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Kramers Weyl semimetals as quantum solenoids
and their applications in spin-orbit torque devices
Wen-Yu He1✉, Xiao Yan Xu 2 & K. T. Law 3✉

Kramers Weyl semimetals are Weyl semimetals that have Weyl points pinned at the time

reversal invariant momenta. Recently it has been discovered that all chiral crystals host Weyl

points at time reversal invariant momenta, so metals with chiral lattice symmetry all belong

to the category of Kramers Weyl semimetals. In this work, we show that due to the chiral

lattice symmetry, Kramers Weyl semimetals have the unique longitudinal magnetoelectric

effect in which the charge current induced spin and orbital magnetization is parallel to the

direction of the current. This feature allows Kramers Weyl semimetals to act as nanoscale

quantum solenoids with both orbital and spin magnetization. As the moving electrons of

Kramers Weyl semimetal can generate longitudinal magnetization, Kramers Weyl semi-

metals can be used for new designs of spin-orbit torque devices with all electric control of

magnetization switching for magnets with perpendicular magnetic anisotropy.
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Weyl semimetals are nodal topological materials char-
acterised by isolated band touching points, called Weyl
points, in 3D momentum space1–4. Due to the Weyl

points, which act as the monopoles of the Berry curvature in the
momentum space1–4, Weyl semimetals exhibit many exotic
properties such as the chiral magnetic effect5–8, the presence of
topologically protected Fermi arcs states1–4,9,10, unconventional
quantum oscillations11, and novel optical phenomenon12–14.
Recently, a new type of Weyl semimetals called Kramers Weyl
semimetals (KWS) in chiral crystals have been discovered15–24.
Chiral crystals are crystals which lack inversion, mirror and
improper rotation symmetries. As a result, a chiral crystal has a
definite handedness and can be described by the 11 chiral point
groups. It was shown that generally, due to the low lattice sym-
metry, band splittings appear away from time-reversal invariant
points in momentum space and result in Kramers Weyl points
pinned at time-reversal invariant momenta. However, it is not
clear how the properties of KWS are distinct from that of other
Weyl semimetals with non-chiral point group symmetry.

In this work, we point out that the chiral lattice symmetry in
KWS brings about a unique property: an electric field applied
along the principal symmetry axis of the crystal would induce
spin and orbital magnetization which is parallel to the applied
electric field. This is in sharp contrast to the case of all other
noncentrosymmetric Weyl semimetals which give zero magne-
toelectric response if the electric field is applied along the prin-
cipal symmetry axis. This distinctive longitudinal magnetoelectric
response involves both the spin25 and orbital magnetization26,27,
and it arises from the special form of the spin-orbit coupling
(SOC) of KWS. Importantly, for the representative KWS K2Sn2O3

and RhSn in the T point group we considered, the induced
magnetization at a given electric field can be two to three orders
of magnitude larger than the magnetization induced in materials
with the strong Rashba spin-orbit couplings such as in Au (111)
surfaces and Bi/Ag bilayers28,29. Therefore, if the electrons which
carry both orbital and spin angular momentum in the KWS are
injected into a ferromagnetic layer, the torque induced by the
electrons can cause magnetization switching in the ferromagnetic
layer. As a result, we propose a KWS based magnetization
switching device that is different from the magnetic tunneling
device based on spin transfer torque30,31 and the conventional
spin orbit torque devices30–33. The new KWS based devices allow
all electric control of magnetic switching for ferromagnets with
perpendicular magnetic anisotropy, which is important for high
density magnetic memories.

Results
Effective Hamiltonians for Kramers Weyl semimetals. In chiral
crystals which respect time reversal symmetry, the energy bands
are at least doubly degenerate at time-reversal invariant momenta
due to the Kramers theorem. In the absence of inversion, mirror
and improper rotation symmetries in chiral crystals, and away
from the time-reversal invariant points, SOC would lift the
Kramers degeneracy in momentum space to create Kramers
Weyl points18. To be more specific, in the spin 1

2 basis ψk ¼
½ϕk;"; ϕk;#�T, which satisfies the relation Θψk= iσyψ−k under time-
reversal operation Θ= iσyK, the effective Hamiltonian H0 kð Þ can
be obtained through standard k ⋅ p method18. Up to second order
near a time-reversal invariant momentum k0, the general form of
the Kramers Weyl Hamiltonian can be written as

H0 kð Þ ¼ ∑i;j
_2

2mij
kikj þ σ i_vijkj: ð1Þ

Here, k is measured from k0, i, j= x, y, z, mij is the effective mass
tensor, σi are the Pauli matrices in spin space, and vij is the SOC

pseudotensor. In chiral crystals, the little group at k0 is iso-
morphic to a chiral point group which guarantees det vð Þ ≠ 0 so
that the Kramers Weyl point emerges at k= 0.

