjÞ and pðf 2Þ ¼ trðjf 2ihf 2jFjΨðt2ÞihΨðt2ÞjÞ.
Thus we should in principle be able to construct a joint
probability distribution for the friend’s perceived outcomes at
two different times, p(f1, f2). Even if one initially only assigns
probabilities to events directly perceived by an observer, such as f1
and f2, the requirement of predictability for a theory leads us to
assign probabilities to the joint event (f1, f2), although this is not a
directly perceivable event in its own (arguably, one cannot have
direct perceptions about two different times).

Assumption P1 can also be understood as a special case of the
general assumption that measurement records are facts of the
world3, or of the absoluteness of observed events (AOEs)—the
assumption that “an observed event is a real single event, and not
relative to anything or anyone”9,15—applied to events f1 and f2. It
is important to emphasize that the negation of AOE is not
necessarily the claim that measurements outcomes are observer-
dependent. Indeed, the observed events in assumption P1 are all
associated with the same observer, and thus P1 is conceptually
different from the version of AOE used in deriving another no-go
theorem9, which is about joint probability assignments for the
measurement outcomes of multiple observers.

P2 can be justified by appealing to the belief that interpreta-
tions of quantum mechanics should be empirically equivalent,
that is, that they all yield the same experimental predictions. Since
P2 definitely holds in certain interpretations, notably in the
Everett interpretation22, one should then expect P2 to hold in
general. Since P2 can in principle be tested empirically, it is
appropriate to regard quantum mechanics with objective
collapse31 as a different physical theory from unitary quantum
mechanics, and not merely a different interpretation6.

Assumption P3 can be understood as a conservative extension
of the Born rule—which assigns single-time probabilities linearly
in the quantum state—to joint events at multiple times: P3 asks
that the joint probabilities for events at multiple times must also
depend linearly in the initial quantum state. P3 is true in typical
laboratory situations where the usual quantum mechanical state-
update rule can be used to calculate probabilities. Moreover, P3
can be motivated operationally, in a way that is customary in the
context of generalized probabilistic theories32,33. We can imagine
that a third agent is preparing the initial state of the system qubit,
independently from the friend and Wigner. One might assume
that, after fully specifying all relevant details for the friend’s and
Wigner’s measurement setups (this includes the measurement
basis for both of them, the initial quantum state of the friend,
etc.), the probabilities p(f1, f2) only depend on the quantum state
ρS, but not on the way that the state was prepared. Suppose that
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pσ(f1, f2) and pτ(f1, f2) are the probability distributions when the
system state σ or τ is prepared. Since ρ= λσ+ (1− λ)τ can be
prepared by tossing a biased coin, which leads to prepare σ with
probability λ, and τ otherwise, the linearity of probability implies
that pρ(f1, f2)= λpσ(f1, f2)+ (1− λ)pτ(f1, f2). A further, indepen-
dent justification for P3, that is, allowing probabilistic mixtures, is
that it implies that the optimal compression is equivalent to linear
compression34,35. Roughly speaking, upholding P1 while denying
P3 amounts to the claim that quantum mechanics is “incom-
plete,” in the sense that a full specification of the initial state ρS is
not sufficient for computing p(f1, f2). Furthermore, a convincing
case against P3 should involve the prescription and justification of
a specific nonlinear two-time probability rule; Bohmian
mechanics is an example of this strategy, as we discuss further
in section “The no-go theorem in different interpretations of
quantum mechanics.”

The no-go theorem in different interpretations of quantum
mechanics. As mentioned above, strategies for coping with the
no-go theorem (Theorem III.1), that is, deciding which of the
assumptions one is most likely to drop, will depend on one’s
interpretation of the quantum theory. We believe that organizing
interpretations according to which of the assumptions they reject
can help to give a clearer understanding of the fundamental
differences between them. In what follows, we will go through
each of the assumptions and for each give examples of a pro-
minent interpretation that would reject it. We do not strive here
for exhaustivity, but rather to give an impression of the variety of
ways in which our theorem can be understood. In the interest of
space, our representation of any interpretation will be rather
superficial.

