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Fluctuations and like-torque clusters at the onset of
the discontinuous shear thickening transition in
granular materials
S. H. E. Rahbari1,2✉, Michio Otsuki3 & Thorsten Pöschel 4✉

The main mechanism driving rheological transitions is usually mechanical perturbation by

shear — an unjamming mechanism. Investigating discontinuous shear thickening is chal-

lenging because the shear counterintuitively acts as a jamming mechanism. Moreover, at the

brink of this transition, a thickening material exhibits fluctuations that extend both spatially

and temporally. Despite recent extensive research, the origins of such spatiotemporal fluc-

tuations remain unidentified. Here, we numerically investigate the fluctuations in injected

power in discontinuous shear thickening in granular materials. We show that a simple

fluctuation relation governs the statistics of power fluctuations. Furthermore, we reveal the

formation of like-torque clusters near thickening and identify an unexpected relation between

the spatiotemporal fluctuations and the collective behavior due to the formation of like-

torque clusters. We expect that our general approach should pave the way to unmasking the

origin of spatiotemporal fluctuations in discontinuous shear thickening.
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As proposed by Liu and Nagel1, the dynamics of frictionless
particles with elasticity, such as granular media, gels, and
emulsions, seizes at high-volume fractions above a jamming

density ϕ > ϕJ. The dynamics in a jammed state can be rejuvenated
by shearing, and rheology describes the response of matter to
shearing. At low flow rates, _γ ! 0, and below jamming, particulate
matter exhibits two different rheologies: (1) inertia-dominated
flows, such as granular media2–5, show quadratic-Bagnold
rheology6, σxy � _γ2, and (2) in overdamped systems such as
emulsions, in which inertia plays no role, the Newtonian regime is
recovered7. In the Newtonian regime, shear stress is linearly related
to the flow rate, σxy � _γ. Above jamming, the dynamics is arrested,
and a threshold stress, σY, must be overcome to invoke the flow. In
this phase, the relationship between σxy and _γ is σxy ¼ σY þ k _γn,
where k and n are constants. As a result, the viscosity, η ¼ σxy= _γ,
decreases as a function of rate. This behavior, known as shear
thinning, is crucial in technological applications, because shear
thinning facilitates the pumping of gels and emulsions.

Counterintuitively, shear may act as a jamming mechanism for
granular media. Jamming by shear, or shear jamming (SJ), was
originally observed in experiments on granular materials under
quasi-static shear, in which jammed states are induced when the
shear strain exceeds a critical value8,9. This situation changes
when the system is subjected to a steady shear: for sufficiently
dense granular materials, there exists a critical rate at which the
viscosity drastically increases10. This abrupt increase in viscosity
at a critical rate is generally called discontinuous shear thickening
(DST). Whether SJ and DST are related remains unclear11.

Likewise, DST occurs in a wide range of complex fluids, such as
Brownian and non-Brownian suspensions12. In suspensions, the
transition results from an interplay between a stabilizing
mechanism and frictional contacts due to the roughness of par-
ticles. A stabilizing mechanism provides a stress scale for the onset
of the transition: when the shear force exceeds this threshold
stress, the system undergoes DST. Moreover, at low flow speeds,
the stabilizing mechanism keeps particles apart. At high flow
speeds, when the threshold stress is overcome by the shear forces,
a proliferation of frictional contacts results in an abrupt increase in
viscosity by more than an order of magnitude—the hallmark of
DST13. This behavior is well captured by the Wyart–Cates model,
which describes DST as a transition from frictionless to frictional
rheologies, owing to the proliferation of frictional contacts14. The
stabilizing mechanism is system dependent; however, the frictional
contacts are essential for DST15.

The stabilizing mechanism is well understood in suspensions:
(1) in non-Brownian suspensions, this mechanism is usually a
repulsive interaction, such as electrostatic repulsion of double
layers15–17, and (2) in Brownian suspensions, this role is played by
thermal forces18. However, the origin of the onset stress of DST in
granular materials is elusive, and consequently DST is not well
understood in granular media. Our results shed light on this issue.