In the KWS, the specific forms of the SOC that creates the
Weyl point are determined by the point group symmetry as

v ¼ det R̂
� �

R̂vR̂
T
, with R̂ the symmetry transformation matrix. In

materials within the cubic point group T;Of g such as K2Sn2O3
18,

RhSi19, CoSi19–21, AlPt22, PtGa23, and PdGa24 of cubic chiral
B20 structure34, at k0 (such as the Γ point) the little group
isomorphic to T;Of g can give rise to the isotropic Weyl
Hamiltonian

H0 kð Þ ¼ _2

2m
k2 þ _vk � σ; ð2Þ

where the high symmetry cubic point group T;Of g forces vij to
be proportional to the identity matrix. In those materials within
the point group T;Of g, the high symmetry may also enable extra
multi-fold point degeneracies to appear at k015–17. In the
materials CsCuBr318, elemental Te, Se35–38, etc., the dihedral
point group there has lower crystal symmetry and allows the
anisotropy to show up in the Weyl Hamiltonian

H0 kð Þ ¼ ∑i¼x;y;z
_2

2mi
k2i þ _viσ iki: ð3Þ

In the materials belonging to the cyclic point group, as the crystal
symmetry is further reduced, the constraints on the SOC is
further reduced. The complete forms of the SOC pseudotensor vij
in the KWS Hamiltonian are summarised in the Supplementary
Table 1 for all the chiral point groups.

The SOC in the KWS creates the Kramers Weyl points at the
time reversal invariant momenta and allows the coupling between
the spin and momentum. Under an electric field, the SOC enables
the charge carriers to have net magnetization and such
magnetoelectric response respects the same crystal symmetry
present in the SOC. As shown below, for materials with cubic
point groups T;Of g, the simple form of the isotropic Weyl
Hamiltonian in Eq. (2) allows us to calculate the magnetoelectric
susceptibility analytically. For the KWS in dihedral and cyclic
point group, the magnetoelectric responses are calculated
numerically for the selected materials in Supplementary Note 1
and Supplementary Note 2 respectively.

Magnetoelectric pseudotensors and their symmetry properties.
In magnetoelectric effects, induced magnetization M and the
applied electric field E are related by the magnetoelectric pseu-
dotensor α such that:

Mi ¼ ∑i;jαijEj; ð4Þ
where i, j= x, y, z and αij are elements of the magnetoelectric
pseudotensor α. For a generic Hamiltonian

H ¼ ∑ν;ν0;kc
y
ν;kH0;νν0 kð Þcν0;k; ð5Þ

where cyν;kðcν;kÞ is the creation (annihilation) operator, H0;νν0 kð Þ is
the element of the Hamiltonian matrix H0 kð Þ, αij can be obtained
from the linear response theory as26,27

αij ¼ �τ
e
_

1

2πð Þd
Z

BZ
dk∑nMnk;ivnk;j

df Enk

� �
dEnk

: ð6Þ

In Eq. (6), f Enk

� �
is the Fermi Dirac distribution function, Enk is

the energy dispersion of band n from the Hamiltonian H0 kð Þ,
vnk;j ¼ ∂Enk

∂kj
, d is the dimension of the system, τ is the effective

scattering time and i, j= x, y, z denote the spatial components.
The total magnetic moment Mnk= Snk+mnk carried by the
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Bloch electrons consists of both the spin magnetic moment
Snk ¼ hϕk;nj 12 gμbσjϕk;ni and the orbital magnetic moment
mnk ¼ ie

2_ h∂kϕk;nj ´ ½H0 kð Þ � Enk�j∂kϕk;ni. Here, μb ¼ e_
2me

is the
Bohr magneton, g is the Lande g factor which is set to be 2 in
our calculations and jϕk;ni denotes a Bloch state. As we will
show explicitly below, the orbital magnetization is related to
the Berry curvature of the Bloch states which has the form
Ωnk ¼ ih∂kϕk;nj´ j∂kϕk;ni39.

