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First-passage times to quantify and compare
structural correlations and heterogeneity
in complex systems
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Virtually all the emergent properties of complex systems are rooted in the non-homogeneous

nature of the behaviours of their elements and of the interactions among them. However,

heterogeneity and correlations appear simultaneously at multiple relevant scales, making it

hard to devise a systematic approach to quantify them. We develop here a scalable and non-

parametric framework to characterise the presence of heterogeneity and correlations in a

complex system, based on normalised mean first passage times between preassigned classes

of nodes. We showcase a variety of concrete applications, including the quantification of

polarisation in the UK Brexit referendum and the roll-call votes in the US Congress, the

identification of key players in disease spreading, and the comparison of spatial segregation

of US cities. These results show that the diffusion structure of a system is indeed a defining

aspect of the complexity of its organisation and functioning.
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The elements of a variety of complex systems can be natu-
rally associated with one of a small number of classes or
categories. Typical examples include the organisation to

which an individual belongs1, the political party of a voter2, the
income level of a household3 or the functional group of a
neuron4. Quite often, the co-existence of nodes belonging to
different classes and the interactions among those classes play a
fundamental role in the functioning of a system. For instance,
economic and ethnic segregation in cities is known to be asso-
ciated with the emergence of social inequalities5,6. Similarly, the
organisation of neural cells in the brain and the intricate patterns
of relations among different functional areas are known to be
responsible for the large variety of cognitive tasks that we as
humans are able to perform7,8. However, obtaining a robust and
non-parametric quantification of the heterogeneity of class dis-
tributions, especially in systems consisting of a large number of
interconnected discrete components, is still an outstanding
problem.

The statistics of random walks on interaction graphs have been
successfully employed to study the structure of a variety of
complex systems9–12, and have been used to model and char-
acterise transportation13,14, biological15,16 and financial
systems17. And it is now established that the diffusion structure of
a graph is intimately connected with many of the meaningful
aspects of a complex network18,19, including the existence of
communities20–22, the distribution of node roles23, the global
navigability of a system24 and the variability of structural prop-
erties in temporal graphs25. Quite interesting insights about the
relation between the structure and dynamics on a network have
come from the analysis of transient and long trajectories of
random walks on graphs, including the behaviour of entropy
rate26–28, the statistics of first passage and coverage times12,29–32

and the systematic study of their fluctuations33. However, the
potential usefulness of random walks to quantify the hetero-
geneity of class distributions on networks, either in spatially
embedded systems or in high-dimensional networks, has only
recently been hinted to33–35.

We propose here a principled methodology to quantify the
presence of correlations and heterogeneity in the distribution of
classes or categories in a complex system. The method is based on
the statistics of passage times of a uniform random walk on the
graph of interconnections among the units of the system. For
instance, in the case of a social system we can construct a graph

among individuals based on the observed relations or contacts
among them. Similarly, in an urban system we can consider the
network of adjacency between census tracts or the connections
among census tracts due to human mobility flows. By normal-
ising class mean first passage times (CMFPT) with respect to a
null-model where classes are reassigned to nodes uniformly at
random, we can effectively quantify and compare the hetero-
geneity of class distributions in systems of different nature, size
and shape.

It is important to stress that, although random walks have been
widely used to identify modules and communities of nodes based
on how tightly connected they are20–22,36, here we focus on
systems whose nodes have preassigned classes that do not
necessarily coincide with their location in the graph. And we
study the dual problem of quantifying the heterogeneity and
correlations induced by a fixed and exogenous assignment of
nodes to classes. We test our framework on a variety of systems
with simple geometries and ad-hoc class assignments, and then
we use it in three real-world scenarios, namely the quantification
of polarisation in the Brexit referendum and in the US Congress
since 1926, the role of face-to-face interactions among individuals
in the spread of an epidemics and the relation between economic
segregation and prevalence of crime in the 53 US cities with more
than one million citizens.

Results
Let us consider a graph G(V, E) with ∣E∣= K edges on ∣V∣=N
nodes and adjacency matrix A= {aij}, and a given colouring
function f : V ! C; C ¼ f1; 2; ¼ ;Cg, which associates each
node i of G to a discrete label f(i)= ci. Let us also consider a
random walk on G, defined by the transition matrix Π= {πij}
where πij is the probability that a walker at node i jumps from
node i to node j in one step (see Fig. 1a). In general, Π could be
any row-stochastic transition matrix, but in the following we will
consider only uniform random walks.

The method we propose moves from the classical research on
mean first passage times (MFPT) between pairs of nodes in a
graph9–12, and focuses instead on the distribution of CMFPT, i.e.,
the expected number of steps ταβ needed to a random walker to
visit for the first time a node of a certain class β when it starts
from a node of class α (see Fig. 1a). Consider as an example the
two regular square lattices shown in Fig. 1b, c. In both graphs

Fig. 1 Characterising colour distributions in regular lattices. The statistics of the amount of time needed to a random walker to hit a node of a given class
when starting from another node of the graph encodes useful information about the presence of heterogeneity and correlations in the distributions of node
classes. a We show a sketch of the trajectory of a random walker over the grid. We indicate by π1k, π1l, π1m and π1j the one-step transition probabilities from
node 1 to nodes k, l, m, j, respectively. b The nodes of a square lattice are assigned to one of five available classes uniformly at random. As a consequence,
the time needed to a random walker to hit an orange node when starting by node 1 is comparable to the time needed when starting from node 2. c The
assignment of nodes to classes creates homogeneous clusters of nodes of the same colour. As a consequence, the time needed to a random walker to hit
an orange node when starting from node 3 is much higher than the time needed when starting from node 4. In all the panels the colour of a node
corresponds to the class it is assigned to.
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nodes are divided into five classes of equal size. In the graph in
Fig. 1b the class to which a node belongs is chosen uniformly at
random, while in Fig. 1c, instead, the nodes are associated with a
small number of homogeneous clusters. We are interested here in
the statistical properties of the symbolic dynamics Wi ¼
fci0 ; ci1 ; ¼ g of node labels or classes visited by the walk W when
starting from i. Intuitively, we expect that, for long-enough times,
all the trajectories of random walks starting from each of the N
nodes of the graph in Fig. 1b will be associated with the same
symbolic dynamics, thus becoming indistinguishable. Indeed, that
system has neither marked structural heterogeneity, since all the
nodes have the same degree (except for the nodes at the border of
the grid), nor inhomogeneity in class assignments, since the
probability for a node to belong to a certain class does not depend
on its position in the graph or on the classes of its neighbours. In
particular, a random walker starting at any node belonging to,
say, the light-blue class (see nodes 1 and 2 in Fig. 1b) will require
on average a small number of steps to hit a node in the orange
cluster, since orange nodes can be found in the vicinity of any
blue node.