Despite the different mechanisms underlying DST in all the
aforementioned soft material systems, DST has one consistent aspect:
near the thickening transition, a system becomes unstable with
spatiotemporal fluctuations. In suspensions, temporal fluctuations
appear as oscillations and chaotic time series akin to turbulence19, an
effect dubbed rheochaos20. Moreover, spatial fluctuations result in
intermittent stress heterogeneities. These stress anomalies propagate
along the vorticity direction and are referred to as vorticity
bands21,22. The strength of these fluctuations is enhanced with
increasing stress, as confirmed by recent experiments using advanced
techniques for the measurement of local rheology19,23,24. When
confined to a micro-channel, dense suspensions of hard colloids
exhibit oscillations in the density and velocity of particles25.
Remarkably, these oscillations can be reproduced in a numerical

model when frictional contacts are incorporated26. Similar spatio-
temporal fluctuations have also been reported in extensive detail
for frictional granular materials undergoing DST, in a series of
publications by Grob et al.27,28 and Saw et al.29.

These spatiotemporal fluctuations are known to increase dra-
matically as the onset of DST is approached, yet the origin of
these fluctuations remains a mystery. One reason for this lack of
understanding is that, similarly to the glass transition30, usual
measures, such as pair correlation functions, show no dramatic
change signatures in the micro-physics across DST31. Here, we
shed light on the spatiotemporal fluctuations by performing
a fluctuation analysis of the injected power. We show that
the statistics of power fluctuations obeys a simple fluctuation
relation. We specifically focus on rare power fluctuations caused
by frictional forces, and we systematically discriminate different
contributions resulting in negative power fluctuations. This dis-
criminative approach results in finding a mirror-image decom-
position graph. One of the co-authors of this work has previously
reported a decomposition graph for frictionless particles under-
going jamming transition32. It was shown that a decomposition
graph is a blueprint of collective behavior giving rise to rare
power fluctuations on both sides of the transition point. Similarly,
here we find the formation of like-torque clusters that underly
fluctuations in total torque of the system.

Results
Rheology across the thickening transition. We perform two
dimensional molecular dynamics simulations of bidisperse fric-
tional disks in a simple shear flow in the underdamped regime
(inertial). We neglect thermal and hydrodynamic forces to focus
on the central role of frictional forces in DST. However, a gen-
eralization of our approach to include hydrodynamic and thermal
effects in the overdamped regime would be straightforward.
Details on the simulations are given in the “Methods.” A typical
flow curve of the system is given in Supplementary Figs. 2 and 3
and their corresponding description in Supplementary Note 2, as
well as the coordination number in Supplementary Fig. 4, where
the onset of thickening is given by a critical shear rate, _γc, below
which the system is fluid and above which the stress, as well as the
viscosity, shows a sudden increase by more than an order of
magnitude. For _γ< _γc, the rheology is Bagnold, and for _γ> _γc, the
shear stress has a weak dependence on the shear rate. Which
mechanism determines the onset stress in DST in granular media
is unclear. We adopt a similar approach to that proposed by
Kawasaki and Berthier18 to describe the onset stress in DST in
Brownian suspensions. In Fig. 1, we depict the shear stress, σxy,

rescaled by thermal stress given by σT ¼ kn=d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTg=ðknd2ÞÞ

q
,

where d is the average diameter, Tg is the granular temperature
(defined in Methods 4), and kn is the elastic constant. DST can be
seen to occur when the shear stress in the system reaches the
stress scale given by the thermal stress, σT. We demonstrate that
most of the physical measures, such as pressure (Supplementary
Fig. 2) and coordination number (Supplementary Fig. 3), repre-
sent the inherent state of the system in a manner similar to the
rheology. Next, we investigate negative fluctuations in power.

Injected power. We define the power injected by the local shear
as (proof in Supplementary Information):

p ¼ σxy _γl þ δσxy _γl; ð1Þ
where _γl is the local shear rate, σxy is the local shear stress, and
δσxy= σxy,t− σyx,t is the local stress difference, which is equal to
difference in the off-diagonal components of the tangential
part of the shear stress. The derivation of Eq. (1) is given in
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Supplementary Note 1, where we use the elasticity theory devel-
oped specially for micro-polar fluids33,34. The stress is computed
locally in the rectangle of area A=Abin equal to the length of the
system along the shearing direction and the width of w= 4R, with
R= 0.7 the radius of larger particles. Therefore, the total power
injected into the bin is equal to pbin= Abinp. We cross-checked
our results for a wider bin of width w= 4R and obtained similar
results. A typical probability distribution function (PDF) of power
is shown in the inset in Fig. 2a. The distribution is bell shaped,
with exponential tails. Notably, such a PDF has been reported for
various far-from equilibrium systems, for example, work on
frictional particles35, turbulence36, frictionless disks32, and col-
loidal suspensions37. Thus, this PDF has some common features
across various nonequilibrium systems that have been overlooked
to date. A power equal to pbin given by Eq. (1) is dissipated in a
subsystem, in a manner akin to entropy production in a ther-
modynamic system. However, owing to a negative fluctuation, the
subsystem can give up the power, in a manner akin to entropy
consumption38. The PDF of power pbin is given by PðpbinÞ. We
conjecture an instantaneous detailed fluctuation relation com-
paring the ratio of the PDF of the entropy production and con-
sumption rates via:

