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Light-wave control of correlated materials using
quantum magnetism during time-periodic
modulation of coherent transport
Panagiotis C. Lingos1, Myron D. Kapetanakis2, Jigang Wang 3 & Ilias E. Perakis 2✉

Light–wave quantum electronics utilizes the oscillating carrier wave to control electronic

properties with intense laser pulses. Without direct light–spin interactions, however, mag-

netic properties can only be indirectly affected by the light electric field, mostly at later times.

A grand challenge is how to establish a universal principle for quantum control of charge and

spin fluctuations, which can allow for faster-than-THz clock rates. Using quantum kinetic

equations for the density matrix describing non–equilibrium states of Hubbard quasiparticles,

here we show that time–periodic modulation of electronic hopping during few cycles of

carrier–wave oscillations can dynamically steer an antiferromagnetic insulating state into a

metalic state with transient magnetization. While nonlinearities associated with quasi-

stationary Floquet states have been achieved before, magneto–electronics based on quasi-

particle acceleration by time–periodic multi–cycle fields and quantum femtosecond/attose-

cond magnetism via strongly–coupled charge–spin quantum excitations represents an

alternative way of controlling magnetic moments in sync with quantum transport.
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The advent of intense phase-coherent mid-infrared (MIR),
terahertz (THz), and attosecond laser pulses with well-
characterized temporal profiles opened a promising

direction for achieving coherent control of quantum materials
during sub-oscillation-cycle timescales1–9. During a single cycle
of coherence oscillations, quasi-stationary states (e.g., Floquet)
have not yet been reached and relaxation is reduced. In quantum
materials, emergent phenomena arise from strong couplings
between electronic, spin, and lattice degrees of freedom10–13.
Adiabatic tuning of such microscopic interactions, by applying,
for example, high pressure and magnetic or electric fields, is an
established method for controlling the phase diagram of quantum
materials. However, such static perturbations affect simulta-
neously different materials properties, which acts against the
desirable quantum control and selectivity. Ultra-short laser fields,
on the other hand, provide nonequilibrium means of manip-
ulating structural and electronic properties. Of main interest for
this paper is that nonlinear ultrafast processes initiated by
coherent photoexcitation can dynamically steer quantum mate-
rials to nonequilibrium states that may not be accessible via
quasi-equilibrium pathways3,5,6,14–40. Unlike for photoexcitation
at high optical frequencies, where relaxation of high-energy
photocarriers masks the quantum dynamics due to strong cou-
pling to the bath, multicycle driving of quantum systems by
intense THz or MIR laser fields can achieve nonadiabatic quan-
tum tuning1,3,4,6,25,41–47. For example, THz/MIR laser electric
fields can act as an oscillating force that accelerates electrons in
controllable trajectories during cycles of carrier-wave
oscillations1,3,4,25,41,42, or be used to control the phase of the
many-electron wavefunction3,25,48,49. In this way, coherent elec-
tronic transport can drive quantum systems into metastable or
pre-thermalized phases3,21,24,25,50,51 and control phase
transitions9. At the same time, in the absence of a direct
light–spin interaction, magnetic properties can only be affected
indirectly by the laser electric field. Recent experiments, however,
have revealed femtosecond quantum magnetism5,33, attosecond
coherent magnetism2, and femtosecond spin–orbit torque
coherent dynamics43,52–54, among other ultrafast light-induced
spin effects55,56. Such experimental results suggest that magnetic
properties can be manipulated during oscillations of a time-
periodic driving electric field2,55,57. Given the currently available
multicycle intense laser pulses, a better understanding of driven
electron spin dynamics during non-dissipative sub-cycle time-
scales is needed.

Here, we investigate theoretically the hypothesis that light-
wave-periodic modulation of electronic hopping between atomic
sites occupied by noncollinear local spins can be used to coher-
ently control magnetic states and phase transitions prior to the
establishment of quasi-stationary states1,2,5,9,25. Our focus is on
the role of quantum fluctuations of a highly responsive back-
ground of local spins that interact strongly with itinerant electron
spins. We investigate, in particular, the role of strong
electron–magnon couplings5,33,58–61 during light-driven coherent
hopping of electrons. By introducing Hubbard operators62 to
describe electron quasi-particles strongly coupled to the local
spins, we treat spin quantum fluctuations in the limit of strong
(infinite) on-site magnetic exchange interaction. By deriving
quantum kinetic equations of motion for the density matrix of
such Hubbard quasi-particles, we develop a generally applicable
model for describing the transient quantum state that evolves in
time from a noncollinear spin state driven by a few-cycle bias
laser field. The latter dynamics is determined by strongly coupled
charge and spin quantum excitations driven by ultrafast mod-
ulation in time of interatomic electronic hopping amplitudes.
Rather than adopting a quasi-stationary Floquet picture, here we
calculate the nonadiabatic time evolution of the quantum state

