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Experiments featuring non-equilibrium glassy dynamics under temperature changes still

await interpretation. There is a widespread feeling that temperature chaos (an extreme

sensitivity of the glass to temperature changes) should play a major role but, up to now, this

phenomenon has been investigated solely under equilibrium conditions. In fact, the very

existence of a chaotic effect in the non-equilibrium dynamics is yet to be established. In this

article, we tackle this problem through a large simulation of the 3D Edwards-Anderson model,

carried out on the Janus II supercomputer. We find a dynamic effect that closely parallels

equilibrium temperature chaos. This dynamic temperature-chaos effect is spatially hetero-

geneous to a large degree and turns out to be controlled by the spin-glass coherence length ξ.

Indeed, an emerging length-scale ξ* rules the crossover from weak (at ξ≪ ξ*) to strong chaos

(ξ≫ ξ*). Extrapolations of ξ* to relevant experimental conditions are provided.
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An important lesson taught by spin glasses1 regards the
fragility of the glassy phase in response to perturbations
such as changes in temperature—temperature chaos

(TC)2–19—in the couplings6,7,13,14 or in the external magnetic
field5,20,21. In particular, it is somewhat controversial22–27 whether
or not TC is the physical mechanism underlying the spectacular
rejuvenation and memory effects found in spin glasses28–31 and
several other materials32–36. Indeed, a major obstacle in the ana-
lysis of these non-equilibrium experiments is that TC is a theo-
retical notion which is solely defined in an equilibrium context.

Specifically, TC means that the spin configurations that are
typical from the Boltzmann weight at temperature T1 are very
atypical at temperature T2 (no matter how close the two tem-
peratures T1 and T2 are).

This equilibrum notion of TC has turned out to be remarkably
elusive, even in the context of Mean-Field models (i.e., models
that can be solved exactly in the Mean-Field approximation).
Indeed, establishing the existence of TC for the Sherrington-
Kirkpatrick model has been a real tour de force12. Although
Sherrington-Kirkpatrick’s model is the Mean-Field model of
more direct relevance for this work, let us recall for completeness
that TC has been investigated as well in other Mean-Field systems
named p-spin models. In these models, groups of p ≥ 3 spins
interact (instead, p= 2 for Sherrington-Kirkpatrick). Surprisingly
enough, one finds different behaviors. On the one hand, we have
a recent mathematical proof of the absence of TC in the homo-
geneous spherical p-spin model37, in agreement with a previous
claim based on physical arguments38. On the other hand, TC
should be expected when one mixes several values of p39, as
confirmed by a quite recent mathematical analysis40–43. Unfor-
tunately, the mathematically rigorous analysis of TC in off-
equilibrium dynamics seems out of reach for now, even in the
Mean-Field context.

In order to obtain experimentally relevant results, one needs to
go beyond the Mean-Field approximation and study short-range
spin glasses, represented by the Edwards-Anderson model44,45. In
this case, analytical investigations are even more difficult, but the
equilibrium notion of TC that we have outlined above has been
studied through numerical simulations. Yet, these equilibrium
simulations have been limited to small system sizes by the severe
dynamic slowing down6–8,11,13,14,16–19.

Here we tackle the problem from a different approach by
showing that a non-equilibrium TC effect is indeed present in the
dynamics of a large spin-glass sample in three spatial dimensions
(our simulations of the Edwards-Anderson model are carried out
on the Janus II custom-built supercomputer46). In a reincarnation
of the statics-dynamics equivalence principle47–50, just as equili-
brium TC is ruled by the system size, dynamic TC is found to be
governed by the time-growing spin-glass coherence length ξ(tw),
where the waiting time tw is the time elapsed since the system was
suddenly quenched from some very high temperature to the
working temperature T. Below the critical temperature, T < Tc, the
spin glass is perennially out of equilibrium as evinced by the
never-ending (and sluggish) growth of glassy magnetic domains of
size ξ(tw), see refs. 51,52 for instance. Now, the extreme sample-to-
sample variations found in small equilibrated systems16,17,19,53–55

translate into a strong spatial heterogeneity of dynamic TC.
Despite such strong fluctuations, our large-scale simulations allow
us to observe traces of the effect even in averages over the whole
system. In close analogy with equilibrium studies16, however,
dynamic TC can only be fully understood through a statistical
analysis of the spatial heterogeneity. A crossover length ξ* emerges
such that TC becomes sizeable only when ξ(tw) > ξ*. We find that
ξ* diverges when the two observation temperatures T1 and T2
approach. The analysis of this divergence reveals that ξ* is the
non-equilibrium partner of the equilibrium chaotic length3,56. The

large values of ξ(tw) that we reach with Janus II allow us to per-
form mild extrapolations to reach the most recent experimental
regime57.