ln
PðpbinÞ
Pð�pbinÞ

¼ βpbin; ð2Þ

in which 1/β= Te/τe is the ratio of the effective temperature to the
elastic timescale. Similarly to the other fluctuation relations, Eq.
(2) is based on the notion that the probability for entropy pro-
duction must be exponentially larger than that for the entropy
consumption. In the main panel of Fig. 2a, we plot this ratio for
various shear rates. A linear dependence is clearly recovered, and
thus the fluctuation relation is verified by our data. To clearly
show how the effective temperature Te changes across the tran-
sition, in Fig. 2b we display the effective temperature Te versus the
shear rate. The effective temperature is computed via a direct
linear regression by using Eq. (2). Whereas a Bagnold dependence
is obtained in the fluid branch, Te resembles the behavior of the
shear stress in the thickened branch. Therefore, our proposed

fluctuation relation gives rise to an effective temperature that
behaves similarly to the rheology. An important aspect affecting
fluctuation relations is the time-reversal symmetry, which, in our
case, is broken because of the dissipation. Therefore, the existence
of a simple fluctuation relation for DST is significant and should
motivate further application of thermodynamic principles to DST.

Equation (2) gives rise to a trivial result hpi> 0, where h:::i
refers to a time averaging operation. This result can be easily
verified by numerical simulations and can be interpreted as an
equivalent to the second law of thermodynamics for this system.
Yet, the PDF of power, as depicted in the inset of Fig. 2a, has a
substantial negative part. These negative events, p < 0, correspond
to rare fluctuations whose origin is unknown to date. Below, we
investigate these rare events to gain insights into fluctuations
in DST.

Rare fluctuations due to frictional forces. We identify a rare
fluctuation when the second term of the right-hand-side (rhs) of
Eq. (1) becomes negative, i.e., pt ¼ δσxy ´ _γl < 0. We note that the
stress difference, δσxy, is related to the torque caused by frictional
forces. The first term of the rhs of Eq. (1) can also cause a
negative fluctuation. However, in this work, we focus on only the
second term to investigate the role played by torque due to
friction. In the inset of Fig. 3, the probability for such a negative
fluctuation Pðδσxy _γl < 0Þ is plotted versus the shear rate.
Pðδσxy _γl < 0Þ is almost constant (within error bars) in the fluid
branch, and it decreases monotonically in the thickened branch.
Because pt is a product of two terms, the local stress difference
δσxy and the local shear rate _γl , a negative pt can be due to either
(1) δσxy < 0 with _γl > 0, or (2) _γl < 0 with δσxy > 0. This can be
mathematically expressed as a decomposition relation:

Pðδσxy _γl < 0Þ ¼ Pðδσ�xy; _γþl Þ þ Pð _γ�l ; δσþxyÞ; ð3Þ
in which P(,) is a joint probability. In the main panel of Fig. 3, we
display Pðδσ�xy; _γþl Þ (left Y-axis) and Pð _γ�l ; δσþxyÞ (right Y-axis)
with blue circles and red squares, respectively. A mirror-image
pattern emerges, indicating a decomposition of Pðδσxy _γl < 0Þ into
two distinct branches for Pðδσ�xy; _γþl Þ and Pð _γ�l ; δσþxyÞ. Moreover,
this decomposition has two unique features. First, Pðδσ�xy; _γþl Þ and
Pð _γ�l ; δσþxyÞ are approximately mirror images of each other, and
second, in both thickened and fluid states, their dependence on _γl
is opposite, meaning that when Pðδσ�xy; _γþl Þ increases by _γl ,
Pð _γ�l ; δσþxyÞ inversely decreases, and vice versa. This finding
provides evidence that rare fluctuations in DST are governed by
simple decomposition relations. We now focus on this relation-
ship between different contributions giving rise to negative fluc-
tuations to determine what lessons might be learned about the
nature of DST.