The linear response theory applies to generic Hamiltonians.
However, to shed light on the general properties of KWS, we note
that the form of α can be determined by point group symmetries
which is independent of the details of the Hamiltonian. The
group theory analysis of α is elaborated in the Method Section as
well as in Ref. 40, and the general form for the chiral point groups
is provided in Table 1. From the group theory point of view, KWS
can be classified into three sub-classes. For KWS belonging to the
cubic point groups T;Of g, α is proportional to the identity
matrix as shown in Table 1. This implies that the induced
magnetization is always parallel to the direction of the applied
electric field. Therefore, these KWS can behave as classical
solenoids in all electric field directions without the need to
fabricate any spiral structures.

For KWS with point groups Dn, a pure longitudinal
magnetization parallel to the electric field is also obtained when
the electric field is applied along the direction of any of the
symmetry axes. For KWS with cyclic point groups, in general,
magnetization with both components parallel and perpendicular
to the direction of the applied electric field are generated.
Interestingly, for all other Weyl semimetals without chiral point
group symmetry, the magnetoelectric response is zero if the
electric field is applied along the principal axis, which can
be obtained from the Supplementary Table 1. Therefore, the
longitudinal magnetoelectric response along the principal sym-
metry axis is a very distinctive feature of KWS due to the special
spin texture of KWS which determines the spin and orbital
magnetization.

Combined with the effective Hamiltonian for isotropic KWS in
Eq. (2), the magnetoelectric susceptibility in Eq. (6) can be

explicitly calculated and it shows how the SOC strength and band
dispersion will influence the magnetoelectric response.

Longitudinal magnetoelectric response in KWS. We first con-
sider an effective Hamiltonian which describes a Kramers Weyl
point near the Γ point in chiral crystals with point groups T;Of g,
where the isotropic Weyl Hamiltonian is H0 kð Þ ¼ _2

2m k2 þ _vk � σ.
At the Fermi energy EF ¼ _2

2m k2F ± _vjkFj, there are two spherical

Fermi surfaces with corresponding wave vectors kF ± ¼ kF ± k̂,
where kF ± ¼ 1

_

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mEF þm2v2

p
� mv

_ and k̂ ¼ k
jkj. The spin and

orbital magnetic moments of the two Fermi surfaces with Fermi
momenta kF± can be written as

SkF ± ¼ ±
g
2

e_
2me

k̂F ± ; and mkF ±
¼ ev

2
k̂F ±
jkF ± j

: ð7Þ

It is important to note that the orbital magnetic moment mkF ±
is

proportional to the Berry curvature generated by the Weyl point

inside Fermi surfaces which is ΩkF ±
¼ � k̂F±

2k2F ±
. The spin texture on

a Fermi surface is schematically shown in Fig. 1a. It is clear that
without breaking time-reversal symmetry, the total magnetic
moment of all the electrons is zero. By applying an electric field,
the steady state distribution of the electronic state can generate a
net magnetization as indicated in Eq. (6). With this special form
of spin texture of an isotropic KWS, at the Fermi energy EF, we
obtain the isotropic longitudinal magnetoelectric susceptibility α0
as (see the method section for detailed derivation)

α0 ¼ � e2vτ

6_2π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mEF þm2v2

p
g
m
me

� 1

� �
: ð8Þ

In α0, the first and second terms are the spin and the orbital
contributions respectively. It is important to note that, for hole
bands with negative effective mass, the spin and orbital con-
tribution will always add together to enhance the magnetoelectric
response. From Table 1, the magnetoelectric response of an iso-
tropic KWS can be written as M= α0E which indicates that the
magnetization induced is parallel to the applied electric field as is
schematically shown in Fig. 1b. From Eq. (8), it is clear that
strong Weyl SOC v, long scattering time τ and large effective mass
m can give large magnetoelectric response.