during cycles of oscillation (i.e., prior to the development of
quasi-stationary states) for short relaxation times typical in many
materials. We truncate the density matrix hierarchy introduced
by strong local correlations by using a generalized mean-field
approximation. The latter constrains the electronic motion to the
lowest Hubbard band62,63. By obtaining the light-driven spin and
charge coherent local populations and intersite coherences and by
using them to calculate the total energy as a function of lattice
displacements Qi, we find three main nonequilibrium effects: (i) a
more homogeneous spatial electronic distribution develops due to
light-driven quantum transport assisted by quantum canting of
an antiferromagnetic (AFM) local spin background; (ii) a tran-
sient magnetization develops simultaneously with coherent elec-
tronic transport as a result of light-induced modulation of the
AFM-ordered core spin background; and (iii) a light-induced
change in the total energy minimum towards undistorted lattice,
Qi= 0, develops during few cycles of oscillations. Our model may
be used to implement coherent control experimentally, for
example, by tailoring the laser field temporal profile to obtain
the desired current determined by intersite electronic
coherences3,25,64.

Results
To demonstrate our proposed light-wave control scheme, we
describe the sub-oscillation-cycle coherent nonlinear response of
an AFM insulating state to time-periodic modulation of the
electronic hopping amplitudes during few oscillation cycles. For
this, we consider a general model that describes local correlated
configurations on a lattice. We assume that such multielectron/
multiatom configurations on different sites are coupled by
coherent hopping of an electron that interacts strongly with the
local spins while conserving total spin. We calculate the coherent
time evolution in response to such hopping amplitude time
modulation. While numerical results were obtained by using as
an example a complex charge-exchange (CE)-type AFM (CE-
AFM) unit cell relevant to the quantum femtosecond magnetism
experiments of refs. 5,33, our proposed paradigm of light-wave
quantum control presents a more general strategy for tailoring
quantum materials properties during coherence oscillations6.

Model. The proposed paradigm of light-wave control applies to a
general Hamiltonian H(t)=Hlocal+Hhop(t) that can be split into
two parts: local interactions, Hlocal, and electronic hopping,
Hhop(t) (see “Methods”). We assume ultra-short modulation of
Hhop(t) from equilibrium, with few cycles of time oscillations
during the ~100 fs duration of the laser pulse. For example, such
carrier-wave time modulation can arise from the direct coupling
of the electromagnetic vector potential, which for tight-binding
Hamiltonians is described by the standard Peierls substitution
(see “Methods” and Supplementary Note 1). Similar few-cycle
time modulation can also arise from lattice coherence
oscillations6 and THz dynamical symmetry breaking3,25,65. The
strong spin interactions of interest (see “Methods” and Supple-
mentary note 1) are part of Hlocal and include a local ferromag-
netic (FM) interaction, −JH∑iSi⋅si, between the itinerant electron
spin-1/2 (si) and the localized electron spin −S (core spins Si). To
break the symmetry and introduce a preferred magnetization
direction during time evolution, we include a weak magnetic field.
To separate the quasi-equilibrium spin directions from quantum
spin dynamics, we work in the local coordinate systems with z-
axis along the directions defined by (classical) spin canting angles
θi. We solve quantum kinetic equations of motion (see Supple-
mentary Note 1) to calculate the spin deviations from θi driven by
Hhop(t) (“Methods”). To describe the strong local (on-site) cor-
relations, we consider a basis of Ne electron ( imj i) and Ne+ 1
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electron ( iαMj i) eigenstates of Hlocal at each lattice site i
(“Methods”). We assume that these local configurations are
eigenstates of the core spin Si and the total spin Ji= Si+ si,
respectively. α labels the different Ne+ 1-electron local config-
urations (e.g., different multiatom and orbital configurations,
different Hubbard bands, etc.). Coherent electronic hopping from
site i to site j results in Ne+ 1→Ne transitions at site i and Ne→
Ne+ 1 transitions at site j between the above local configurations
(as illustrated in Fig. 1a). To describe the strong local coupling
of the spin and charge excitations, we introduce composite
fermion quasi-particles created by Hubbard operators62. The
latter create transitions imj i ! iαMj i with excitation energies
εQθασ ðiÞ ¼ �JHS� σμBBext cos θi � EJT