We emphasize again that the local shear rate, _γl , and local
stress difference, δσxy, when averaged over long time periods, are
definitely positive. However, a rare fluctuation results in an
instantaneous negative _γl or δσxy. We start with the interpretation
of a rare fluctuation due to _γl < 0. A negative local shear rate
occurs when a given layer of particles is slower than the one
below it. Therefore, a negative fluctuation of _γl < 0 corresponds to
a non-monotonic change in local drift velocity due to a retarded
layer. In Fig. 3 for _γ< _γc, Pð _γ�l ; δσþxyÞ increases as _γc is
approached. Thus, the flow becomes non-monotonic as the
transition point is approached from below. This increasing non-
monotonicity might be related to the well-known instability near
_γc
27–29. In the thickened branch for _γ> _γc, the instability is

washed out, and Pð _γ�l ; δσþxyÞ decreases by increasing the shear
rate. This finding is consistent with conventional wisdom,

Fig. 1 Onset stress of discontinuous shear thickening (DST). Shear stress
rescaled by a stress scale given by the granular temperature, versus the
shear rate _γ, provides the onset of DST. The system undergoes
discontinuous shear thickening when the rescaled stress exceeds unity, and
the red dashed line is a guide for eye to mark the threshold. This threshold
behavior is akin to that of a Brownian suspension near DST18. Each point is
an average over a total strain of 20, with the number of configurations
equal to the total strain. The packing fraction is ϕ= 0.81, the number of
particles is N= 16,384, and the system size is L ¼

ffiffiffiffi
N

p
. Error bars are

smaller than symbols.
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because the shear is a bias, and in the absence of instability, it
removes all the retarded layers at large _γ, thus explaining the
decreasing trend in Pð _γ�l ; δσþxyÞ in the thickened branch.

Pðδσ�xy; _γþl Þ has opposite behavior with respect to Pð _γ�l ; δσþxyÞ
across the transition region. To interpret the behavior of
Pðδσ�xy; _γþl Þ, we first describe the relation of δσxy to the micro-
physics. The stress difference is related to the micro-physics via the
total torque τ acting on particles according to σxy,t− σyx,t∝∑iτi, in
which i runs through all particles in the (sub-)system34,39 (a formal
definition of torque is given in Supplementary Information).
Thus, pt∝ τ. As a result, Pðδσ�xy; _γþl Þ corresponds to a rare
fluctuation due to the negative total torque of a subsystem.

Reinspection of Fig. 3 reveals that Pðδσ�xy; _γþl Þ decreases as the
transition point in the fluid branch is approached. This decrease in
the probability of negative torque fluctuations may be interpreted as
a uniformity of torque across subsystems upon approaching the
thickening point. We investigate this possibility in the next section.

Formation of torque clusters. To gain a better understanding of
the enhancement of the uniformity of torque, we display sub-
sequent snapshots below thickening as the system is sheared from
left to right in Fig. 4a–d. In snapshot a, the system is homo-
geneous except for anomalies appearing as tiny clusters of large
negative (blue) and positive (red) like-torque particles. These