If the association of nodes to classes induces compact clusters,
as in the lattice shown in Fig. 1c, then the statistical properties of
the symbolic dynamics Wi will heavily depend on the starting
node i, despite the fact that almost all the nodes have identical
degree. In particular, a random walker starting in the blue cluster
at the top-left corner of the graph (node 3) will in general require
a very large number of steps before hitting for the first time an
orange node. Conversely, a random walker starting at node 4 will
hit a node in the orange cluster in a much smaller number of
steps, just because one of its immediate neighbours is indeed
orange.

Class mean first passage times. A quantity of interest in the
study of a symbolic dynamics over graphs is the expected time
needed to hit a certain node for the first time, usually known in
the literature as the hitting time or MFPT29. We denote as Ti,α the
average MFPT from node i to any node of class α, i.e., the
expected number of steps needed to a random walk starting on i
to visit for the first time any node j such that f(j)= α. Following
the formalism to derive the MFPTs between nodes in a graph, we
can write a set of self-consistent equations for Ti,α18:

Ti;α ¼ 1þ ∑
N

j¼1
1� δf ðjÞ;α

� �
πijTj;α: ð1Þ

The analytic solution for Eq. (1) depends only on the structure
of the graph and on the colouring function f. Let us denote as Tα
the column vector of hitting times from nodes of class β ≠ α to
nodes of class α. By convention we set fTαgi ¼ 0 if f(i)= α. The
self-consistent equation for hitting times can be written as
follows:

Tα ¼ Dα þ ΠαTα

where Πα is the transition matrix of the walk where all the rows
and columns corresponding to nodes of class α are set to zero. We
denote by Dα the indicator vector of nodes belonging to class α,
and by Dα ¼ 1N � Dα the indicator vector of nodes not belonging
to class α, i.e., fDαgi ¼ 1� δf ðiÞ;α. This leads to the solution:

Tα ¼ I �Πα½ ��1Dα ð2Þ
The average Class MFPT ταβ from class α to class β is computed
as follows:

ταβ ¼
1
Nα

∑
N

j¼1
D>
α Tβ ð3Þ

where Nα is the number of nodes belonging to class α.

The return time to class α, which is the expected number of
steps needed to a walker starting on a node of class α to hit a node
of class α (including its starting point), can be computed in a
similar way. The forward equation for the hitting time to class α
from a node of class α reads:

Ri;α ¼ ∑
N

j¼1
δf ðjÞ;απij þ ∑

N

j¼1
ð1� δf ðjÞ;αÞπijð1þ Tj;αÞ ð4Þ

where the first contribution accounts for the neighbours of node i
that actually belong to class α, while the second contribution
corresponds to walks passing through immediate neighbours of i
not belonging to class α. The equation can be written in a
compact form as follows:

Rα ¼ ΠααDα þ Παα Tα þ Dα½ � ð5Þ
where Rα is the vector of return times to class α, such that
Rαf gi ¼ 0 if f(i) ≠ α, and Tα is the vector of MFPT to class α from

nodes that do not belong to class α, as above. Here we denote by
Παα the transition matrix of the walk restricted to nodes of class
α, i.e., whose generic element πij is set to 0 if either i or j does not
belong to class α. Similarly, Παα is the transition matrix restricted
to links from nodes of class α to nodes not in class α.

By solving Eqs. (2) and (5) for the grid lattice shown in Fig. 1b
we obtain the distribution of CMFPTs provided in Fig. 2a, while
for the lattice with clusters in Fig. 1c we obtain the values shown
in Fig. 2b. Notice that, as expected, the CMFPTs in the lattice
with compact clusters are in general much higher than those
observed in the same lattice with uniformly random class
assignments. Moreover, both cases we have in general ταβ ≠ τβα,
since CMFPTs depend primarily on the shape and size of clusters
and on the actual fine-grain arrangement of colours.

One could argue that the situation shown in Fig. 1b could be
potentially represented by an equivalent mean-field network
consisting of a clique of just five nodes, one for each class, and
where the probability to jump in one step from a class to any of
the another ones is equal for all the classes. However, such a
mean-field approximation (see Methods for details) only retains
information about the average probability of jumping between
two classes in one time-step, which indeed discards all the
(possibly relevant) structural information contained in the
underlying graph. In particular, in a mean-field model of C
nodes in which each class is represented as a supernode the actual
distribution of distances among classes is grossly underestimated
and flattened, thus resulting in a consequently inaccurate
underestimation of CMFPT. For instance, if we use the mean-
field approximation for the lattice with random colour assign-
ments shown in Fig. 1b, we get the solutions shown in Fig. 2c,
where the values of CMFPT between different classes are
substantially smaller than those computed above using Eq. (2).
The analysis of suitable mean-field approximations for the
computation of CMFPTs is actually quite intricate, and will be
thoroughly addressed in a forthcoming paper.

Simple geometries. We compute here the distribution of CMFPT
for some simple geometries with simple class assignments. These
examples aim at showing that CMFPT depends heavily on class
assignment and on the way nodes belonging to the same class are
arranged. In all these cases, the symmetric nature of colour
assignments will allow us to perform the computations on a
minimal weighted graph whose distribution of CMFPT is iden-
tical to that of the original system. Notice that those minimal
weighted graphs provide exact solutions for the original colour
assignment they represent, and should not be confused with
mean-field approximations.
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The first example is that of a two-dimensional square lattice
with periodic boundary conditions (a torus), whose nodes are
organised in alternate stripes of black and white nodes, as shown
in Fig. 3a. Thanks to the symmetric nature of this specific colour
assignment, a uniform random walk on that graph is effectively
equivalent to a random walk on the weighted minimal two-node
graph shown in Fig. 3b, with the transition matrix:

Π ¼
1
2

1
2

1
2

1
2

" #
The hitting time to the black node in the minimal equivalent
graph when starting from the white node can be written as
follows:

T�;� ¼ 1þ 1
2
T�;�

which gives T∘,•= 2 and, by symmetry, also T•,∘= 2.

As a second example we consider a finite chain of white nodes
surrounded by black nodes, as shown in Fig. 3c. We are interested
here in showing how the length L of a linear cluster of a given
colour influences the distribution of CMFPT across the cluster, so
we will focus on the CMFPT from nodes of class ∘ to nodes of
class •. In this case the system has a mirror symmetry, which
effectively allows us to focus on the ⌈L2⌉ nodes on either side of the
chain. The only caveat is that weighted minimal graphs associated
with chains with even length L are slightly different from those
associated with chains with odd length, as shown in Fig. 3d. For
L ≥ 6, the closed expression for the distribution of CMFPT from
each node in the chain is:

Tk;� ¼
4þ AM�1

4� BM�1

� �Yk
‘¼1

BM�‘ þ ∑
k�1

j¼1
AM�kþj

Yj�1

‘¼0

BM�kþ‘ ð6Þ

where M ¼ L�1
2

� �
, and Ak and Bk are two rational sequences

whose form depends on whether the length of the chain is even or
odd. More details about the derivation are provided in
Supplementary Note 1, where we also compute the distributions
for 1 ≤ L < 6. In Fig. 3e we report both the distribution of Tk,•
across the chain and the average CMFPT to nodes of class •.
Notice that when L≫ 1, 〈T•〉 converges to 2, which is the same
value obtained in the case of a lattice with rows of alternate
colours seen above, as expected.