To acquire a strong magnetoelectric response, it is also
preferable to have long scattering time as shown in Eq. (8). In
KWS, since the Kramers Weyl points are pinned at the time
reversal invariant momenta, the electrons on opposite sides of the
Weyl point have opposite spin. As a result, for elastic back
scattering from scalar impurities, the intra Weyl pocket scattering
is suppressed by the SOC, similar to the case in the surface states
of topological insulators41–43. For an ideal KWS that only has
Fermi surfaces enclosing the Weyl point at time reversal invariant
momenta, the Weyl SOC can enhance the scattering time by a
factor of 3 as shown in the method section using Born
approximation. Therefore, we choose a scattering time τ= 1ps,
which is in the range of the inter Weyl point scattering time in
TaAs29,44,45. With the effective mass m= 1.4me, Weyl SOC
strength ℏv=−70 meV ⋅ nm, the KWS have the band dispersion
shown in Fig. 1c. The isotropic magnetoelectric susceptibility α0
as a function of Fermi energy EF is then evaluated as shown in
Fig. 1d. For the Fermi pockets enclosing a single Kramers Weyl
point, the isotropic magnetoelectric susceptibility α0 increases
with the square root of the Fermi energy EF.

To seek a large magnetoelectric response from realistic
materials, we study two representative materials in the T point
group: the K2Sn2O3

18, the RhSn34. The K2Sn2O3 is a small gap
insulator with a Kramers Weyl point at H near the conduction

Table 1 of Magnetoelectric susceptibility pseudotensor α for
the chiral crystals in the 11 chiral point groups.

Point group α Point group α

O α0 0 0
0 α0 0
0 0 α0

0
@

1
A T α0 0 0

0 α0 0
0 0 α0

0
@

1
A

D2
αxx 0 0
0 αyy 0
0 0 αzz

0
@

1
A D3

αk 0 0
0 αk 0
0 0 αzz

0
@

1
A

D4
αk 0 0
0 αk 0
0 0 αzz

0
@

1
A D6

αk 0 0
0 αk 0
0 0 αzz

0
@

1
A

C1
αxx αxy αxz
αyx αyy αyz
αzx αzy αzz

0
@

1
A C2

αxx αxy 0
αyx αyy 0
0 0 αzz

0
@

1
A

C3
αk �α� 0
α� αk 0
0 0 αzz

0
@

1
A C4

αk �α� 0
α� αk 0
0 0 αzz

0
@

1
A

C6
αk �α� 0
α� αk 0
0 0 αzz

0
@

1
A

αij with i, j= x, y, z are in general the elements in α. In point group with symmetry, the 9 elements
in αij is no longer independent. α0 means α0= αxx= αyy= αzz in T and O point group. In the {C3,
C4, C6, D3, D4, D6} group αxx= αyy is then denoted as α∥= αxx= αyy. α− means the
antisymmetric elements as α−=− αxy= αyx in group {C3, C4, C6}. The principal axis of the
crystal is set along z.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00564-w ARTICLE

COMMUNICATIONS PHYSICS |            (2021) 4:66 | https://doi.org/10.1038/s42005-021-00564-w |www.nature.com/commsphys 3

www.nature.com/commsphys
www.nature.com/commsphys


band bottom. Around the Kramers Weyl point, the conduction
bands of K2Sn2O3 have large spin splitting shown in Fig. 2a. In
the slight n-doped state, the electrons will occupy the Fermi
pockets enclosing the single Kramers Weyl point at H so that the
isotropic Weyl Hamiltonian can be effectively described by Eq.
(2), with the effective mass m= 1.4me and SOC strength ℏv=
−70 meV ⋅ nm. To validate the calculations using an effective
Hamiltonian in the form of Eq. (2), a realistic tight-binding
model for K2Sn2O3 is further constructed (see the method
section) to calculate the magnetoelectric susceptibility α0, as is
shown in Fig. 2b. Below E= 0.7eV, only the Weyl bands
enclosing the Kramers Weyl point at H are involved so that the

numerically calculated magnetoelectric susceptibility matches
well with the analytical formula in Eq. (8). It is interesting to
note that there is a four-fold fermion around the energy E= 0.75
eV. As the Fermi surfaces enclosing multi-fold fermion also
contribute to the magnetoelectric susceptibility α046, the fourfold
fermion at H point induce a sudden increase of α0 when the
chemical potential is above 0.7eV. Assuming that the chemical
potential lies at E= 0.6eV (about 80 meV above the Weyl point),
an electric field of 105V/m is enough to generate a magnetization
of 0.005μb per unit cell.