Fig. 2 Fluctuation relation of power and the resulting effective temperature. a The inset shows the probability distribution function (PDF) of injected
power into a bin versus the power divided by the mean power for various global shear rates. The system is divided into narrow rectangular bins along the
shearing direction. It displays a bell-type distribution with exponential tails. In the main panel, we examine the fluctuation relation proposed in Eq. (2),
which is successfully verified by our data. In this equation, PDF of power, P(pbin), is divided by that of negative power, P(−pbin). Blue and red symbols
correspond to regimes below and above thickening, respectively. The dashed line is a guide for eye to show the expected linear dependence. b The effective
temperature Te, derived from the fluctuation relation, as a function of the shear rate _γ is plotted. Bagnold behavior is found in the fluid branch, which
crosses over to a rate-independent behavior in the thickened branch, in accordance with the rheology (Supplementary Fig. 1a). The effective temperature
increases almost two orders of magnitude after thickening. The dashed line is a guide for eye to show the Bagnold scaling, � _γ2, in the phase below the
thickening transition. Error bars are smaller than symbols. The packing fraction is ϕ= 0.81, and the number of particles is N= 16,384. We create an
ensemble by storing configuration of the system at every strain difference of one particle diameter. In total, we average over 2560 configurations.
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domains of large torque particles show that large torque is spa-
tially localized. These clusters grow spatially in snapshot b, with
more red (positive) clusters. In contrast, in snapshot c, the blue
(negative) clusters appear, and finally in snapshot d, the red
clusters nearly percolate in the system. To show how the total
torque of the system changes in these snapshots, we display the
mean torque in the system as a function of strain in panel e. In
this figure, the corresponding mean torque of the snapshots is
marked by red letters/arrows. The mean torque exhibits an
oscillatory behavior whose amplitude is first enhanced, then
decays, and finally fades to 0 at the end of the interval. Moreover,
the torque subsequently undergoes another oscillatory behavior
for γ > 1470. This is a typical pattern that repeats itself throughout
the simulations for _γ< _γc. Here, we reach an important conclu-
sion: the oscillatory behavior of the torque (panel e) originates
from competition between clusters of large negative and positive
like-torque particles. Interestingly, similar spontaneous oscilla-
tions have been reported in other shear thickening systems20,40,41.
A simple mechanism describes the formation and growth of the
like-torque clusters. In the fluid branch, particles do not partici-
pate in enduring contacts, because the coordination number z <
zJ= 3, and most of the collisions are binary akin to “spinning
tops” on a plane. As dictated by the equations of motion, a non-
zero frictional force results in parallel torques, and successive
binary collisions between neighboring particles underlie the
growth of like-torque clusters.

A typical configuration of the system is displayed after
thickening in the thickened branch in Fig. 4f, where the total
absolute value of torque in the system, τabs ¼ ∑N

i¼1 jτij, decreases

more than two orders of magnitude with respect to that in the
fluid branch. For consistency, we use a similar range for color
coding. In snapshot f, there are a few anomalous domains of
opposite-torque particles. If we decrease the range of torque for
color coding, these clusters will span the entire system.
Interestingly, in these clusters, particles with anomalously large
positive torque co-exist with those of anomalously large negative
torque. A close-up of such a cluster is given in panel g.

A question arises as to whether the growth of like-torque
clusters might correlate with the rheology. To answer this
question, in Fig. 5a, d, the color code of each particle corresponds
to total torque per particle, and in panels b and e that corresponds
to total shear stress per particle. In panel a, the instability has just
begun, and there are small anomalies of like-torque clusters.
Panel b depicts the same snapshot, in which the color code
corresponds to total shear stress per particle. It can be seen that
the stress in the system is homogeneous (a close-up is given in
panel c). In panel d, the instability has set in and one can see
spatially larger anomalous like-torque clusters, and at the same
time, in panel e the stress field is quite heterogeneous. Moreover,
stress-bearing chains of positive magnitude exist along the
compression direction, and similar chains of negative magnitude
stress exist along the dilation direction (a close-up is shown in
panel f). We emphasize that by correlation between stress and
torque, we do not refer to the spatial correlation between like-
torque clusters and stress-bearing chains. Instead, the stress in the
system becomes heterogeneous (in a patterned manner) when
like-torque clusters grow. In a quantitative demonstration, in
panel i, the second moments of shear stress per particle (blue
circles) and torque per particle (red squares) are shown as a
function of the strain. One can see that <σ2xy> changes
proportionately with <τ2>. However, this proportionality is
broken in panel j, which is above thickening. A corresponding
snapshot can be seen in panels g and h. In Supplementary Fig. 5,
we demonstrate this phenomenon with more snapshots. There-
fore, our results imply a previously unnoticed link between the
collective behavior of torque with the stress heterogeneities, the
latter have been a subject of recent debate19,23,27–29.

Discussion
We investigated power fluctuations in a model system undergoing
DST. We showed that different contributions giving rise to rare
fluctuations caused by frictional forces are governed by a simple
mirror-image decomposition relation that underlies the collective
behaviors across the thickening transition. The joint probability
of rare fluctuations due to frictional forces Pðδσ�xy; _γþl Þ decreases
as the thickening transition is approached, thus indicating a
collective behavior in the torque. Consequently, we discovered
clusters of like-torque particles. We showed that (1) the growth of
these clusters directly correlates with the rheology, (2) the for-
mation of the clusters results in spatially heterogeneous structures
of stress-bearing chains below the thickening, and (3) a compe-
tition between negative and positive like-torque clusters underlies
the temporal fluctuations in total torque in the system. After
thickening, we observe clusters of opposite-torque particles.
Moreover, in this regime, particles grind against each other, as
they would be obliged to do by frictional forces that glue particles
to one another. This opposite motion is similar to that of “gears”
in a mechanical watch. The correlation between the growth of
like-torque clusters and the rheology may motivate theoretical
work to explore possible connections. Investigating whether this
correlation results in a causality of stress heterogeneity as a result
of like-torque clusters, or vice versa, should prove interesting.