As a final example we consider the infinite cylinder shown in
Fig. 3f, where the nodes in the upper M+ 1 rows are of class ∘
and those in the bottom row are of class •. The aim of this
example is to show the behaviour of CMFPT as a cluster becomes
deeper, i.e., as the nodes in the cluster of a certain class are placed
farther away from the frontier with the other cluster. For our
purposes, this geometry is effectively equivalent to the linear
chain of nodes shown in Fig. 3g, where each row of the original
graph is represented by a single node in the minimal graph, with
an appropriately weighted self-loop. We can write a set of self-
consistent equations for the hitting time to class • for a walk
started on each of the rows k= 0, 1,…,M:

T0;� ¼ 2þ 1
2
T1;�

Tk;� ¼ 2þ 1
2

Tk�1;� þ Tkþ1;�
h i

; k ¼ 1; ¼ ;M � 1

TM;� ¼ 3þ TM�1;�

ð7Þ

whose solution is:

Tk;� ¼ ðkþ 1Þð3þ 4M � 2kÞ; k ¼ 0; 1; ¼M � 1 ð8Þ
and

TM;� ¼ 3þMð5þ 2MÞ ð9Þ
The full derivation is reported in Supplementary Note 1.

In Fig. 3h we show the scaling of average MFPT to class •,
defined as follows:

hT�i ¼
1

M þ 1
∑
M

k¼0
Tk;� ¼

8M3 þ 33M2 þ 43M þ 18
6ðM þ 1Þ ð10Þ

’ 1
6

8M2 þ 25M
� 	 ð11Þ

where the approximation is accurate for M≫ 1. This means that
the average MFPT to class • scales as the square of the height of
the cylinder. In Fig. 3h we also show the scaling of the second
moment of Tk,•:

hT2
�i ¼

32M5 þ 355M4

15ðM þ 1Þ þ oðM2Þ ’ 32M4 þ 323M3

15
ð12Þ

which indicates that the standard deviation of Tk,• is a function

Fig. 2 Class mean first passage times (CMFPT) in synthetic colour
distributions. The class mean first passage time (CMFPT) ταβ is the
expected number of steps a random walk needs to reach a node of class β
when it starts from a node of class α. a The CMFPT from each class (left) to
each other one (top) in the lattice shown in Fig. 1b, while in b we have the
CMFPT between classes in the lattice with clusters of Fig. 1c. These values
are computed from Eqs. (2) and (5). c Mean-field approximation of CMFPT
in Fig. 1b based on a clique of five nodes and uniform transition probabilities
(see Methods for details).
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that grows as O(M2) as well. In other words, the deeper a cluster
the much higher the values of CMFPT to its border, and the
much wider the distribution of the CMFPT from any single node
of the cluster to the border.

Synthetic colourings in two-dimensional lattices. We study here
the distribution of CMFPTs in a two-dimensional square lattice
with N= L × L nodes. Here each node is associated with one of
two possible classes, namely • or ∘, depending on their position in
the lattice. Without lack of generality, we set the relative abun-
dance of • nodes r ¼ N�

N . Then we assign N• nodes to class •
sampling their coordinates (x, y) from a symmetric two-
dimensional Gaussian distribution centred in the middle of the
lattice, with standard deviation equal to σ:

PðxÞ ¼ 1

σ
ffiffiffiffiffi
2π

p e� x�L=2ð Þ2=2σ2 ; ð13Þ

By tuning r and σ this model allows for a continuous transition
between homogeneous distributions of colours and patterns with
strong class segregation. In Fig. 4a–f we show sample sketches of
how the spatial distribution of colours looks like as a function of σ
and r. For very large values of σ, the picture approaches a
homogeneous distribution, regardless of the relative abundance of
the two colours. As σ decreases, instead, the nodes of class • will
become more strongly clustered around the centre. The role of
the relative abundance of colours is evident from the comparison
of Fig. 4b and c, which are two configurations with the same σ
respectively for r= 0.9 and r= 0.5. In particular, we note that the
relative abundance of the two colours also has a non-trivial role in
determining the degree of mixing between the two classes, since
more ∘ nodes can be found inside the • cluster for r= 0.5 than for
r= 0.9.

A summary of the interplay between these two parameters is
reported in Fig. 4g. Since different values of r produce systems
with a different level of colour imbalance, we need to properly
normalise the values of CMFPT measured in each configuration.
We use the normalised CMFPT eτ�!� and eτ�!�=eτ�!�, whereeταβ ¼ ταβ

τnull
αβ

, and τnullαβ is the CMFPT from class α to class β in a null-

model where the structure of the graph is preserved but nodes are
assigned to classes uniformly at random, preserving the relative
abundance of each class (see Methods). The symbols in Fig. 4g
correspond to the values of eτ�!� and eτ�!�=eτ�!� obtained for a
variety of values of r and σ (the points corresponding to the
configurations in Fig. 4a–f are labelled accordingly).

For large values of σ, we expect a more homogeneous
distributions of the two colours (see Fig. 4a), and indeed we
have eτ�!� ’ 1, meaning that the relative distribution of CMFPT
from • nodes is compatible with the one observed in the
corresponding null-model. At the same time, the ratio eτ�!�=eτ�!�
is close to 1 as well, meaning that the normalised CMFPTs of the
two classes are indistinguishable. As σ decreases, the • cluster
becomes more prominent, but the actual relation between eτ�!�
and eτ�!�=eτ�!� will depend on the value of r. In particular, if r >
0.5, i.e., nodes of class • are the majority (see Fig. 4b, d), the ratioeτ�!�=eτ�!� normally remains larger than 1. This is again
expected, since a deeper cluster of • nodes causes an increase in
the CMFPT from • to ∘ nodes, along the same lines of the increase
in CMFPT observed in the simple geometry shown in Fig. 3c.
Conversely, if r < 0.5 then • nodes are interspersed within a large
cluster of ∘ nodes (see Fig. 4e), making it harder for a walker
started at a ∘ node to find a • node. This results in values of eτ�!�
larger than 1, i.e., much longer than in the corresponding null-
model, and in eτ�!�=eτ�!� < 1. There are some particular
situations (see Fig. 4c, f) in which despite the increase in eτ�!�,
the ratio eτ�!�=eτ�!� remains close to 1. This is due to the fact that

Fig. 3 Characterisation of colour distributions in simple geometries through class mean first passage times (CMFPT). a Two-colour geometry where
the nodes of an infinite lattice are organised in rows of alternate colours. Its equivalent minimal graph (b) contains only two nodes with symmetric
connections. c Two-colour geometry where a chain of L nodes of class ∘ is surrounded by • nodes. The corresponding minimal associated graph is shown in
d and is equivalent to a comb graph (the two cases of even and odd values of L are reported for clarity). e The CMFPT Tk,• of a ∘ node in the comb graph is a
function of its distance k from the endpoint, and converges to 2 as k increases . Similarly, the average CMFPT to • (denoted as 〈T•〉) converges to 2 when
the length L of the chain increases. f Two-colour geometry consisting of an infinite cylinder with M+ 1 rows of ∘ nodes, connected to a row of • nodes. Its
minimal graph (g) reduces to a chain withM+ 1∘ nodes and one • node. hWe show the first two moments of Tk,• in an infinite cylinder, as a function of the
height of the cylinder.
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in these cases the two classes are distributed in a similar fashion,
and the relative depths of the two clusters are indeed comparable.