α Qi, where σ= ±1 (“Meth-
ods”). We assume an AFM spin configuration here, θi= 0, π. EJT

α
describes to linear order the dependence of the quasi-particle
energy on the coherent lattice displacement Qi. We also assume
two local configurations α per site, which are split in energy due
to, for example, Jahn–Teller (JT) electron–lattice coupling, Qi ≠ 0.
For example, in the case of the CE-type AFM charge-ordered
(CO) and orbital-ordered (OO) phase whose femtosecond mag-
netic response was studied experimentally in insulating
Pr0.7Ca0.3MnO3 (PCMO) manganites5,33, α may correspond to
the different eg orbitals that diagonalize Hlocal, for example, x2−
y2/3z2− r2, 3x2− r2/y2− r2, or 3y2− r2/x2− r2 on different

sites66. More generally, the unit cell of manganites consists of
Mn+O local configurations (α) analogous to the Cu+O con-
figurations in the cuprates67, which are split in energy by JT and
strong Coulomb local interactions67 and justify the use of gen-
eralized tight-binding models such as the one considered here62.
In our model, Qi=QB (bridge sites) or Qi= 0 (corner sites) leads
to an energy gap between the electronic configurations on neig-
boring sites on the same plane. We derive quantum kinetic
equations for the density matrix ρ that describes local populations
and intersite coherences of the local electronic configurations (see
“Methods” and Supplementary note 1). We then solve these
equations of motion to describe the adiabatic and nonadiabatic
time evolution of the quantum state driven by time modulation of
intersite coherent hopping amplitudes.

Adiabatic dynamics-equilibrium state. The numerical results
here were obtained for the tight-binding parameters and three-
dimensional CE/AFM CO/OO unit cell of ref. 66, sketched in
Fig. 1a. Such complex unit cell applies to the quantum femtose-
cond magnetism experiments of ref. 5 and consists of AFM-
coupled zig-zag chains with FM-ordered spins on four alternating
full (bridge) and empty (corner) lattice sites per chain (CO,
“Methods”). These chains are located in identical x–y planes that
are AFM coupled along the z-direction. We obtained reasonable

Fig. 1 Time evolution of an antiferromagnetic state driven by time-periodic ultra-short modulation of the intersite hopping amplitudes V(t). a
Schematic of the antiferromagnetic configuration used in our numerical calculation. The complex unit cell consists of zig-zag ferromagnetic chains with
interchanging corners (red circle) and bridge (blue circle) lattice sites. Neighboring chains are antiferromagnetically coupled in the plane and stacked in
antiferromagnetically coupled identical planes along the z-axis. Red arrows indicate the electronic hopping between antiferromagnetic sites that triggers
the spin quantum dynamics of main interest. Time evolution is induced by both adiabatic (b) and nonadiabatic (c) time modulation of the electronic
hopping amplitudes V(t). The V(t) temporal profile in c results from a few-cycle electric field pulse with Rabi energy dR= eEa= 100meV and duration tp=
100 fs. The latter drives nonthermal populations of different spin and charge local configurations at the “bridge” (QB≠ 0, d, e, h, and i) and “corner” (QC=
0, f, g, j, and k) lattice sites. d–g, h–k show the time-dependent populations driven by adiabatic (b) and nonadiabatic (c) coherent hopping modulation,
respectively. Vertical lines in h indicate the time delay in the development of different spin state populations during the nonadiabatic light-wave-driven time
evolution.
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numerical convergence of the time evolution for a 4 × 4 × 4 lat-
tice. While the proposed control mechanism during light-wave
oscillations applies to any AFM unit cell, the CE/CO/OO unit
cell66 used here demonstrates that convergence is obtained for
large unit cells, where ab initio calculations of the time depen-
dence are computationally demanding. We first solve the density
matrix equations of motion for intersite hopping amplitudes that
increase adiabatically in time, from zero to their static values:

VαβðtÞ ¼ tαβði� jÞ t
T

; 0≤ t ≤T ð1Þ

and Vαβ(t)= tαβ for t ≥ T, as shown in Fig. 1b, c. The static values
tαβ reflect the microscopic atomic configurations and can be
extracted for specific materials by, for example, fitting to ab initio
calculations. Figures 1 and S1 show the time evolution of the
above eigenstate of Hlocal to a stationary state with given hopping
amplitudes tαβ ≠ 0 and quantum spin canting. As seen in Fig. 1,
the bridge site, Fig. 1d, e, and the corner site populations, Fig. 1f,
g, have reached stationary values within numerical accuracy at
t= T. This is clearly illustrated in Fig. S2, where we let the system
develop for longer times, t > T, after the hopping amplitudes have
reached their static values.

Electron hopping from a full bridge to an empty corner site
creates M= S+ 1/2→m= S quasi-hole excitations at the bridge
sites (Fig. 1d) and m= S→M= S+ 1/2 quasi-electron excita-
tions at the corner sites (Fig. 1g). This (M= 2, m= 3/2)→ (m=
3/2, M= 2) charge transfer process does not change the core spin
(Fig. 1e, f) and is the only one allowed in the classical limit S→∞,
JH→∞ for θi= 0, π. There, hopping between AFM sites can only
occur via thermodynamic fluctuations of the classical canting
angles θi66,68. Here, the stationary solution of the density matrix
equations of motion demonstrates that small populations of M=
S− 1/2= 1 and m= S− 1= 1/2 canted spin configurations
emerge during intersite charge excitations for frozen θi= 0, π.
The above spin populations arise from coherent electronic
hopping (quantum transport) with simultaneous quantum
canting of the core spins Si. The latter spin canting originates
from the off-diagonal interaction JHS

�
i � sþi . Such quantum spin

fluctuations away from the local z-axis distort the AFM core spin
background already in the equilibrium state. Figure S1 shows the
spin distortion from the AFM configuration for the full range of
magnetic fields and lattice displacements. Figure S1 also
demonstrates that, in equilibrium, the energy landscape and
equilibrium lattice displacement QB are only slightly changed by
the electronic hopping and spin fluctuations. This is not the case,
however, in the light-driven nonequilibrium quantum state
discussed next.

Light-driven nonequilibrium state. We now present the main
results of this paper, obtained by calculating the time evolution of
a stationary state driven by multicycle time modulation of the
equilibrium hopping amplitudes (Fig. 1c). Here, we consider
ultra-short timescales: pulse duration tp= 100 fs, intersite
coherence dephasing time T2 ~ 20 fs < tp, and charge/spin coher-
ent population lifetime T1 ~ 200 fs > tp. Dephasing times T2 ~ 10
fs are typical in metals69,70, while T2 ~ 15 fs has been measured in
La0.5Sr1.5MnO4 manganites71. For the insulating AFM manganite
studied in ref. 33, we measured T1 ~ 500 fs. Important is that T1

exceeds a cycle of oscillation, so that dissipation is suppressed
during the timescales that steer the time evolution. We compare
in Fig. 1h–k the spin-resolved populations of all different local
configurations at the bridge (panels h and i) and corner (panels j
and k) lattice sites as a function of time for fixed QB. At the bridge
sites, the m= 3/2 local spin population (Fig. 1h) increases with a
simultaneous decrease of the M= S+ 1/2= 2 majority popula-
tion from its ground state value (Fig. 1i). In addition, light-

induced core spin populations with m < 3/2 develop at the bridge
sites (Fig. 1h), which indicates quantum canting of the local
magnetic moments from their equilibrium values. A remarkable
time delay in the development of the different spin populations is
seen in Fig. 1h (vertical lines), which signifies a non-
instantaneous time evolution of the core spins during oscilla-
tion cycles. The population of M < 2 states (Fig. 1i) comes from
electronic hopping back to the bridge sites. Such back-and-forth
electronic coherent motion is expected from Rabi oscillations
between the local electronic configurations at different sites,
which are driven by the strong light field used here.