In most models for suspensions, dissipation occurs through the
fluid’s viscosity, η, of the host, and as a result, the inertia of particles

Fig. 3 Decomposition of probabilities of negative power. Inset: probability
of negative power, Pðδσxy _γl <0Þ where P is the net probability, δσxy is the
stress difference, and _γl is the local shear rate defined by Eq. (12), as a
function of the global shear rate, _γ. A power equal to δσxy _γl >0 must be
dissipated; however, in a negative event this power is given up by the
subsystem, δσxy _γl <0. In the thickened phase, Pðδσxy _γl <0Þ decreases
monotonically with increasing the shear rate. No discontinuity is observed
at the critical shear rate. Main panel: because
Pðδσxy _γl <0Þ ¼ Pðδσ�xy; _γþl Þ þ Pð _γ�l ; δσþxyÞ, Eq. (3), we calculate Pðδσ�xy; _γþl Þ,
the probability for negative power due to negative stress difference, and
Pð _γ�l ; δσþxyÞ, the probability for negative power due to negative local strain
rate, directly from our raw data to see if they can be decomposed into two
separate curves. Joint probabilities Pðδσ�xy; _γþl Þ and Pð _γ�l ; δσþxyÞ are displayed
by the blue circles and red squares, respectively. Notably, a decomposition
of the joint probabilities into a mirror-image curve has been found.
Whereas Pðδσ�xy; _γþl Þ is reduced almost twice at _γc ¼ 10�5, and then
increases as a function of the shear rate, Pð _γ�l ; δσþxyÞ is enhanced by the
same rate, and it decreases with the shear rate in the fluid phase. At _γ ¼ _γc,
Pðδσ�xy; _γþl Þ ¼ Pð _γ�l ; δσþxyÞ which is marked by the horizontal purple dashed
line. Error bars are smaller than symbols. The packing fraction is ϕ= 0.81,
and the number of particles is N= 16,384.
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is neglected. The rheology of this regime is characterized by con-
stitutive relations depending on the viscous number, J. For sus-
pensions with large inertia and for granular materials, the
dissipation mainly occurs in the collisions between particles, and the
rheology is characterized by an inertia number, I. For a suspension
undergoing DST at an intermediate regime, the rheology is char-
acterized by a combination of I2 and J, as shown recently by Dong
and Trulsson42. Using this combination, the authors have obtained
unified constitutive laws of rheology. Determining how fluctuations
arise in suspensions with inertial particles, and whether torque
clusters exist and persist in this regime, should prove interesting.

Although the well-known Wyart–Cates model successfully
describes the transition from a frictionless to a frictional rheology in
DST of overdamped suspensions, growing experimental24,43 and
theoretical44 evidence supports the existence of correlations and
collective behavior across DST. A recent study has suggested that

DST might be a critical phenomenon45. Most of these studies stem
from two notable reports by Lootens et al.46,47, in which the authors
show giant fluctuation of stress, power-law distribution, and peri-
odicity near the onset of transition of the rheology in a dense
suspension. This finding urges revisiting DST beyond mean-field
theory, as in a recent such study by Thomas et al.44. Our work
provides a general framework for investigation of the collective
behavior in DST for suspensions. Application of our method to
overdamped systems would require care, because the overdamped
limit is described by a balance of forces and torques on each particle
individually, and as a result, the total torque on all particles is set to
0. Thus, we do not expect formation of like-torque clusters to occur
in the overdamped regime. Yet, fluctuations in stress and rate can
arise in an overdamped system as a result of flow fluctuations, and
our method can be easily adapted for the investigation of negative
fluctuations. We believe that the investigation of collective motion/