In equilibrium, sample-averaged signals of TC become more
visible when the size of the system increases16. Analogously, off-
equilibrium a weak chaotic effect grows with ξ(tw) when the
whole system is considered on average. Hoping that studying
spatial heterogeneities will help us to unveil dynamic TC, we shall
consider spatial regions of spherical shape and linear size ~ ξ(tw),
chosen randomly within a very large spin glass. Statics-dynamics
equivalence suggests regarding these spheres as the non-
equilibrium analog of small equilibrated samples of linear size
~ ξ(tw). The analogy with equilibrium studies16,17,19 suggests that
a small fraction of our spheres will display strong TC. The
important question will be how this rare-event phenomenon
evolves as ξ(tw) grows (in equilibrium, the fraction of samples not
displaying TC is expected to diminish exponentially with the
number of spins contained in the sample12,15).

Results and discussion
Model. We simulate the standard Edwards-Anderson model in a
three-dimensional cubic lattice of linear size L= 160 and periodic
boundary conditions. In each lattice node x, we place an Ising spin
(Sx= ± 1). Lattice nearest-neighbors spins interact through the
Hamiltonian H=−∑〈x, y〉JxySxSy . The couplings Jxy are inde-
pendent and identically distributed random variables (Jxy= ± 1
with 1/2 probability), fixed when the simulation starts (quenched
disorder). This model exhibits a spin-glass transition at tempera-
ture Tc= 1.1019(29)58. We refer to each realization of the cou-
plings as a sample. Statistically independent simulations of a given
sample are named replicas. We have considerably extended the
simulation of Baity et al.51, by simulating NRep= 512 replicas
(rather than 256) of the same NS= 16 samples considered in51, in
the temperature range 0.625 ≤ T ≤ 1.1.

We simulate the non-equilibrium dynamics with a Metropolis
algorithm. In this way, one picosecond of physical time roughly
corresponds to a full-lattice Metropolis sweep. At the initial time
tw= 0 the spin configuration is fully random (i.e., we quench
from infinite temperature). The subsequent growth of spin-glass
domains is characterized by the spin-glass coherence length ξ(tw).
Specifically, we use the ξ1,2 integral estimators, see refs. 48,51,59,60

for details [the main steps in the computation of ξ1,2 are also
sketched in Eqs. (8–10)), where one should set T1= T2= T].

Finally, let us briefly comment on our choices for NRep and NS.
A detailed analysis51,61 shows that, for a given total numerical
effort NS ×NRep, errors in ξ are minimized if NRep≫NS.
Furthermore, Supplementary Note 1 shows that having NRep≫ 1
is crucial as well for the main quantities considered in this work
(see definitions below). Therefore, given our finite computational
resources, we have chosen to limit ourselves to NS= 16. This small
number of samples is partly compensated by the fact that we are
working close to the experimental regime L≫ ξ [we remark that
NS= 1 in typical experiments: indeed, statics-dynamics equiva-
lence suggests that the number of statistically independent events is
proportional to NS(L/ξ)3].