Quantum spin canting is stronger on the corner sites, which
become populated during light-induced hopping of electrons
from bridge sites. This is seen in Fig. 1j, k, which shows a
significant population of m < 3/2 and M < 2 spin configurations
on the corner sites. Quantum spin canting, in turn, enhances
electronic delocalization, by allowing hopping between AFM sites
that is prohibited in the classical limit S→∞, JH→∞. The
complex CE-AFM unit cell of Fig. 1a serves to highlight that such
effects can occur in layered quantum materials with AFM-
coupled planes. In particular, light-driven in-plane electronic
transport from the populated bridge to empty corner sites allows
for subsequent interplane hopping to empty sites in the
neighboring AFM-coupled planes, which have identical lattice
configurations and thus no energy barrier due to QB. Our results
demonstrate the possibility for light-induced time-dependent
modulation of angular momenta Si that are coupled to itinerant
spins si via local interactions ∝si⋅Si, for example, spin–orbit or
magnetic exchange. In this way, light-wave oscillations can
transiently modulate spin texture.

The calculated time-dependent effects are controlled by the
Rabi energy dR(t)= eaE(t), where a is the lattice constant, e is the
electron charge, and EðtÞ ¼ Ee�t2=t2p sinðωptÞ is the light-wave
field with frequency ωp (see “Methods” and Supplementary
Note 1). The role of the intense multicycle electric field is to drive
electron transitions between neighboring site local configurations,
which are separated by an energy barrier controlled by the local
lattice displacements Qi(t). Such electronic quantum transport is
driven when the Rabi energy dR and/or the frequency ωp

approach the intersite energy barrier7,8,72–74. Since corresponding
experiments require both intense fields and electronic coherence,
it is favorable to use very short pulses with few cycles of
oscillation, for example, MIR or THz multicycle fields (Fig. 1c). In
this way, the important dynamics occur during the oscillation
cycles, where Rabi flopping between neighboring sites has been
demonstrated2,7,8.

We now show that nonadiabatic time evolution during
few cycles of oscillations dynamically steers a stationary state of
Hlocal+Hhop to a nonequilibrium quantum state. The latter
quantum state is characterized by a nonthermal density matrix ρ
(QB, t), which describes the spin-resolved populations of the local
configurations, as well as the coherences between all possible
pairs of lattice sites (i, j) (see Supplementary Note 1). Here, we
demonstrate that the nonequilibrium quantum state is controlled
by varying the multicycle electric field in Fig. 2a. Figure 2 shows
the calculated core spin dynamics, Sz(t), at the bridge sites (QB ≠
0) (Fig. 2b) and the corner sites (QC= 0) (Fig. 2c) for the
equilibrium values of QB. Similar time-dependent results were
obtained for all other lattice displacements, which determines ρ
(QB, t) in the two-dimensional parameter space (QB, t). Due to the
difference in the local correlations between the bridge and corner
sites (Fig. 1c, b), the light-wave field drives a femtosecond
spatially dependent core spin time modulation Si(t). The latter
develops due to the off-diagonal interaction JHs

±
i � S�i (quantum

fluctuations), as the itinerant electron spin, si, and charge, fi,
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transfers between the bridge and corner sites (Fig. 2d, e).

szi ðtÞ≠ f iðtÞ
2 due to the quantum spin fluctuations Δszi ðtÞ (“Meth-

ods”), which drive the system away from the equilibrium AFM
order75,76. The coherent itinerant spin and charge distributions
calculated here arise from second-order (or higher) nonlinear
processes (see equations of motion in the Supplementary Note 1)
and thus display time oscillations with a frequency ~2ωp (Fig. 2d,
e). Such oscillations, also shown in Fig. S3, are averaged out for
high optical frequencies, where the rotating wave approximation
applies, and present experimental signatures for coherent
dynamics. With increasing dR, Sz(t) decreases from its equili-
brium value at both bridge and corner sites (Fig. 2b, c),
respectively, as the charge imbalance gives way to a more
uniform charge distribution (Fig. 2d). The difference in such
light-induced canting of Si(t) between the bridge (Fig. 2b) and the
corner (Fig. 2c) sites results in the emergence of femtosecond
magnetization with increasing field. The latter develops in sync
with coherent electronic hopping8 controlled by the values of
Rabi energy dR and frequency ℏωp with respect to the intersite
energy gap determined by QB(t).