Fig. 4 Torque across discontinuous shear thickening transition. Panels (a–d) show subsequent snapshots of the system as it undergoes instability at
global shear rate _γ ¼ 4:467´ 10�6. The color-coding corresponds to the total torque of each particle, in which the blue particles have τ≤−5 × 10−5, the
red particles have τ≥ 5 × 10−5, and the green particles have nearly 0 torque. As the system is sheared, domains of like-torque particles nucleate and grow,
thus resulting in an enhancement in the rotational degrees of freedom, which underlies the well-known instability near the thickening transition. The mean
torque as a function of strain is shown in panel (e), where the position of each snapshot as a function of strain is marked. Error bars are smaller than
symbols. In panel (f), a snapshot of the system is shown above thickening for _γ ¼ 1:122 ´ 10�5, where one can see localized clusters of opposite-torque
particles. The binning of the color bar is similar to panels (a–d), and corresponds to total torque in the range τ≤ 5 × 10−5 and τ≥ 5 ×− 10−5. A close-up of
such a cluster is given in panel (g).
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Fig. 5 Like-torque clusters and rheology across the discontinuous shear thickening transition. A snapshot of the system is depicted by two different
measures: panel (a) total torque per particle and panel (b) total shear stress per particle. The global shear rate is equal to _γ ¼ 4:467´ 10�6. Small clusters
of very large positive (red) and negative (blue) torque particles can be seen; at the same time, the stress in the system is homogeneous. This phenomenon
can be better seen in a close-up in panel (c). In panel (d), a configuration of the system with a strain difference of three particle diameter with respect to
panel (a) is given; the global shear rate is not changed. In this panel, the instability has set in, and the like-torque clusters are grown. Panel (e) shows that
the stress becomes highly heterogeneous. In panel (f), a close-up is given. Stress-bearing chains of large negative stress (blue) can be seen along the
dilation direction, while large positive chains (red) elongate along the compression direction. The population of like-torque clusters and the stress-bearing
chains are qualitatively correlated. In panels (g, h), we show that such a correlation does not exist above thickening for _γ ¼ 1:122 ´ 10�5. Panel (i) The
second moments of stress per particle (blue circles) and torque per particle (red squares) are depicted versus the strain. This panel shows that fluctuations
in the stress and torque are correlated below thickening, at _γ ¼ 4:467´ 10�6, supporting the hypothesis of a qualitative correlation between the population
of like-torque clusters and the stress-bearing chains. By correlation, we mean that the stress and torque change proportionately as a function of strain. Such
a correlation cannot be seen above thickening (panel (j)). Panels (i, f) show instantaneous averaging over particles and error bars are smaller than
symbol size.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00574-8 ARTICLE

COMMUNICATIONS PHYSICS |            (2021) 4:71 | https://doi.org/10.1038/s42005-021-00574-8 |www.nature.com/commsphys 7

www.nature.com/commsphys
www.nature.com/commsphys


rotation in an overdamped system will be essential for the under-
standing of intermittent fluctuations in these systems. In an elegant
study, Vagberg et al.48 have shown that Newtonian rheology arises
as a result of clustering. Therefore, in a system with Newtonian
rheology, clustering is expected to be much more pronounced than
that in a system with Bagnold rheology.

We note that Chattoraj et al.49,50 have recently demonstrated that
a deformed very dense frictional system exhibits oscillatory
instability, as a result of a pair of complex eigenvalues of the
Hessian. Chattoraj et al. have also discussed a possible relation
between the oscillatory amplifications in a frictional system with a
long-standing problem in earthquake physics, remote triggering51.
These results again emphasize the roles of frictional forces, and
suggest that a more thorough investigation is warranted.

A fundamental question about particulate matter is whether a
temperature-like quantity exists that describes fluctuations in these
systems. A primary development was made by the so-called Edwards’
entropy52, which gives rise to angoricity—a granular temperature.
Several methods have been developed to test Edwards’ ideas. Prob-
ably the most renowned method is the overlapping histogram
method by Dean and Lefevre53, which has been used in many recent
studies54–56. One large obstacle to applying Edwards’ theory is
that the density of states Ω(ϕ) and the corresponding partition
function may be unknown for a given granular ensemble57.
More modern treatments of this problem have been described by
Makse and Kurchan58 and Zheng et al.59. Our fluctuation analysis
approach provides an alternative method to compute an effective
stress–temperature that is similar to the rheology. We expect that this
method will pave the way to better understanding of fluctuations in
many different rheological phase transitions.

Methods
We use a linear dashpot spring to model both normal and tangential forces60. Two
particles at positions ri and rj, with radii ai and aj, respectively, interact when they
overlap, δ= ∣ri− rj∣− (ai+ aj) < 0. A spring whose force is proportional to the
overlap δ acts as a repulsive mechanism between two colliding particles. The
interaction force along the normal direction is then given by:

f ij;n ¼ knδ � ηnðvi � vjÞ ´nij; ð4Þ
where kn and ηn are the elastic and damping constants, respectively, and nij is a unit
vector along the line connecting the centers of two particles nij= (ri− rj)/∣ri− rj∣.