On the other hand, RhSn, which has the same B20 structure as
the recently studied KWS RhSi19, is semimetallic. The SOC
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Fig. 1 The longitudinal magnetoelectric response of isotropic Kramers Weyl semimetals. a The Weyl spin texture of isotropic Weyl spin-orbit coupling
ℏvk ⋅ σ at the Fermi surface from the band branch+. b The electrically induced magnetization is parallel to the applied electric field. Here blue and red
coordinates are the Cartesian coordinates for the applied electric field E ¼ Ex; Ey; Ez

� �
and the generated magnetization M ¼ Mx;My;Mz

� �
. c The energy

dispersion for the isotropic chiral Weyl semimetal. The blue and red line corresponds to the+ and− band branch respectively. d The magnetoelectric
susceptibility α0 strength as a function of the Fermi energy EF. In the presence of external electric field, α0 gives the number of Bohr magneton μb

� �
per unit

cell (u.c.) to denote the magnetization in the material.

Fig. 2 The isotropic longitudinal magnetoelectric response in K2Sn2O3. a The band structure of K2Sn2O3. The red circles highlight the Kramers Weyl
point as well as a multi-fold fermion in this material. b The isotropic longitudinal magnetoelectric susceptibility α0 as a function of conduction band energy.
Below E= 0.7eV, the magnetoelectric response can be well described by the analytical result from Eq. (8) with m= 1.4 me, ℏv=−70 meV ⋅ nm, τ= 6ps.
The sudden increase of the magnetoelectric response near E = 0.7eV is due to the emergence of the bands associated with the multi-fold fermion at H
point of the Brillouin zone. The magenta dashed line denotes the analytical derived α0 in Eq. (8) while the numerically obtained α0 is plotted in a cyan
solid line.
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generates the Kramers Weyl points at Γ as well as other multi-fold
fermion band crossing points 15–17 at the time reversal invariant
momenta as shown in Fig. 3a. A fourfold fermion band crossing
point near the Fermi energy is highlighted by a red circle in
Fig. 3a. With the realistic tight binding model constructed from
Wannier functions (see the “method” section), the magneto-
electric susceptibility α0 is calculated in the energy range
including all the bands. The results are shown in Fig. 3b. At the
Fermi energy, which is near the multi-fold fermion Weyl point,
an electric field of 105V/m can generate a magnetization of
0.007μb per unit cell . Compared with the magnetoelectric
response of Au(111) surface and Bi/Ag bilayers which have large
Rashba SOC28,29, the K2Sn2O3 and RhSn can generate magne-
tizations which are two to three orders of magnitude larger.

For KWS with dihedral (Dn) point groups, such as CsCuBr318,
and elemental Te, Se35–38, a pure longitudinal magnetoelectric
response can also be obtained when the electric field is applied
along the direction of the symmetry axes. On the other hand, for
KWS with cyclic (Cn) point groups, such as Ca2B5Os3, a
longitudinal magnetoelectric response is generally accompanied
with a transverse response. The calculations of magnetoelectric
tensors for CsCuBr3 with D2 point group and Ca2B5Os3 with C2

point group can be found in the Supplementary Note 1 and
Supplementary Note 2 respectively.

Discussion
We note that the current induced magnetization in Weyl semi-
metals was first studied by Johansson et al. in TaAs which belong
to the point group C4v with mirror planes29. Therefore, the Weyl
points appear at general k points and the resulting spin polar-
ization induced by an electric field is perpendicular to the
direction of the electric field. This transverse magnetoelectric
effect is similar to the case with Rashba SOC25 which is a property
of the polar point group as shown in Supplementary Table 1. If
the applied electric field is along the principal axis, however, the
magnetoelectric response is zero in TaAs as determined by the
C4v point group symmetry.

On the other hand, the longitudinal magnetoelectric response
in Weyl semimetals was first studied by Yoda et al.47,48. However,
in their models, helical hopping textures47,48 are needed for
electrons to hop in a spiral manner, imitating the movement of
electrons in a classical solenoid. As a result, an orbital magneti-
zation parallel to the direction of an applied electric field would
be generated and the longitudinal magnetization is present even
without spin-orbit coupling. Unfortunately, no realistic materials
that possess such helical hopping textures are identified.