The local chaotic parameter. We shall compare the spin textures
from temperature T1 and waiting time tw1 with those from
temperature T2 and waiting time tw2 (we consider T1 ≤ T2 ≤ Tc). A
fair comparison requires that the two configurations be ordered at
the same lengthscale, which we ensure by imposing the condition

ξðtw1;T1Þ ¼ ξðtw2;T2Þ ¼ ξ : ð1Þ

A first investigation of TC is shown in Fig. 1. The overlap,
computed over the whole sample, of two systems satisfying
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condition Eq. (1) is used to search for a coarse-grained chaotic
effect. The resulting signal is measurable but weak. Instead, as
explained in the introduction, spin configurations should be
compared locally. Specifically, we consider spherical regions. We
start by choosing Nsph= 8000 centers for the spheres on each

sample. The spheres’ centers are chosen randomly, with uniform
probability, on the dual lattice which, in a cubic lattice with
periodic boundary conditions, is another cubic lattice of the same
size, also periodic boundary condition. The nodes of the dual
lattice are the centers of the elementary cells of the original lattice.
The radii of the spheres are varied, but their centers are held
fixed. Let Bs,r be the s-th ball of radius r. Our basic observable is
the overlap between replica σ (at temperature T1), and replica τ ≠
σ (at temperature T2):

qs;r;σ;τT1;T2
ðξÞ ¼ 1

Nr
∑x2Bs;r

sσ;T1
x ðtw1Þsτ;T2

x ðtw2Þ; ð2Þ

where Nr is the number of spins in the ball, and tw1 and tw2 are
chosen according to Eq. (1). Averages over thermal histories,
indicated by 〈…〉T, are computed by averaging over σ and τ.

Next, we generalize the so-called chaotic parameter6,16,17,20 as

Xs;r
T1;T2

ðξÞ ¼
h½qs;r;σ;τT1;T2

ðξÞ�2i
Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h½qs;r;σ;τT1;T1
ðξÞ�2i

T
h½qs;r;σ;τT2;T2

ðξÞ�2i
T

q ; ð3Þ

The extremal values of the chaotic parameter have a simple
interpretation: Xs;r

T1;T2
¼ 1 corresponds with a situation in which

spin configurations in the ball Bs,r, at temperatures T1 and T2, are
completely indistinguishable (absence of chaos) while Xs;r

T1;T2
¼ 0

corresponds to completely different configurations (strong TC). A
representative example our results is shown in Fig. 2.

Our main focus will be on the distribution function
FðX;T1;T2; ξ; rÞ ¼ Probability ½Xs;r

T1;T2
ðξÞ<X� and on its inverse

X(F, T1, T2, ξ, r).

The rare-event analysis. Representative examples of distribution
functions F(X, T1, T2, ξ, r) are shown in Fig. 3. We see that, in
close analogy with equilibrium systems16,17,19, while most spheres
exhibit a very weak TC (X > 0.9, say), there is a fraction of spheres

Fig. 1 Non-equilibrium temperature chaos is weak when averaging over
the whole system. We compare typical spin configurations at temperature
T1 and time tw1 with configurations at T2 and time tw2. The comparison is
carried through a global estimator of the coherence length of their overlap
ξT1T2
1;2 which represents the maximum lengthscale at which configurations at
temperatures T1 and T2 still look similar, see Methods section for further
details. The two times tw1 and tw2 are chosen in such a way that the
configurations at both temperatures have glassy-domains of the same size,
namely ξ1,2(tw1, T1)= ξ1,2(tw2, T2)= ξ. The figure shows the ratio ξT1T2

1;2 =ξ as
a function of ξ for two pairs of temperatures (T1, T2), recall that Tc≈ 1.158.
Under the hypothesis of fully developed Temperature Chaos, we would
expect ξT1T2

1;2 to be negligible compared to ξ. Instead, our data shows only a
small decrease of ξT1T2

1;2 =ξ with growing ξ (the larger the difference T2− T1
the more pronounced the decrease). Error bars represent one standard
deviation.

Fig. 2 Dynamic temperature chaos is spatially heterogeneous. The 8000 randomly chosen spheres in a sample of size L= 160 are depicted with a color
code depending on 1− X [X is the chaotic parameter, Eq. (3), as computed for spheres of radius r= 12, ξ= 12 and temperatures T1= 0.7 and T2= 1.0].
For visualization purposes, spheres are represented with a radius 12(1− X), so that only fully chaotic spheres (i.e., X = 0) have their real size.
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displaying smaller X (stronger chaos). Note that the probability F
of finding spheres with X smaller than any prefixed value
increases when ξ grows.