The above light-driven charge and spin redistribution among
sites with different lattice displacements prepares a nonequili-
brium “initial condition” that “suddenly” changes the energy
landscape and thus induces lattice forces during multicycle field
oscillations. The initial condition for such lattice dynamics
(Fig. 2d) displays almost homogeneous charge distribution
throughout the system, with a simultaneous development of net
magnetization via quantum spin canting. This new electronic
configuration changes the total energy landscape E(QB, t)=
〈Hlocal〉+ 〈Hhop(t)〉+ 1

2 kQ
2
B, where k characterizes the lattice

elastic energy. Figure 3 shows that the light-driven modulation of
coherent electronic hopping results in a new global minimum of
E(QB, t) as a function of the lattice displacement QB, which
develops non-instantaneously as the Rabi energy dR= eEa
increases above a threshold value. This is expected when dR
approaches the intersite energy barrier controlled by QB

6–8, seen
in Fig. 3. Here, we identify three regimes of QB dependence,
determined by the population of the different local configurations
α. The QB > 0 region includes displacements around equilibrium,
QB ≈ 0.75. This shape of E(QB) is determined by the low-energy
bridge site populated configurations favored by the JT interaction.
These populations lead to a linear QB dependence of the
Hamiltonian. The latter lowers the local energy 〈Hlocal〉 for QB

> 0, but raises it for QB < 066. For QB ~ 0, our numerical results,
obtained via time propagation, are less accurate due to the
diminished energy barrier between neighboring sites. In this
regime, the energy bands calculated in ref. 33 lead to metallic
behavior. Our time-dependent calculation in Fig. 3 shows that
such metastable QB ~ 0 state can be accessed as the global
minimum changes with increasing Rabi energy dR, from QB > 0 to
QB ~ 0, during few cycles of oscillation. More specifically, below
threshold (dR= 50 meV in Fig. 3a), the total energy minimum
remains at a finite coherent lattice displacement QB<Q

eq
B . The

main effect is then the softening of the phonon mode, as well as a
non-parabolic dependence of E(QB) with increasing dR. This is
evident for dR= 100 meV after three cycles of oscillations
(Fig. 3b). Note that phonon modes with a period ~100 fs
comparable to the pulse duration can be realized in quantum and
semiconductor materials31 and therefore the lattice can respond
to the light-wave oscillations. Above threshold, dR= 400 meV,
Fig. 3c shows that a new total energy global minimum at QB ~ 0
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Fig. 2 Nonadiabatic charge and spin dynamics driven by few-cycle electric fields. a The electric fields used in the simulations to obtain ultrafast time
modulation of the intersite electronic hopping amplitudes. b, c Bridge and corner site local spin dynamics, Sz(t). d, e Itinerant electron charge and spin
dynamics at the bridge and corner sites.
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develops in time, where the energy bands indicate a metallic
phase not realized in equilibrium33. The non-instantaneous
transition between QB > 0 (insulating) and QB ~ 0 (metallic)
states33 occurs via a series of intermediate nonequilibrium states
and new local minima (Fig. 3c). It is driven by coherent
displacements QB(t) (not calculated here), which develop rapidly
due to the strong time-dependent forces � dEðQB;tÞ

dQB

21.

Discussion
We have shown that light-driven itinerant electron spin and
charge quantum excitations that interact strongly with an AFM
local spin background can destabilize an equilibrium AFM
insulating state with lattice displacements Qi ≠ 0 towards a
metallic transient state with Qi ~ 0 and finite magnetization.
Based on these results, we can envision in sync quantum THz
tuning and coherent control of electronic and magnetic properties
of quantum materials by tunable multicycle THz/MIR electric
fields. For example, recent results in topological quantum mate-
rials indicate that a metastable phase with unique topological
switching dynamics assisted by phonons emerges during cycles of
lattice coherence oscillations, driven by a few-cycle THz electric
field above threshold6,35. Also, coherent control of structural
phase transitions9 has been suggested. Importantly, the ability to
experimentally control coherent electronic transport on sub-cycle
timescales sets the stage for attosecond magnetism2, quantum
femtosecond magnetism5,52,55,57,77–80, and light-wave quantum
electronics1,3,4,25,41,42 before the system reaches a steady state.
Our results suggest a microscopic mechanism of quantum fem-
tosecond/attosecond magnetism2,5,77,78 driven by the light elec-
tric field and spin quantum fluctuations. In weakly correlated
magnetic systems, it has been debated whether femtosecond
magnetization arises from adiabatic processes associated with
electron, spin, and phonon populations, or from coherent pro-
cesses associated with angular momenta interacting with photo-
excited electrons55,77. Here, we propose a different mechanism,
based on the strong coupling of electric quantum transport with
local moment quantum fluctuations. Understanding the time

evolution of a quantum state by simultaneous light-wave control
of electronic, magnetic, and lattice properties prior to heating is
important for THz magneto-electronics and coherent spintronics,
as well for designing quantum materials properties far from
equilibrium, leading, for example, to a light-induced switch that
twists both spins and the crystal lattice35.