In this work, the finite longitudinal magnetoelecrtric response
comes from the current induced net magnetic moments

accumulation on Fermi surfaces of the KWS. The net magnetic
moments on Fermi surfaces basically have two origins: (1) the
SOC induced spin splitting; (2) the finite orbital magnetic
moment distribution on Fermi surfaces. The twofold Kramers
Weyl point we focused on in this work contributes to both the
spin and orbital magnetic moments, but for a general KWS of
chiral crystal symmetry, the complicated band structure diversi-
fies the origin of magnetic moments on Fermi surfaces.

As we have seen, the Fermi pockets enclosing multi-fold
fermion contribute to the magnetoelectric susceptibility as well.
It is due to the fact that multi-fold fermion endows orbital
magnetic moments to the Fermi surfaces outside. Along with
the SOC induced spin splitting, the Fermi pockets enclosing
multi-fold fermion can also give rise to spin and orbital mag-
netization driven by charge current46. In a KWS, the magne-
toelectric response from the multi-fold fermion and twofold
Kramers Weyl point is the same type as the response tensor
form is determined by the chiral crystal symmetry of the KWS.
Since the Fermi surfaces with a multi-fold fermion inside
have different magnetic moment, group velocity and density of
states from that with a twofold Kramers Weyl point, the
magnetoelectric susceptibility can differ in the value for the
two cases.

Besides the twofold Kramers Weyl point and multi-fold
fermion at high symmetry points in the Brillouin zone, a Weyl
point at a general k point can generate finite longitudinal
magnetoelectric susceptibility as long as the crystal symmetry
does not reduce it to zero. This is the case of the local maximal
magnetoelectric susceptibility α0 of RhSn at E=−0.46eV
shown in Fig. 3b. There is a Weyl point in Γ− R line around the
energy of E=−0.46eV which enhances the magnetoelectric
susceptibility at that energy. In a brief summary, the long-
itudinal magnetoelectric susceptibility in KWS of chiral crystal
symmetry originates from SOC and Weyl points in the band
structure. The magnitude of longitudinal magnetoelectric
response at given current density relies on the Fermi surface
magnetic moment, Fermi velocity, effective scattering time and
density of states at the Fermi energy of KWS.

Concerning the applications of KWS, due to its unique long-
itudinal magnetoelectric response, the KWS/ferromagnet het-
erostructures can be used for new designs of spin-orbit torque
devices as shown in Fig. 4a. It is interesting to note that a KWS
can cause current induced magnetization switching in the ferro-
magnetic layer by two effects. First, as depicted in Fig. 4a, the
KWS can inject electrons which carry both orbital and spin
angular momentum into the ferromagnetic layer. The injection of
angular momentum can cause magnetization switching similar to
the spin transfer torque induced magnetization switching in
magnetic tunneling junctions as shown in Fig. 4b. The important

Fig. 3 The isotropic longitudinal magnetoelectric response in RhSn. a The band structure for RhSn. Both Kramers Weyl points as well as other multi-fold
fermion band crossing points can be found. The red circles highlight the Kramers Weyl point as well as a four-fold fermion in the mateiral. b The isotropic
longitudinal magnetoelectric susceptibility α0 in units of μbV−1m per unit cell is calculated. The effective scattering time is taken to be τ= 6ps.
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difference is that the electrons injected by KWS can carry both
orbital and spin angular momentum. Particularly, close to the
Weyl points, the orbital magnetization carried by the electrons
can be significant. Therefore, KWS can work as a source of spin
and orbital angular momentum for magnetization switching.
Second, when a current is passed along the principal symmetry
axis of the KWS, a magnetization is induced at interface between
the KWS and the ferromagnet. This current induced magneti-
zation can cause the magnetization switching of the ferromagnet
layer through ferromagnetic coupling between the KWS and the
ferromagnet.

In recent years, tremendous progress has been made for the study
of spin-orbit torque devices as depicted in Fig. 4c. For example,
current induced magnetization switching due to spin-orbit torques,
in the presence of an in-plane magnetic field, has been realized
experimentally in heavy metal/ferromagnet heterostructures49,50. It
was also demonstrated that charge currents in multi-layer WTe2
can induce out-of-plane magnetizations32 and WTe2 can also be
used for magnetization switching for ferromagnets with in-plane
anisotropy51. However, an all electric control of magnetization
switching for ferromagnets with perpendicular magnetic anisotropy
(PMA) through spin-orbit torques, which is important for high
density magnetic memories, has not been experimentally realized.
Therefore, due to the unique longitudinal response of KWS, they
allow new designs of spintronic devices for magnetization switching
of ferromagnets with perpendicular magnetic anisotropy as depicted
in Fig. 4a.