In order to make the above finding quantitative, we consider
the (inverse) distribution function X(F, T1, T2, ξ, r). We start by
fixing (T1, T2), ξ and some small probability F, which leaves us
with a function of only r. In order to obtain smoother
interpolations for small radius, however, we have used N1=3

r
instead of r as our independent variable, a technical detailed
discussion can be found in Supplementary Note 3.

Figure 4 shows plots of 1− X under these conditions, which
exhibit well-defined peaks (see further information about the
fitting function to the peaks in the Supplementary Note 2). Now,
to a first approximation we can characterize any peak by its
position, height and width. Fortunately, these three parameters

turn out to describe the scaling with ξ of the full 1− X curve, see
Supplementary Note 4.

The physical interpretation of the peak’s parameters is clear.
The peak’s height represents the strength of dynamic TC (the
taller the peak, the larger the chaos). The peak’s position indicates
the optimal lengthscale for the study of TC, given the probability
F, ξ and the temperatures T1, T2. The peak’s width indicates how
critical it is to spot this optimal lengthscale (the wider the peak,
the less critical the choice). Perhaps unsurprisingly, the peak’s
position is found to scale linearly with ξ, while the peak’s width
scales as ξβ, with β slightly larger than one, see Supplementary
Note 5 for further details. We shall focus here on the temperature
and ξ dependence of the peak’s height (i.e., the strength of chaos),
which has a richer behavior.

The ξ dependence of the peak’s height (for a given probability F
and temperatures T1 and T2) turns out to be reasonably well
described by the following ansatz:

fmaxðξÞ ¼
εðξÞ

1þ εðξÞ ; with εðξÞ ¼ ðξ=ξ�Þα : ð4Þ

This formula describes a crossover phenomenon, ruled by a
characteristic length ξ*. For ξ≪ ξ* the peak’s height grows with ξ
as a power law, while for ξ≫ ξ* the strong-chaos limit [i.e.,
(1− X)→ 1] is approached. However, some consistency require-
ments should be met before taking the crossover length ξ*

seriously. Not only should the fit to Eq. (4) be of acceptable
statistical quality (the fit parameters are the characteristic
lengthscale ξ* and the exponent α). One would also wish
exponent α to be independent of the temperatures T1 and T2 and
of the chosen probability F.

We find fair fits to Eq. (4), see Table 1. In all cases, exponent α
turns out to be compatible with 2.1 at the two-σ level [except for
the (F= 0.01, T1= 0.625, T2= 0.8) fit]. Under these conditions,
we can interpret ξ* as a characteristic length indicating the
crossover from weak to strong TC, at the probability level
indicated by F. Furthermore, the relatively large value of exponent
α indicates that this crossover is sharp.

The trends for the crossover length ξ* in Table 1 are very clear:
ξ* grows upon increasing F or upon decreasing T2− T1.
Identifying ξ* as the non-equilibrium partner of the equilibrium
chaotic length ℓc(T1, T2)3,56 will allow us to be more quantitative
(indeed, the two lengthscales indicate the crossover between weak

Fig. 3 Temperature chaos increases with the coherence length. The figure
shows the distribution function F(X, T1, T2, ξ, r) for temperatures T1=0.625
and T2=0.9, for spheres of radius r= 4 and r= 8, as computed for various
values of ξ. The distributions have been extrapolated to infinite number of
replicas NRep=∞, see Supplementary Note 1 for further details. Error bars,
that represent one standard deviation, are horizontal, because we have
actually extrapolated the chaotic parameter, which is its inverse function
X(F, T1, T2, ξ, r). Most of the spheres have a chaotic parameter very close to
X= 1 (absence of chaos). However, if we fix our attention, for instance, on
percentile 1 (i.e., F=0.01) we see that the corresponding value of X decreases
monotonically (and significantly) as ξ grows, signaling a developing chaotic
effect. This trend is clear both for spheres of radius r= 4 and r= 8.