With ωi and ωj, the angular velocities, the total tangential velocity at the contact
point can be written as:

vij;t ¼ ðI� nijnijÞ ´ ½vi � vj � ðaiωi þ ajωjÞ ´nij�: ð5Þ
Integrating the tangential velocity vij,t from the initiation of contact to the current

time gives the tangential overlap as ξ ¼ R tcoll
0 jvij;t jdt0 . A spring proportional to ξ acts

in the tangential direction along the contact plane to model the static friction

f ij;t ¼ ktξ � ηtvij;t ´ tij; ð6Þ
where kt and ηt are the spring and damping coefficients, and tij is a unit vector along
the contact plane, tij× nij= 0. A torque proportional to the tangential force acts on
each particle. Accordingly, the total force is equal to:

f ij ¼ f ij;nnij þ f ij;ttij; ð7Þ
from which translational and rotational degrees of freedom are coupled in this model.

We use a 50:50 bidisperse mixture of particles whose ratio of radii is 1.4. The
diameter of small particles is chosen to be the unit of length. The mass is equal to
the area of each particle. The spring constants are kn= 1 and kt= 0.5kn, and the
damping coefficients are ηn= ηt= 1. Time is measured in units of the elastic
timescale τe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
md=ke

p
, where d= 1 is the diameter of small particles, and m=

πd2/4. The magnitude of the tangential force is bound by Coulomb’s frictional law
∣fij,t∣ ≤ μ∣fij,n∣, where μ= 1 is the coefficient of friction.

We use Large-scale Atomic/Molecular Massively Parallel Simulator to integrate
equations of motion of particles. This process is performed by using pair style
“gran/hooke/history” to model the interactions plus Lees–Edwards boundary
conditions by using “deform.”

Granular temperature Tg is defined as the kinetic temperature of particles as:

Tg ¼ ∑
i

1
2
miðvi;x � vðyÞÞ2 þ∑

i

1
2
miv

2
i;y ; ð8Þ

where i runs over particles, vi,x is the horizontal component of the velocity of
particle i, and v(y) is the drift velocity at altitude y.

Shear stress is defined as:

σxy ¼ σxy;n þ σxy;t ð9Þ
where the first and second terms on the rhs refer to the shear stress caused by
normal forces fn and tangential forces ft between particles, respectively. Moreover,
the normal and tangential parts are equal to:

σxy;n ¼ 1
A
∑
i
∑
j≠i
δxijf

n
ij;y ;

σxy;t ¼
1
A
∑
i
∑
j≠i
δxijf

t
ij;y ;

ð10Þ

where A=wL is the area of the bin, subscript i runs over all particles inside a bin,
and j runs over the neighbors of particle i. A visual depiction is given in Supple-
mentary Fig. 1. In addition, δrij is the distance between particles i and j with
two components δxij and δyij along the x- and y-directions, respectively. Similarly,
f tij;x and f tij;y are the components of f tij . If both particles i and j are inside a given
bin, then their contribution to the local stress is given by the above equation. If i
and j belong to different bins, a factor of 1/2 of the above terms will contribute to
the shear stress of their host bins. We also compute the stress per particle. In that
case, the subscript j in the above equations runs over the neighbors of particle i. We
emphasize that there are three different types of stress in this study: (1) local shear
stress, (2) global shear stress, which is the sum over all local stresses, and (3) the
stress per particle. For simplicity, we do not use subscripts to distinguish these
three different cases, instead, we specifically mention them wherever applicable.

To compute the instantaneous local shear rate _γi at a given time t, we compute
the average drift velocity vi,x inside a given bin i according to:

vi;x ¼
1
ni
∑jvj;x ; ð11Þ

where j runs over all particles inside bin i, vj,x is the horizontal component of the
velocity of particle j along the streaming direction, and ni is the number of particles
inside bin i. The local shear rate at bin i is then given by a mid-point derivative of
the velocity profile:

_γi ¼
viþ1 � vi�1

2w
; ð12Þ

where w is the bin width. We refer to the local shear rate as _γl ; however, we do not
use any subscript for the global shear rate _γ.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or
the Supplementary Materials. Additional data related to this paper may be requested
from the authors.
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