Concerning the candidate materials of KWS, the cubic chiral
B20 structured materials34, such as the recent experimentally
studied RhSi19, CoSi19–21, AlPt22, PtGa23, PdGa24, and RhGe,
RhSn all belong to the T point group that has the isotropic
longitudinal magnetoelectric response. Particularly, the PtGa23

that has the strongest SOC reported so far in chiral crystals is
expected to produce strong longitudinal magnetoelectric effect.
Besides, elemental Se and Te also have chiral lattice structure35,36.
Interestingly, a few superconducting materials with chiral lattice
symmetry and strong spin-orbit coupling such as Li2Pt3B52,
Li2Pd3B53, Mo3Al2C54, TaRh2B2 and NbRh2B255 have been
experimentally studied. In their normal state, these super-
conducting materials can also have spintronic applications.

In conclusion, the magnetoelectric effect of KWS are studied in
this work using three different methods: 1. Group theory analysis;
2. Analytical calculations through linear response theory; and 3.
Realistic tight-binding calculations are constructed through first
principle calculations and the magnetoelectric response of realistic
materials are calculated. A new design for current-controlled
magnet memory device is proposed and new candidates of KWS
are suggested.

Methods
Symmetry analysis for the magnetoelectric response in Chiral crystals. In the
chiral crystals with magnetoelectric effect Mi=∑i,jαijEj with i, j= x, y, z, under the
crystal symmetry the magnetization transforms as Mi ! det R̂

� �
R̂ijMj while the

electric field transforms as Ei ! R̂ijEj , where R̂ represents the symmetry trans-
formation operator and is an orthogonal matrix. As a result, the magnetoelectric
susceptibility αij under the crystal symmetry respects

α ¼ det R̂
� �

R̂αR̂
T
: ð9Þ

The chiral point groups, which do not allow improper rotations, can be divided
into three sub-classes: the cubic point groups T;Of g, the dihedral point groups
Dn

� �
with n= 2, 3, 4, 6 and the cyclic point groups Cn with n= 1, 2, 3, 4, 6. In the

cubic point groups T;Of g, the multiple high order rotation axes along different
directions would force the magnetoelectric susceptibility to be proportional to the
identity matrix. In the dihedral point groups Dn

� �
with n= 2, 3, 4, 6, the Cn

rotation axis along z and the in-plane C2 rotation axis along the x-axis would
eliminate all the off diagonal elements and leave only the diagonal elements in the

magnetoelectric susceptibility α ¼ diag αxx; αyy; αzz

n o
. In D3;D4;D6

� �
, the prin-

cipal axis would further make αxx= αyy. In the cyclic point groups Cn

� �
with n=

1, 2, 3, 4, 6, the lower symmetry would allow the off-diagonal elements to coexist
with the diagonal elements. The explicit forms of the magnetoelectric susceptibility
pseudotensor αij from the symmetry analysis is shown in Table 1 for the 11 chiral
point groups.

Magnetoelectric susceptibility in isotropic KWS. In the isotropic KWS, at the
Fermi energy EF ¼ _2k2

2m ± _vjkj, there are two spherical Fermi surfaces with the

corresponding wave vectors kF ± ¼ kF± k̂ and kF ¼ 1
_

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mEF þm2v2

p
�mv

� �
,

k̂ ¼ k
jkj. On the Fermi surfaces enclosing the Kramers Weyl point, the spin magnetic

dipole moment and orbital magnetic dipole moment are respectively

SkF± ¼ ±
g
2

e_
2me

k̂F; mkF ±
¼ ±

1
2
ev

k̂F
jkFj

; ð10Þ

with ± denoting the two band branches. The density of states can be obtained as

N ± EF

� � ¼ m

2π2_3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mEF þm2v2

p
þ mv2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EF
m þ v2

q � 2mv

0
B@

1
CA; ð11Þ

and the Fermi velocities there become

vkF ± ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EF

m
þ v2

r
k̂F ± : ð12Þ

At the Fermi energy, the magnetoelectric susceptibility α0 can be approximated

through ∑n
1

2πð Þd
R
BZ:::

df En;kð Þ
dEn;k

dk ! �∑nNn EF

� � R dΩkF;n

4π with n= ± and then we

can obtain

α0 ¼ � e2vτ

6_2π2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mEF þm2v2

p
g
m
me

� 1

� �
: ð13Þ

Isotropic Weyl SOC suppressed back scattering. In the pure scalar potential
scattering process