Fig. 4 Emergence of an optimal scale to observe temperature chaos. The difference 1− X(F, T1, T2, ξ, r) [recall that X(F, T1, T2, ξ, r) is the inverse of the
distribution function] as a function of the cubic root N1=3

r of the number of spins in the spheres, as computed for different values of the probability level F,
the temperatures T1 and T2, and the coherence length ξ. In this representation, the optimal size of the spheres for the observation of chaos (for given
parameters F, T1, T2 and ξ) appears as the maximum of the curves. Continuous lines are fits to a smooth interpolating function, further details can be found
in Supplementary Note 2. Error bars represent one standard deviation.
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chaos and strong chaos). Now, the equilibrium ℓc(T1, T2) has been
found to scale for the 3D Ising spin glass as

‘cðT1;T2Þ / ðT2 � T1Þ�1=ζ ; ð5Þ

with ζ ≈ 1.0714 or ζ ≈ 1.07(5)16. These considerations suggest the
following ansatz for the non-equilibrium crossover length

ξ�ðT1;T2; FÞ ¼ BðF;T1Þ ðT2 � T1Þ�1=ζNE ; ð6Þ

where B(F, T1) is an amplitude. We have tested Eq. (6) by
computing a joint fit for four (T1, F) pairs as functions of T2− T1,
allowing each curve to have its own amplitude but enforcing a
common ζNE (see Fig. 5). The resulting χ2/d.o.f.= 7.55/7 validates
our ansatz, with an exponent ζNE= 1.19(2) fairly close to the
equilibrium result ζ= 1.07(5)16. This agreement strongly sup-
ports our physical interpretation of the crossover length. We,
furthermore, find that B is only weakly dependent on T1.
Nevertheless, the reader should be warned that it has been
suggested16 that the equilibrium exponent ζ may be different in
the weak- and strong-chaos regimes.

Conclusions
We have shown that the concept of temperature chaos can be
meaningfully extended to the non-equilibrium dynamics of a
large spin glass. This is, precisely, the framework for rejuvenation
and memory experiments28–31, as well as other more chaos-
oriented experimental work57. Therefore, our precise character-
ization of dynamical temperature chaos paves the way for the
interpretation of these and forthcoming experiments. Our simu-
lation of spin-glass dynamics doubles the numerical effort in51

and has been carried out on the Janus-II special-purpose
supercomputer.

The key quantity governing dynamic temperature chaos is the
time-dependent spin-glass coherence length ξ(tw). The very
strong spatial heterogeneity of this phenomenon is quantified
through a distribution function F. This probability can be thought
of as the fraction of the sample that shows a chaotic response to a
given degree. When comparing temperatures T1 and T2, the
degree of chaoticity is governed by a lengthscale ξ*(F, T1, T2).
While chaos is very weak if ξ(tw)≪ ξ*(F, T1, T2), it quickly
becomes strong as ξ(tw) approaches ξ*(F, T1, T2). We find that,
when T1 approaches T2, ξ*(F, T1, T2) appears to diverge with the
same critical exponent that it is found for the equilibrium chaotic
length16.

Although we have considered in this work fairly small values of
the chaotic system fraction F, a simple extrapolation, linear in log F,
predicts ξ* ≈ 60 for F= 0.1 at T1= 0.7 and T2= 0.8 (our closest
pair of temperatures in Table 1). A spin-glass coherence length well
above 60a0 is experimentally reachable nowadays52,57,62,63 (a0 is the
typical spacing between spins), which makes our dynamic tem-
perature chaos significant. Indeed, while completing this manu-
script, a closely related experimental study57 reported a value for
exponent ζNE in fairly good agreement with our result of ζNE=
1.19(2) in Fig. 5.

Let us conclude by commenting on possible venues for future
research. Clearly, it will be important to understand in detail how
dynamic temperature chaos manifests itself in non-equilibrium
experiments. Simple protocols (in which temperature sharply drops
from T2 to T1, see, e.g., Zhai et. al.57) seems more accessible to a first
analysis than memory and rejuvenation experiments28–31. An
important problem is that the correlation functions that are studied
theoretically are not easily probed experimentally. Instead, experi-
mentalists privilege the magnetization density (which is a spatial
average over the whole sample). Therefore an important theoretical
goal is to predict the behavior of the non-equilibrium time-
dependent magnetization upon a temperature drop. One may
speculate that the Generalized Fluctuation-Dissipation Relations64

might be the route connecting the correlation functions with the
response to an externally applied magnetic field. Interestingly
enough, these relations (that apply at fixed temperature) can be
defined locally as well65. The resulting spatial distribution function
allows the reconstruction of the global response to the magnetic
field. Extending this analysis to a temperature drop may turn out to
be fruitful in the future.