It is worth noting that the ðeτ�!�;eτ�!�=eτ�!�Þ phase space
provides a very intuitive interpretation and a powerful visualisa-
tion of the heterogeneity of distributions of two classes, and it
would thus be quite useful to characterise the spatial hetero-
geneity of generic binary feature distributions and point
statistics37,38.

Polarisation and segregation in voting dynamics. Among the
variety of social dynamics that exhibit complex behaviours, voting
is possibly one of the most interesting. And not just because
anything concerning politics can spur endless and ferocious dis-
cussions, but also because voting patterns are the result of the
interplay of a variety of factors that are generally difficult to
model in an accurate way, including socio-economic and cultural
background and spatial and temporal correlations2,39. We focus
here on two examples where voting dynamics result in the
emergence of heterogeneity and correlations, namely the spatial
clustering of Leave/Remain voters in the Brexit referendum and
the polarisation of opinions of roll-call votes in the US Congress.

Spatial heterogeneity of Brexit vote. Here we show how inter-class
MFPTs can be used to quantify the spatial segregation of voting
patterns. We consider the results of the so-called Brexit refer-
endum, held in the United Kingdom in 2016 to decide whether to
leave the European Union. The referendum had a turnout of
72.2%, and 51.9% of the voters expressed the preference to leave
the EU. The results of the referendum have been analysed in
several works40 that have outlined interesting correlations of
voting preference with a variety of socio-economic indicators,
including age, income level, unemployment and level of
education41. One of the most intriguing aspects of the results was
that the vote was highly segregated. Indeed, highly urbanised
areas, as well as the majority of constituencies in Scotland, voted
preferentially for Remain, while the rest of the country expressed
a preference to Leave.

We constructed the planar graph of constituencies in Great
Britain (i.e., all the mainland constituencies in England, Wales
and Scotland, leaving out the few constituencies in Northern

Ireland), where each node is associated with a constituency and a
link between two nodes exists if the corresponding constituencies
border each other. We assigned each node to either Leave or
Remain according to which party won the majority of votes in the
corresponding constituency. We then computed the normalised
average CMFPT pattern for Remain (R) and Leave (L), we
obtained the values shown in Table 1. It is worth noting that
while the normalised return time to each class is close to 1 in both
cases, i.e., it is consistent with the corresponding null-model
where classes are reassigned to nodes uniformly at random, the
proper inter-class MFPTs exhibit a pronounced disparity between
the two classes. In particular, the normalised CMFPT from Leave
to Remain eτLR is much smaller (2.827) than its counterpart eτRL
(12.304). This means that, on average, in this graph is much easier
for a random walker starting at a node whose citizens expressed a
majority of votes for Leave to arrive at a node where people
preferentially voted for Remain, than the other way around. Or,
putting it in another way, it was much easier for a Leave
supporter wandering through the graph to meet a Remain
supporter than the other way around.

A possible interpretation of this result is the presence of a
structural reinforcement of segregation. Indeed, if we assume that
voters could influence each other by discussing the matter of the
referendum with other voters holding opposite opinions, then a
person determined to vote for Remain would have had a much
harder time finding a Leave supporter to convince. On the

Fig. 4 Characterisation of colour distributions in 2D lattices. a–f Snapshots of the Gaussian cluster model for different values of the parameters σ and r in
a regular 2D lattice with 60 × 60 nodes and two colours • and ∘. a σ= 28 and ratio= 0.5; b σ= 14 and ratio= 0.9; c σ= 14 and ratio= 0.5; d σ= 9 and
ratio= 0.7; e σ= 8 and ratio= 0.1; f σ= 7 and ratio= 0.3. g Transition in the coordinates eτ�!�=eτ�!� as a function of eτ�!� for different values of σ (marker
colour) and the ratio between colours (type of marker). Note that σ accounts for the dispersion of • nodes, with higher values corresponding to a larger
dispersion and low clustering.

Table 1 Normalised class mean first massage times
(CMFPT) between constituencies that voted for Leave (L) or
Remain (R) in the Brexit referendum if the class assignment
is done according to the option with the majority of
the votes.

eταβ L R

L 0.976 2.857
R 12.304 1.008

Note that eτLR is almost five times smaller than eτRL .
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contrary, Leave supporters would have been able to find Remain
supporters much more easily, as Leave constituencies are on
average closer (in terms of MFPT) to other Remain constituencies
than the other way around.

However, this picture is completely reversed if we take into
account the actual percentage of votes for Leave and Remain in
each constituency, instead of noting only which party got a
majority. We considered an ensemble of colour assignments
obtained by assigning colour L to node i with probability pL(i)
equal to the percentage of Leave voters in constituency i. For
instance, if in a given constituency i we had 45% of votes for
Leave, then node i will be assigned to class L with probability 0.45,
and to class R with probability 0.55. We computed the inter-class
MFPTs in this ensemble of colourings, and normalised them by
the corresponding values in a null-model where we reassigned
vote proportions among nodes uniformly at random. The results
are reported in Table 2.

It is evident that, by taking into account the actual distribution
of voters in each constituency, the pattern of inter-class MFPT
becomes practically indistinguishable from the one we would
observe in the corresponding null-model. This means that there
was indeed no significative spatial segregation effect in the Brexit
vote, and indicates that indeed the reasons in support for Leave or
Remain were most probably linked to socio-economic character-
istics, rather than to geographical ones.q

Polarisation of roll-call votes. In this section we show how eταβ can
be used to quantify the level of polarisation in roll-call votes in the
US congress42–44, and to keep track of its evolution over time. We
considered the full data set of affiliation and single roll-call votes
of the members of the US Congress, and we built a weighted
graph among members of each chamber in each term between
1929 and 2016, where the weight of the edge connecting two
nodes is equal to the number of times the votes of the corre-
sponding members in a roll call coincided. We assigned each
node to either Republicans, Democrats or Others, according to
the party to which they belonged, but we focused exclusively on
the CMFPT between Republicans and Democrats, since members
of Other parties are normally a rather small minority, if present
at all.