● P1 According to our understanding, the Everett (or many-
worlds) interepretation22,23 denies that it is meaningful to
assign a joint probability p(f1, f2) to the friend’s observations
at multiple times. This is at least Bell’s diagnostic:

Everett [...] tries to associate each particular branch at
the present time with some particular branch at any past
time in a tree-like structure, in such a way that each
representative of an observer has actually lived through
the particular past that he remembers. In my opinion
this attempt does not succeed and is in any case against
the spirit of Everett’s emphasis on memory contents as
the important thing. We have no access to the past, but
only to present memories.36

In Chapter 7 of his book23, Wallace concludes that there are
only two viable candidates for a correct theory of identity (i.e.,
for what it means to talk about the “same object” at two
different times) within the many-worlds interpretation; he
calls these candidates the Lewisian view and the Stage view. In
the Lewisian view, the identity of an object holds over a period
of time within a (decohered) history, while in the Stage view
the identity of objects only refers to a single instant in time.
When “worlds” are allowed to interfere with each other as in
the Wigner’s friends thought experiment, the Lewisian view
appears less viable.
Only in situations where a sufficient amount of decoherence is
present is it possible to identify “worlds” branching in time,
which would allow to meaningfully speak of p(f1, f2). By
construction, this is not the case in Wigner’s friend scenario.
Further, note that operational approaches3 might only allow
for the assignment of probabilities that can in principle be
measured by performing many trials of the experiment, or

in situations where probability assignments can be related to
rational bets. This is not the case for the joint event (f1, f2)
here, because in a Wigner’s friend experiment there is no
“reliable record” of f1 that remains available after time t2.

● P2 There are at least two ways that this assumption can be
denied: objective collapse of the wave function or subjective
collapse of the wave function. In a theory with objective
collapse31, not only would P2 be false, but the predictions that
Wigner makes using Eq. (3) would be verifiably wrong. In a
theory with subjective state assignments such as QBism19, an
agent is normatively constrained to use the Born rule for
computing probabilities, but the quantum state used for doing
so is up to the agent’s good judgment; furthermore, QBism
prohibits agents from assigning quantum states to
themselves20. Therefore, there can be subjective collapse: the
friend would have the right to use the usual state-update rule
in order to calculate p(f2∣f1)—and thus not recover p(f2)
according to Eq. (6)—while Wigner uses unitary evolution for
his own predictions.

● P3 In the de Broglie–Bohm interpretation24–26, the memory
of the friend has a definite and observer-independent value at
all times and P1 holds. Furthermore, it can be proven that
Bohmian mechanics recovers the same single-time predic-
tions as unitary quantum mechanics so that P2 holds24,25.
Therefore, it must be P3 that fails to hold in that
interpretation. Indeed, it is known in the context of double-
slit interference that the Bohmian guidance equation is
nonlinear in the density operator37,38. It would be interesting
for future work to calculate p(f1, f2) for this experiment within
a Bohmian description.

The (non-)persistence of memory in special cases. Theorem
III.1 has been derived by assuming that in Wigner’s choice of
measurement basis, the parameters a, b are arbitrary. However,
from Eq. (17) it is easy to see which particular choices of a, b
allow the assumptions P1–P3 to be satisfied. In the following, we
compute p(f1, f2) for these special cases. We shall see (point 2
below) that assumptions P1–P3 can lead to counter-intuitive
conclusions about the time evolution of the friend’s memory even
in those cases. There are essentially two possibilities that make the
commutator in Eq. (17) vanish, which is equivalent to satisfying
all three assumptions:

1. ∣a∣= 1, b= 0. (The case a= 0, ∣b∣= 1 differs by a relabeling
of the basis states.) This corresponds to Wigner performing
a measurement of the friend and system in the “computa-
tional basis” 1j i ¼ ";U

�
�

�
, 2j i ¼ #;D

�
�

�
revealing to him

which result the friend observed. In that case the unique
probability distribution that satisfies the assumptions of the
theorem is pðf 1; f 2Þ ¼ trðE2

f 1
E2
f 2
ρÞ, with

E1
U ¼ E2

U ¼ "
�
�
� "�

�
� ð18Þ

E1
D ¼ E2

D ¼ #
�
�
� #�

�
�: ð19Þ

It is easy to verify that pðf 2jf 1Þ ¼ δf 1f 2 , which means that
the friends memory of the outcome is perfectly preserved.