Methods
All the observables involved in the computation of temperature chaos depend on a
pair of replicas (σ, τ). The basic quantity is the overlap field

qσ;τðx; twÞ ¼ sσxðtwÞsτxðtwÞ; ð7Þ
Usually, this pair of replicas are at the same temperature T. All the definitions are,
however, straightforwardly extended to two temperatures. For instance, the four-
point two-temperature spatial correlation function is

CT1T2
4 ðT1;T2; tw1; tw2; rÞ ¼ hqσðT1Þ;τðT2Þðx; tw1; tw2ÞqσðT1Þ;τðT2Þðx þ r; tw1; tw2ÞiT

h i
J
;

ð8Þ
where […]J denotes the average over the samples. Building on this function we can

Table 1 Parameters describing the crossover between weak
and strong temperature chaos regimes.

F T1 T2 ξmin ξ* α χ2/d.o.f

0.001 0.625 0.7 4.75 55(4) 2.10(7) 14.10/19
0.001 0.625 0.8 5.25 24.1(8) 2.18(6) 22.67/17
0.001 0.625 0.9 4.75 16.8(3) 2.09(4) 28.88/19
0.001 0.625 1.0 4.75 13.24(15) 2.04(3) 8.77/19

0.001 0.7 0.8 4.75 43.5(15) 2.12(5) 41.05/28
0.001 0.7 0.9 4.75 22.9(5) 2.09(4) 33.32/28
0.001 0.7 1.0 4.75 16.3(2) 2.04(4) 22.32/28

0.01 0.625 0.8 5.75 29.3(5) 2.21(3) 13.32/15
0.01 0.625 0.9 5.75 20.5(3) 2.12(2) 16.05/15
0.01 0.625 1.0 4.75 15.87(16) 2.08(2) 23.93/19

0.01 0.7 0.8 4.75 51.4(12) 2.17(3) 8.06/28
0.01 0.7 0.9 5.25 27.9(4) 2.11(2) 31.56/26
0.01 0.7 1.0 4.75 19.9(2) 2.05(2) 31.78/28

Parameters obtained in the fits to Eq. (4) of our data for the peak’s height, see Fig. 4, with
ξmin ≤ ξ ≤ ξmax. We also report the fits’ figure of merit χ2/d.o.f. We chose ξmin by requiring a
P value greater than 0.05 in the fits (ξmax= 9.5 for T1= 0.625 and ξmax= 12.5 for T1= 0.7). T1
and T2 represent the temperatures involved in the computation of the chaotic parameter.
Unfortunately, the flatness of the peak for (T1= 0.625, T2= 0.7, F= 0.01) did not allow us to
compute the peak’s parameters.

Fig. 5 Universal scaling of dynamic chaos. The characteristic length ξ* is
plotted against the temperature difference T2− T1 in a log-log scale. Each
curve is uniquely identified by the probability level F and the smallest
temperature of each pair T1. Fits to Eq. (6), enforcing a common exponent,
are shown with continuous lines and result in a chaotic exponent ζNE=
1.19(2). Error bars represent one standard deviation.
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define our integral estimator for the coherence length60:

IT1T2
k ðtw1; tw2Þ ¼

Z 1

0
rk CT1T2

4 ðr; tw1; tw2Þ dr; ð9Þ

and

ξT1T2
k;kþ1ðtw1; tw2Þ ¼

IT1T2
kþ1 ðtw1; tw2Þ
IT1T2
k ðtw1; tw2Þ

: ð10Þ

As explained in the main text, times tw1 and tw2 are fixed through the condition
expressed in Eq. (1), which ensures that we are comparing spin configurations that
are ordered on the same length scale.

Since our tw are on a discrete grid, we solve Eq. (1) for the global overlaps
through a (bi)linear interpolation.

Data availability
The data contained in the figures of this paper, accompanied by the gnuplot script files
that generate these figures, are publicly available at https://github.com/
JanusCollaboration/caosdin.
The data that support the findings of this study are available from the corresponding

author upon reasonable request.

Code availability
The codes that support the findings of this study are available from the corresponding
author upon reasonable request.
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