Himp ¼
Z

dkdk0ψy
k0Vk�k0ψk ; ð14Þ

 a  b  c

J

M M

M

J J
M

KWS

Ferromagnet

Reference layer

Spacer

Recording layer Recording layer

Metal with SOC
electron

Fig. 4 The schematics of current induced magnetization switching in spintronic devices. a A Kramers Weyl semimetal/ferromagnet heterostructure.
When a current J passes through the Kramers Weyl semimetal, the effective magnetic field at the Kramers Weyl semimetal and the electrons injected
from Kramers Weyl semimetal to the ferromagnetic layer provide a torque to switch the magnetization direction Mð Þ of the ferromagnetic layer. b A
magnetic tunneling junction. The junction is made of a reference ferromagnetic layer and the recording ferromagnetic layer separated by a metallic or
insulating spacer. The magnetization of the recording layer can be switched by the spin polarized electrons coming out of the reference layer. c A spin-orbit
torque device30–33. The current induces magnetization at the metal layer through magnetoelectric effect (or the inverse spin galvanic effect). The effective
magnetic field at the metal/ferromagnet interface causes the magnetization switching in the ferromagnetic layer.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00564-w

6 COMMUNICATIONS PHYSICS |            (2021) 4:66 | https://doi.org/10.1038/s42005-021-00564-w |www.nature.com/commsphys

www.nature.com/commsphys


the scattering potential can be projected onto the band basis as

V̂k�k0 ¼ Vk�k0U
y
k0Uk ; ð15Þ

with

Uk ¼
cos θ2 e

�iϕ sin θ
2 e

�iϕ

sin θ
2 � cos θ2

 !
; ð16Þ

and θ, ϕ are the azimuth and polar angle of k. In the presence of large SOC, the
scattering is dominated in each band branch ð± Þ and the effective scattering
potential becomes

V̂k�k0 ;þ ¼ Vk�k0 cos
θ0

2
cos

θ

2
e�i ϕ0�ϕð Þ þ sin

θ0

2
sin

θ

2

	 

ð17Þ

V̂k�k0 ;� ¼ Vk�k0 sin
θ0

2
sin

θ

2
ei ϕ

0�ϕð Þ þ cos
θ0

2
cos

θ

2

	 

: ð18Þ

In the Born approximation, the scattering in each band branch is obtained as

1
τ ±

¼ mkF± nimp

4π2_3

Z π

0
dϑ
Z 2π

0
dφV̂

2
k�k0 ;± 1� cos ϑð Þ sin ϑ; ð19Þ

with φ ¼ ϕ0 � ϕ, ϑ ¼ θ0 � θ. In the spherical Fermi surfaces, the scattering

potential V̂
2
k�k0 ; ± only depends on the angle between k and k0 , soZ π

0
dϑ
Z 2π

0
dφV̂

2
k�k0 ; ± 1� cos ϑð Þ sin ϑ ¼ 172

105
k2F ± ; ð20Þ

Z π

0
dϑ
Z 2π

0
dφV2

k�k0 ;± 1� cos ϑð Þ sin ϑ ¼ 16
3
k2F: ð21Þ

As a result, the Weyl SOC reduces the scattering potential to about 0.3 and
suppresses the back scattering.

First-principles calculation and Wannier function construction. We perform
first-principles calculation within the density functional theory framework as
implemented in Vienna Abinitio Simulation Package(VASP)56. PAW57,58 type of
pseudopotential with PBE exchange functional59 is used in the calculations and
spin orbit coupling is included in the pseudopotentials. After the first-principle
calculation is done, tight binding Hamiltonian which perfectly recovers bands near
Fermi surface is built through Wannier function construction using package
Wannier9060,61. The lattice structures of all the materials we considered are
obtained from the ICSD62.

Data availability
The data generated from our codes that support the findings of this study are available
from the corresponding author upon reasonable request.
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