It is worth noting that, at difference with the synthetic
networks we have studied so far, these networks do not admit a
natural embedding in a metric space. Intuitively, we expect that
members of both the Senate and the House of Representatives
would, in general, be more likely to vote as other members of
their party, giving rise to somehow definite clusters. However, the
situation is not always that clear. In Fig. 5a–c we show the
networks of Senate members observed in three different terms
from the last 30 years. Indeed, it is evident that stronger
connections between members of the same party appear as time
passes. Moreover, when comparing the 112th and 115th
congresses, we can see that the party with majority tends to be

more heavily connected than the other one. This is also reflected
in the relative size of nodes, which is proportional to the
corresponding CMFPT to the other party. Just by looking at these
three graphs we would be inclined to think that the level of
polarisation in the US Congress seems to increase over time.

For each graph, we also show the distribution of normalised
MFPTs eTi;α from each node i to each of the parties, respectively,
for Democrats and Republicans. By looking at these distributions
on the same scale, it is evident that the polarisation, intended as
the relative distance between nodes of different parties as
measured by inter-class MFPT, has increased substantially in
the last 30 years. In particular, the separation between the intra-
and inter-class MFPT distributions has increased dramatically, to
the point that in the 115th Congress the distributions of intra-
class and inter-class MFPT are clearly separated. When compar-
ing the 112th and 115th legislatures we also observe that the
changes in the shape and position of the MFPT distributions
seem to depend on which party holds the majority of the seats. In
particular, when Democrats have the majority, the CMFPT to
Republicans across nodes is higher than from Republicans to
Democrats. Conversely, when Republicans are ruling the situation
is inverted, pointing out that the party that holds the majority
seems to be the main driver of polarisation.

In Fig. 5d, e, we show the evolution of the average eταβ between
the two main US parties in both the Senate and the House of
Representatives. The dashed lines indicate the intra-class MFPT,
and indeed support the intuition that polarisation has increased
dramatically in recent years. The plots of return times eταα instead
(solid lines) are far more stable, and the small oscillations we
observe depend only on which is the ruling party, since that one
will normally yield lower values of eταα.

We quantify the overall polarisation in the Senate and the US
House of Representatives by computing the average between the
inter-class passage times ðeτD!R þ eτR!DÞ=2, which provides an
estimate of how close are the voting behaviours of the two main
parties in each Congress. The temporal evolution of ðeτD!R þeτR!DÞ=2 is shown in Fig. 5f, where each point is coloured
according to the party holding the majority of seats in that term.
Again, we observe a clear increase of polarisation after the 1970s
in both branches of the Congress, which is in very good
agreement with prior works42–44.

We inspect next if, as hypothesised, the increasing polarisation
observed in Fig. 5f is due to the party holding the majority of seats
in each term. We computed the ratio of inter-class passage timeseτMaj!Min=eτMin!Maj, where eτMaj!Min is the normalised inter-class
MFPT from the party with the majority to the party with the
minority and eτMin!Maj is the normalised inter-class MFPT from
the minority to the majority. The values of eτMaj!Min=eτMin!Maj

(Fig. 5g) are indeed relatively stable over time, with the vast
majority of points lying along or above the solid grid line
corresponding to absence of polarisation. This indicates that in
most of the terms over the last 80 years the party holding the
majority has been the main driver of polarisation. These results
demonstrate that eταβ is indeed a robust measure of polarisation.
We argue that the same framework could be easily used in other
contexts, including the polarisation of discussions in (online)
social networks45,46 or the flip of candidates between different
political parties47. In particular, it could be also possible to
identify those agents or individuals who contribute more to
polarisation by looking at the ranking of nodes by their values of
CMFPT to other classes.

Contact assortativity and relation with epidemics spreading.
Understanding the mixing between groups of individuals in a

Table 2 Normalised class mean first massage times
(CMFPT) between constituencies that voted for Leave (L) or
Remain (R) in the Brexit referendum if we consider the
ensemble of colour assignments where a node is assigned to
Leave (Remain) with a probability equal to the fraction of
voters supporting Leave (Remain) in that constituency.

eταβ L R

L 1.018 1.057
R 1.090 0.981

The resulting normalised CMFPT is not distinguishable from the null-model expectation.
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network can provide a lot of information about the properties of
social dynamics, including the role played by different individuals
in the transmission of diseases1,48–50. As a second case study, we
use CMFPTs to identify how different groups of people interact in
three face-to-face contact networks, namely the contacts in a
hospital, in a school and in an enterprise, obtained from the
SocioPatterns project data set1,51–53.

The definition of groups or classes is specific of each system,
e.g., the role of a person in the case of hospitals, the class in the
case of schools and the department in which a person works for
the network of contacts in an enterprise environment. The weight
of the undirected edge connecting two nodes in each graph is
equal to the number of contacts between the corresponding
individuals. By looking at the dynamics of two simple epidemic
models, namely a susceptible–infected–susceptible (SIS) and a
susceptible–infected–recovered (SIR), we show here that the
distribution of CMFPT in each graph provides relevant informa-
tion about the dynamics of disease spreading in the system. For
both epidemic models, if an individual i is infected it selects one
of its neighbours j with probability wij/∑jwij and infects it with a
probability β. Afterwards, each of the infected individuals will
either recover with probability μ in the case of the SIR model, or
become susceptible again in the case of the SIS model.

In Fig. 6a–c, we report the matrices of eταβ respectively for the
school, the enterprise and the hospital. In the school network, we
observe a consistent pattern of lower values of normalised intra-
CMFPT eταα, which is most probably due to the much higher
number of contacts among individuals in the same classroom
compared to individuals in other classrooms. Notwithstanding
this general pattern, some of the classes are more tightly

connected than other close-by classes, as in the case of ce1b
and ce2b. Also in the case of the enterprise network we
distinguish a clear pattern where for each class α the value ofeταα is normally much smaller than eταβ for α ≠ β. Yet, there are
some interesting deviations, as in the case of SFLE. This
department plays a similar role to that of teachers in the case
of the school network (i.e., contain people who tend to interact
with more than one class), and all the other departments exhibit
similar values of inter-CMFPT to that class. Finally, in the
hospital, contact network patients seem to be the most isolated,
while the paramedical staff and administratives display lower
CMFPT to all the other classes.

As we show in the following, we found a quite interesting
relation between the pattern of CMFPT in each network and the
spreading dynamics on the same graph. We ran a large number of
simulations of the SIR and SIS models, seeding the disease in each
of the nodes of a network, and calculating the number of time
steps needed to the spread to reach the peak in each of the classes,
as a function of the group to which the seed node belongs. In
Fig. 6d–f we report, as a function of eταβ, the average number of
steps until the peak of the epidemic tpeak in class β is reached in a
SIR model where the seed is a node in class α. Interestingly, we
found that the time to the peak in class β is an increasing function
of eταβ, and the rank correlation between the two variables is
always pretty large and significant in the three systems.