2. jaj2 ¼ jbj2 ¼ 1
2. This corresponds to Wigner performing a

measurement in the “Bell basis,” for example,
1j i ¼ 1ffiffi

2
p ð ";U

�
�

�þ #;D
�
�

�Þ, 2j i ¼ 1ffiffi
2

p ð ";U
�
�

�� #;D
�
�

�Þ.
Here again we restrict our analysis to only two out of the
four “Bell’s states” that are physically relevant in the
described scenario. Equations (14) and (15) show that the
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relative phases do not matter, so it suffices to consider this
example. We have in this case pðf 1; f 2Þ ¼ trðE1

f 1
E2
f 2
ρÞ, with

E1
U ¼ "

�
�
� "�

�
� ð20Þ

E1
D ¼ #

�
�
� #�

�
� ð21Þ

E2
U ¼ E2

D ¼ I
2
; ð22Þ

and one can check that pðf 2jf 1Þ ¼ 1
2. This means that the

friend’s memory gets flipped with probability 1
2, indepen-

dently of the initial state ρ. This is particularly surprising in
the case where the initial state is ψ

�
�
� ¼ 1ffiffi

2
p ð "

�
�
�þ #

�
�
�Þ,

because in that case Wigner performs a non-disturbance
measurement12,13. This means that the joint state of the
friend and system Ψðt1Þ

�
�

�
is actually an eigenstate of

Wigner’s measurement. One might expect that, in this case,
since the quantum state is not changed by Wigner’s
measurement, the friend’s perceived result should remained
unchanged as well; this is implicitly assumed in most
discussions on the Wigner’s friend thought experiment
(and sometimes explicitly13). However, this conflicts with
the assumption of quantum mechanical linearity of
probabilities: if p(f1, f2) is linear in ρ, the friend’s perceived
outcome must get flipped with probability 1

2, indepently of ρ.

Conclusion
From the point of view of Wigner, assuming that the friend’s
memory has a (unknown but definite) value is akin to assuming a
hidden-variable model. Bell-type arguments involving two
Wigners and two friends3,4,9 have shown that if we further make
a locality assumption on that hidden-variable model, it will not be
possible to reproduce the quantum mechanical predictions. In
this paper, we have shown that even from the friend’s perspective,
treating the memory of her measurement outcome as having a
value throughout the experiment is in conflict with important
features of quantum mechanics. More precisely, we have shown
that it is not possible to assign a joint probability to her observed
outcomes at two different times of the thought experiment, in a
way that is compatible with unitary marginal probabilities and
with the linear dependence of quantum mechanical probabilities
on quantum states.

How to understand this theorem will depend on one’s inter-
pretation of quantum mechanics, but it seems that interesting
lessons can be drawn from various interpretational points of view.
Many popular interpretations (excluding hidden-variable inter-
pretations like Bohmian mechanics) implicitly satisfy the princi-
ple that legitimate probability assignments should depend linearly
on the initial quantum state. It appears in light of our theorem
that the consequence of such a commitment is that one must in
general either prohibit the use of present information to predict
the future (drastically scaling down the predictive power of
quantum theory) or deny that unitary quantum mechanics makes
valid single-time predictions on all scales. That such a radical
conclusion is necessary in general does not affect the fact that for
all practical purposes, that is, in normal conditions when suffi-
cient amounts of decoherence are present, one can continue to
successfully use present information for predictions.

Our results might also raise interesting questions about the
persistence of identity for the friend. If it is not possible for the
friend to use the Born rule—or any other rule linear in the
quantum state of the system—to assign a joint probability dis-
tribution to her observed outcomes before and after Wigner’s
measurement, then to what extent can the friend at these two
different times be considered the same agent? It is conceivable,

although counter-intuitive, that the friend at t1 and the friend at t2
should be legitimately considered to be two distinct agents.
Conceptually speaking, this would be a costly conclusion to make
in general, since these “two agents” share many common mem-
ories about their past. In that case, one could reach similar
conclusions to the ones of Cavalcanti15, and say that the friend’s
outcome at t2 is not an event from the point of view of the friend
at t1, and vice versa.
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