The results on the SIS model somehow complement the picture
observed in the case of SIR. In Fig. 6g–i we show that the class
mean return times eταα are strongly correlated with the fraction ρα
of infected individuals of that class in the stationary state. In

Fig. 5 Roll-call polarisation in the Senate and the US House of Representatives. a–c Three networks among the members of the Senate and the
corresponding distribution of normalised class mean first passage times (CMFPT) from the each node (member) i to each of the parties α. a 101st
Congress (1989–1990), b 112th Congress (2011–2012) and c 115th Congress (2017–2018). Nodes correspond to republican (red) and democrat (blue)
senators, while the width of each edge is proportional to the number of calls in which the corresponding two members voted the same. d–e Temporal
evolution of the normalised CMFPT eταβ from class α to class β (in d the Senate and in e the US House of Representatives, respectively). f Temporal
evolution of polarisation in the Senate and the US House of Representatives, as measured by ðeτD!R þ eτR!DÞ=2 where D stands for Democrats and R for
Republicans. Triangles correspond to the House of Representatives and circles to the Senate and their colour is set to red when Republicans hold the
majority and blue when Democrats hold it. g Temporal evolution of eτMaj!Min=eτMin!Maj where eτMaj!Min is the normalised CMFPT from the party holding the
majority to the minority one, while eτMin!Maj is the normalised CMFPT from the party in minority to the one holding the majority. The fact that this quantity
is larger than one in most of the terms indicates that the party with a majority is the main driver of polarisation.
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particular, the lower the value of eταα, the larger the fraction of
infected individuals in class α in the endemic state, suggesting
that the steady-state dynamics is indeed predominantly driven by
interactions among individuals in the same class. In Supplemen-
tary Table 1 we report these correlations for a wider range of β
and μ. As shown in detail in Supplementary Figs. 1 and 2, the
observed correlations between ρα and ~ταβ are consistently higher
than the correlation with either the total number of edges
between two classes or the total fraction of edges from class α to
class β. Those results as well as the correlations with a wider range
of parameters and contact networks can be found in Supple-
mentary Note 2.

Residential and dynamical urban economic segregation. Socio-
economic segregation has an enormous impact on city livability,
and many different measures to quantify it have been proposed in
the past years. However, most of those measures, with a few
notable exceptions54, focus on first-neighbour information, and
disregard the role of the mobility of citizens55–58. We test here the
potential of CMFPTs to quantify urban economic segregation in
large metropolitan areas, taking into account the daily mobility
patterns of individuals.

We considered the 53 US cities with more than one million
inhabitants, and census information about the number of
households in each of the 16 income categories defined by the
US Census Borough (see Supplementary Table 2 and the 2017
American Community survey59), where Class 1 is lowest income
and Class 16 is the highest one. We constructed two different
graphs among census tracts, namely the graph of tract adjacency
and the graph of daily workplace commuting60. The former graph
is undirected and unweighted, and is better suited to measure the
so-called residential segregation, i.e., the extent to which people
with similar levels of income tend to live in close-by areas. The
commuting graph, instead, is directed and weighted so that
the weight of a link going from i to j is given by the sum of the
residents in i working in j and the residents of j working in i in
order to mimick the daily mobility of citizens.

The fact that households of more than one category are present
in each block group prevents us from assigning a single class to
each unit, so we computed the distribution of CMFPT by
averaging over a large number of realisations of class assignments.
In each realisation, the class of each node in the graph is sampled
from the distribution of household in the corresponding census
tract, so that the probability that node i is assigned to class α in a

Fig. 6 Class mean first passage times and the spread of epidemics in contact networks. a–c Class mean first passage times in contact networks
corresponding to a school, a hospital and an enterprise. Each acronym corresponds to a class in the case of the school, a role in the case of the hospital and
a department in the case of the enterprise. d–f Relation between the normalised class mean first passage times from class α to class β eταβ and the time
steps until the peak of the epidemic tpeak in a susceptible–infected–recovered (SIR) model. g–i Relation between the return times eταα and the fraction of
infected individuals in each class in the stationary state ρα in a susceptible–infected–susceptible (SIS) model. Simulations were performed using the
parameters β= 0.7 and μ= 0.1. rp stands for the Pearson correlation coefficient while rs for the Spearman correlation coefficient. The significance is
determined by the p value (*p < 0.05, **p < 0.01, ***p < 0.001).
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given realisation is equal to mi,α/∑∀βmi,β, where mi,α is the
number of people of category α living in node i. We took a
slightly different approach for the commuting graph as described
in34, where the population attributed to node i is a combination
of the resident population at i and the number of commuters
working at i:

emi;α ¼ mi;α þ∑
j
ωji

mj;α

∑8βmj;β
; ð14Þ

where ωji is the weight from node j to node i in the commuting
graph, which is equal to the total number of people who live in j
and commute to their workplace in i. By doing so we take into
account the fact that commuters effectively contribute to the
diversity of an area, as they spend a considerable amount of time
in there and actually interact with other commuters coming from
different areas as well. For each realisation of a class assignment,
we run 104–106 random walkers from each of the nodes. Then,
we obtain the CMFPT ταβ for each ordered pairs of classes (α, β)
by averaging over all nodes and realisations of class assignments,
and we analyse the normalised CMFPT eταβ ¼ ταβ=τ

null
αβ .

In Fig. 7a, b we show the profiles of eταβ from each of the 16
classes computed over the adjacency graph, respectively, for
Detroit and Boston. It is worth noting that the categories at the
two extremes (i.e., the poorest and the wealthiest ones) exhibit a
quite similar pattern in the two cities. They are both characterised
by larger values of CMFPT from any of the other classes, meaning
that those two classes are in general more isolated from the rest of
the population, with most of the high-income classes appearing
slightly more isolated in Detroit than in Boston. Moreover, in
both cities all classes have a virtually identical value of CMFPT to
Class 9, and very similar values to Classes 8 and 10, which
indicates that these middle-income classes play a pivotal role in
the spatial distribution of income. However, despite the fact that
the qualitative behaviour is similar in the two cities, there are

some noticeable quantitative differences. First of all, the values of
normalised CMFPT are significantly larger in Detroit than in
Boston. Second, in Detroit we observe a strong dependence of
CMFPT on the class of the starting node, while in Boston the
average number of steps required to reach a class below 12 is
almost constant regardless of the category of the origin node.
These important quantitative differences would suggest that the
spatial distribution of income in Detroit is more heterogeneous
than in Boston, a conclusion which is in line with the classical
literature about economic segregation in the US3,61–63.

However, in large metropolitan areas most of the daily
activities of individuals happen far away from their home, due
to urbanisation pressure and to decentralisation of productive
sectors, so that residential segregation can hardly tell the whole
story. Indeed, in the last years there has been an increasing
interest in the quantification of social and economic segregation
by taking into account mobility patterns64–66. This is easily
doable within our framework by letting the walkers move on the
mobility graph instead of the adjacency network between census
tracts. We have computed eταβ upon the mobility graph of each
US city in the data set, as obtained from workplace commuting
information. The results are shown in Fig. 7c, d, and provide an
interesting picture of the differences between residential and
mobility-focused segregation. First of all, in both cities eταβ does
not depend too much on the origin class α but instead on the
destination class β. This is most likely due to the fact that people
of different backgrounds commute to similar areas, i.e., the city
centre and industrial sites. Still, both cities display a distinct
organisation of CMFPTs. In Detroit low-income classes are much
more isolated (higher eταβ) compared to high-income classes,
which exhibit systematically lower values of eταβ. In the case of
Boston, instead, eταβ is almost flat with no important dependence
on either the source or the destination class.

Fig. 7 Class mean first passage times and urban income inequality. a–d Normalised class mean first passage times from class α to class β eταβ between
each of the income categories in Detroit and Boston when computed over the adjacency graphs (residential segregation, a and b) and the commuting
graphs, respectively (dynamical segregation, c and d). Each class corresponds to an income bracket provided by the US census: Class 1 is the poorest, while
Class 16 is the wealthiest. See Supplementary Table 2 for details on the average income of each class. e Changes in the ranking of the residential and
dynamical 〈ξ〉 starting with higher values on top and lower values at the bottom. f–h Correlation between the index of segregation 〈ξ〉 in US cities and the
levels of f) violent crimes, g) robbery crimes and h) assault crimes per capita. rp stands for the Pearson correlation coefficient and the significance is
determined by the p value (*p < 0.05, **p < 0.01, ***p < 0.001).
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The profiles of eταβ that we show in Fig. 7a–d provide an overall
clear picture of the distribution of CMFPT in a metropolitan area,
but do not allow us to easily compare two cities in a systematic

manner. Hence, we devised two synthetic indices ξout and ξin that
summarise the information on spatial income heterogeneity in a
single number. The idea behind these quantities is that an income
class α is more heterogeneously distributed if there is a large
difference between the CMFPT from α to the income classes
immediately adjacent to α and the median CMFPT from α to any
other class. We consider the discrepancy between the local and
global median of CMFPT from class α:

ξoutα ¼ jeτoutαnn
� eτoutα j

where eτoutα is the median of eταβ when α ≠ β and eτoutαnn
is the median

of eταβ to its nearest neighbours β∈ {α− 1, α, α+ 1}, if α= 1 or α
= 16 we only consider the median between, respectively, {α, α+
1} or {α− 1, α}. Similarly for the discrepancy between local and
global median of CMFPT to class α:

ξinα ¼ jeτinαnn � eτinα j
where eτinα and eτinαnn are now the median of eτβα when α ≠ β and the
median of eτβα from its nearest neighbours β∈ {α− 1, α, α+ 1},
respectively.

In Fig. 7e we show the ranking of US cities induced by

hξi ¼ ðξin þ ξoutÞ=2, which is the average discrepancy between
local and global CMFPT from/to each income class. In general,
larger values of 〈ξ〉 indicate more pronounced levels of
segregation. On the left-hand side of Fig. 7e the cities are ranked
according to 〈ξ〉 in the adjacency graph of census tracts, while on
the right-hand side the ranking is based on 〈ξ〉 in the commuting
graph. Interestingly, Detroit is the first US city by residential
segregation, with other cities traditionally known for their high
levels of segregation like Milwaukee and Cleveland following
closely. Conversely, Boston is at the bottom of the ranking.
However, the ranking changes substantially if we consider instead
the mobility graph, and what we call dynamic segregation, as
reported in the right-hand side of Fig. 7e. For instance, Baltimore
(which is ranked pretty high for residential segregation) gets
relegated to a mid-rank position, while cities like Buffalo or

Indianapolis, where residential segregation is not that high, get to
the top of the ranking of dynamic segregation.

The most interesting aspect of 〈ξ〉 is that it captures some of
the most undesirable consequences of income segregation,
namely the incidence of different types of crimes obtained
from67. In Fig. 7f–h we report the correlation between incidence
per capita of assaults, violent crimes and robberies with the levels
of residential segregation measured on the adjacency and on the
commuting graph of the cities in our data set. Interestingly, both
indices display a significant correlation with all three types of
crime. Moreover, the indices computed over the commuting
network display a stronger correlation in all three cases,
reinforcing the idea that quantifying segregation by disregarding
mobility can indeed lead to distorted conclusions. For instance,
the city that appears on the top of the dynamical segregation
ranking (Memphis) is the one displaying the highest incidence of
violent crimes per capita among the largest US cities, although it
is placed in the second quartile of the ranking by residential
segregation. As a comparison, we report in Supplementary Note 3
and Supplementary Figs. 3–5 the correlations of traditional
metrics of segregation (i.e., the Spatial Gini coefficient and the
Moran’s I index) with the same crime indicators, showing that
they are not able to attain values as high as those obtained with
〈ξ〉. Besides the lower correlations, it is also important to note that
both the Spatial Gini Coefficient and the Moran’s I index are
symmetric quantities, and as such they fail to capture the intrinsic
asymmetry between income classes revealed by Fig. 7a–d.

We can extend the framework developed in Fig. 4 to the case of
multiple classes or, in the present case, income categories. To do
so we average the profiles eταβ to obtain the following quantities:

eτα!O ¼ ∑β≠αeταβ
Ni�1 ;

eτO!α ¼ ∑β≠αeτβα
Ni�1 ;

that are, respectively, the average CMFPT from class α to all the
other classes and from all the other classes to class α. Here Ni

corresponds to the total number of income branches in a city. For
a given city, we can put each class α in the (eτα!O;eτα!O=eτO!α)
phase space, as shown in Fig. 8a for each of the income classes in
Detroit and Boston (here eτα!β is calculated on the adjacency
graphs). As noted previously, Boston exhibits lower levels of
segregation than Detroit, and indeed most of the classes in Boston

Fig. 8 Characterisation of residential segregation in Boston and Detroit through class mean first passage times (CMFPT). a Position in the
(eτα!O;eτα!O=eτO!α) phase space of each of the income classes in Boston (shades of blue) and Detroit (shades of green). Here eτα!O stands for the average
normalised CMFPT from a class α to the rest of classes and eτO!α from the rest of classes to a class α. b–d Distribution of the probability of finding a class α
in each census tract of Boston, respectively for Class 1 (b), Class 8 (c) and class 16 (d). e–g Distribution of the probability of finding a given class α in each
census tract of Detroit, again for Class 1 (e), Class 8 (f) and Class 16 (g). Class numbering goes from the most deprived (Class 1) to the wealthiest one
(Class 16).
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(in shades of blue) are clustered around the point (1, 1), and are
associated with lower values of eτα!O that in Detroit (shades of
green). The classes in Detroit, instead, display larger values ofeτα!O and a larger variability along the y-axis. Still, both cities
show a similar qualitative behaviour: eτα!O=eτO!α is smaller than 1
for low-income classes, increasing above one for intermediate
income classes, and decreases again for higher income classes.
Such a transition could be explained by the fact that middle-
income classes are in general more homogeneously distributed
across a city, while low-income and high-income ones tend to
form isolated clusters. If middle-income classes are fairly
distributed across the city, they are easy to reach from the rest
of classes but for them reaching low- and high-income classes is
much harder, which leads to eτα!O >eτO!α. To validate this
hypothesis, we show in Fig. 8b–g the probability of finding a
given class α in a spatial unit pα, respectively for Class 1 (b–e), 8
(c–f) and 16 (d–g) in Boston (b–d) and Detroit (e–g). Indeed,
Class 1 (extremely low income) seems to be clustered around the
centre of both cities, and especially so in Detroit, while Class 16 is
mostly concentrated in the peripheries. Notice that Class 8
(median income levels) does not display any clearly visible
isolation. We provide the location of the cities studied in the
(eτα!O;eτα!O=eτO!α) for several income classes in Supplementary
Fig. 6.

Overall, our approach to spatial segregation based on the
diffusion of random walks is not only a natural extension of the
latter multi-scalar approaches introduced to characterise residen-
tial segregation68, but it also allows us to define a dynamical
segregation that includes mobility into the analysis as it has been
recently discussed for instance in refs. 64,66.

Conclusions
We have shown here that the information captured by the dis-
tribution of inter-class MFPTs can be used not just as a way to
detect the presence of anisotropy and correlations in the prop-
erties of nodes, but also as a reliable proxy for the dynamics and
emergent behaviours of a complex system. One of the most
interesting aspects of the measures of heterogeneity, polarisation
and segregation that we have introduced in this work is that they
take into account microscopic, meso-scopic and global relations
among classes, due to the fact that in principle random walks
integrate information about paths of all possible lengths. Another
relevant property of the measures of segregation based on
CMFPT is that they are non-parametric and correctly normalised
with respect to a meaningful null-model, hence allowing us to
compare on equal grounds the heterogeneity of class distributions
in systems of different sizes, which is where most of the classical
indices of segregation fail56,68. Even more importantly, the pro-
files of inter-class MFPTs are not symmetric with respect to
classes, and provide fine-grained information about which classes
are most responsible for the emergence of polarisation and het-
erogeneity. In this respect, it would be worthy exploring how the
simple measure of polarisation that we proposed can be extended
to the case of more than two classes.

The fact that measures of class heterogeneity based on random
walk statistics correlate quite well with some of the intrinsic
dynamics happening in social networks (i.e., the spread of an
epidemic) and with some other exogenous processes mediated by
the underlying graph (i.e., the incidence of crime in a city) con-
firms that the profiles of CMFPT are a useful toolbox for targeted
mitigation of the undesired effects of these dynamics. For
instance, the groups of a social network that are more central
according to eταβ might be the best candidates for early vaccina-
tions aiming at slowing-down an epidemic. At the same time, the
definition of dynamical segregation based on walks on the

mobility graphs, and the fact that it correlates quite substantially
with crimes, potentially paves the way for a re-definition of the
traditional role attributed to residential segregation, in favour of a
more balanced view that takes into account the activity patterns
of citizens together with the spatial distribution of their dwellings.

The generality of the methodology proposed in this paper and
its applicability to different classical problems in complexity sci-
ence establish a concrete link between classical statistical physics
and modern complexity science, and have the potential to provide
new interesting insights about the relation between structure and
dynamics of complex systems.

Methods
Mean-field approximation. The expressions for CMFPT and class return time
provided in Eqs. (2) and (5) are exact, but they have the drawback of being
computationally intensive for graphs with a large number of nodes. It is possible to
construct C-class mean-field approximations of these expressions, by representing
the behaviour of all the nodes of a class with a single node, and looking at the graph
of node classes. If we denote by παβ the probability for a walker to jump in one step
from any node of class α to any node of class β, the general mean-field equation for
CMFPT reads:

TMF
βα ¼ Dα þ ∑

γ≠α
πβγTγα

which can be written in compact form as follows:

TMF
α ¼ Dα þ ΠαT

MF
α ð15Þ

where by definition fTMF
α gα ¼ 0 and Πα is the transition matrix where the row and

column corresponding to class α are set equal to zero as above. Notice that παβ is
the total fraction of edges from nodes of class α to nodes of class β,παα, defined as
follows:

παβ ¼
eαβ

∑βπαβ
α≠ β

2eαβ
∑βπαβ

α ¼ β

8<: ð16Þ

where eαβ is the total number of edges from nodes of class α to nodes of class β.
Solving Eq. (15) for TMF

α we obtain:

TMF
α ¼ I � Πα

� ��1
Dα

Notice that this equation is formally identical to Eq. (2), with the only difference
that it deals with MFPTs from all other classes to class α, while Eq. (2) provides the
MFPTs from all the nodes in other classes to class α.

Similarly, the return times in the C-class mean-field approximation can be
computed staring from Eq. (4) for each of the classes, obtaining:

Rα ¼ 1þ ∑
β≠α

παβTβα ð17Þ

Normalisation of CMFPT distributions. As we will see in the following sections,
the statistics of CMFPT depend substantially on the shape, size, and organisation of
class assignments. To allow a fair comparison of CMFPT in systems with different
sizes and shapes, we compute the normalised inter-class MFPT eταβ ¼ ταβ=τ

null
αβ .

This quantity is the ratio between the expected number of time steps needed to a
walk that starts on a node of class α to reach a node of class β for the first time, and
the corresponding value in a null-model where classes are assigned to nodes
uniformly at random, by preserving their relative abundance. Notice that if classes
are distributed uniformly across the system, then eταβ � 1; 8α; β, while in the
presence of spatial correlations eταβ will deviate from 1. By using eταβ we properly
take into account several common confounding factors, including an uneven
abundance of colours, differences in size and shape and the effect of borders, thus
making it possible to compare different systems on common grounds. Depending
on the size of the system, the computation of τnullαβ is based on the average over
103–105 independent assignments of classes to the nodes of the original graph.

Computation of CMFPT distributions in real-world networks. In the following
we will compute and use the distribution of CMFPT in a variety of synthetic and
real-world networks. If a system is naturally represented by an unweighted net-
work, the elements of the transition matrix of the random walker will be set to
πij ¼

aij
ki
, where aij= 1 is an edge from node i to node j, and ki=∑jaij is the (out)

degree of node i. If the network is weighted, instead, the elements of the transition
matrix will be πij ¼

wij

si
, where wij is the weight of the edge connecting node i to

node j, and si=∑jwij is the (out)strength of node i. For networks with up to N ~
104 nodes, we solved Eqs. (2) and (5) exactly, using standard linear algebra
packages. For larger graphs we reverted instead to Monte-Carlo simulations, where
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we estimated the value of Ti,α for each node i of the graph as the average over
104–106 random walks originating at that node, and then obtained ταβ using Eq. (3).

Data availability
The rollcall data were obtained from69. The contact networks used to model the epidemic
spreading from51. The income data in US cities from59, the commuting data from60 and
the crime data from67. All the correspondence should be addressed to V.N.

Code availability
The programmes to compute class mean first passage times are available at https://mygit.
katolaz.net/covid_19_ethnicity/rw-segregation and can be used, modified and distributed
under the terms of the MIT/X11 Open Source License.
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