Methods
Local configurations and conservation of total spin. To describe the strong
coupling of spin and charge excitations, we consider composite fermion quasi-
particles created by Hubbard operators62. These operators describe transitions
between the multielectron/multiatom local configurations that diagonalize the local
(atomic) Hamiltonian Hlocal in the system of interest. Examples include
Zhang–Rice singlet Cu+O configurations in the cuprates, or Mn+O configura-
tions in manganese oxides67 (Fig. 1c). Our model considers a general local basis of
eigenstates of Hlocal, with Ne or Ne+ 1 electrons at each lattice site i. Coherent
hopping of itinerant electrons from site i to site j results in Ne+ 1→Ne transitions
at site i and Ne→Ne+ 1 transitions at site j between these local states. The Ne

localized (core) electrons on each site i are modeled in terms of core local spins
Si66. We include in our basis all such spin eigenstates imj i, with Sz=m=−S, …, S
(we take S= 3/2, ℏ= 1). Hopping of itinerant electrons, with spin si, populates Ne

+ 1-electron local configurations iαMj i. To ensure spin conservation during such
electronic hopping, the latter configurations are chosen as eigenstates of the total
spin Ji= Si+ si. Assuming strong Hund’s rule interaction, we only retain the low-
energy local configurations with J= S+ 1/2 (lower Hubbard band), but keep all Jz
=M=−J, …, J configurations. The energy eigenvalues of iαMj i for local Hamil-
tonian Hlocal are denoted as EQ

i ðαMÞ. The energy splitting between different con-
figurations α depends on the local lattice displacement, Qi, at the given i. Such
energy splitting for Qi ≠ 0 can arise, for example, from JT electron–lattice local
coupling66,68. α can also label Hubbard bands due to local Coulomb interactions, as
well as multiorbital and multiatom local eigenstates. For our numerical calculations
here, we consider a lattice consisting of “bridge” (QB ≠ 0) and “corner” (QC= 0)
sites (Fig. 1c)66,68, which interchange inside the x–y plane. Along the z-axis, we
consider identical stacked planes with AFM spins. While we used the CE-AFM unit
cell of Fig. 1c, relevant to the quantum femtosecond magnetism experiment of
ref. 5, and the tight-binding parameters of ref. 66, our proposed light-wave oscil-
lation control paradigm applies to any unit cell with noncollinear spins.

We describe the spins by introducing local coordinate systems on each site i,
whose z-axis aligns with the classical spin canting angle θi dictated by
thermodynamics. For the AFM state considered here, θi= 0 or θi= π in equilibrium,
determined by the free energy rather than by quantum dynamics.M= S+ 1/2 andm
= S correspond to spins pointing along θi. To capture attosecond and femtosecond
light-driven quantum spin dynamics away from the quasi-equilibrium spin
configuration, we include in our basis all spin quantum numbers M and m and
calculate their populations during nonadiabatic/coherent time evolution. The atomic

Fig. 3 Light-wave-driven phase transitions above electric field threshold. The total energy landscape is shown as a function of lattice displacement QB,
obtained by using the calculated nonthermal populations and coherences at characteristic time instances during the oscillation cycles. We compare low
(a), intermediate (b), and high (c) Rabi energies dR= eEa. The highlighted area around QB ~ 0 indicates the parameter regime where the time propagation
simulations are less accurate, due to the near degenerate energy levels between neighboring sites. For such a small QB, band calculations33 indicate a
metallic behavior that is not realized in equilibrium. Furthermore, the multiple total energy local minima that develop in c for large Rabi energy dR indicate
the nonequilibrium nature of the phase transition.
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eigenstates of the total spin Ji with J= S+ 1/2 are expressed as

iαMj i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SþM þ 1
2

2Sþ 1

s

iα; " M � 1
2

�

�

�

�

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S�M þ 1
2

2Sþ 1

s

iα; # M þ 1
2

�

�

�

�

�

;

ð2Þ

where M=−J, …, J. These total spin eigenstates diagonalize the on-site magnetic
exchange interaction JHSi⋅si. The above equation introduces the Glebsch–Gordan
coefficients

FσðMÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sþ 1
2 þ σM

2Sþ 1

s

: ð3Þ

By neglecting the upper Hubbard band consisting of J= S− 1/2 configurations, here
we do not include spin dynamics on timescales of the order of the inverse magnetic
exchange energy ~ℏ/JH→ 0, so we consider the strong coupling limit JH→∞. We
focus on spin quantum fluctuations due to electron–magnon coupling driven by the
off-diagonal on-site magnetic interaction JHS

±
i � s�i . The latter interaction excites

magnons during the itinerant electron motion.
In models that treat the core spins Si as classical variables66,68, the itinerant

electrons are assumed to move on top of an adiabatically decoupled local spin
background. For strong coupling, all spins are FM-locked, pointing along θi at all
times66,68. In this approximation, M= S+ 1/2 and m= S are the only allowed spin
configurations in the local coordinate systems. Any spin dynamics is then described
by classical variables θi(t). Within the mean-field approximation, local spin
precession on the timescale of the inverse magnetic exchange energy ∝ℏ/JH can be
driven by photoelectrons via femtosecond spin–torque79,80 or femtosecond
spin–orbit torque52–54. Here we take the limit JH→∞. Our emphasis is on spin
quantum fluctuations, where the spin direction deviates from θi(t) during
electronic motion due to strong electron–magnon coupling58–61. For example,
electrons accelerated by a light-wave electric field can hop from site to site by
simultaneously exciting low-energy magnon excitations, which leads to coherent
populations of all M and m configurations, constrained by total spin conservation
and by phase space blocking of the high-energy J= S− 1/2 configurations. Spin
quantum fluctuations thus allow the electrons to hop on sites with antiparallel
spins by forming local states with J= S+ 1/2 but M < S− 1/2, which is possible via
JHS

±
i � s�i (see Eq. (2)).

Lattice density matrix. The nonequilibrium quantum state is described by a real-
space density matrix defined on a lattice. The latter consists of two parts. The
populations (diagonal matrix elements) and on-site coherences, defined on the
basis of multielectron/multiatom configurations that describe the local physics, are
given by

ρiðmÞ ¼ hjimihimji; ραβi ðMÞ ¼ hjiαMihiβMji: ð4Þ
The above on-site density matrix describes all local properties at site i, including
charge and spin ultrafast dynamics81. The core spin component Sz(i)33, measured
with respect to θi, is obtained as

SzðiÞ ¼ ∑
S

m¼�S
m ρiðmÞ þ ∑

Sþ1
2

M¼�S�1
2

M
S

Sþ 1
2

∑
α
ρααi ðMÞ: ð5Þ

Similarly, the z-component of the itinerant electron spin is obtained as33

sαz ðiÞ ¼
1

2Sþ 1
∑
Sþ1

2

M¼�S�1
2

M ρααi ðMÞ: ð6Þ

In the classical limit, S→∞, the only populated configurations have m= S or M=
S+ 1/2. The spatially dependent electron charge populations of configurations α
are given by

f αi ¼ ∑
M
ρααi ðMÞ: ð7Þ

Quantum transport leads to time-dependent fluctuations in f αi , which also changes

the itinerant electron spin classical values, f
α
i
2
2,78. Here we consider, in addition to

the charge fluctuations during quantum transport, the spin quantum fluctuations

ΔSz(i)= S− Sz(i) and Δsαz ðiÞ ¼ f αi
2 � sαz ðiÞ. The latter result from nonthermal/

coherent populations of local configurations with M ≤ S− 1/2 and m ≤ S− 1
during electronic quantum transport. In particular, such nonthermal spin-resolved
populations lead to time-dependent core spin modulation Si(t) of main
interest here.

The coherences (off-diagonal density matrix elements) between the local
configurations at different lattice sites i and j describe the quantum transport82 in a
deformable quantum spin background. For this, we introduce composite fermion
local excitations62, with spin σ/2 measured with respect to the local z-axis along θi.
These quasi-particles are created by the Hubbard operators

êyασðiMÞ ¼ iαMj i i;M � σ

2

D
�

�

�
; ð8Þ

where σ= ±1 (ℏ= 1). The above Hubbard operators change the local charge via Ne→
Ne+ 1 transitions between correlated local states. They obey noncanonical anti-
commutation relations33,62.M= S+ 1/2 corresponds to maximally polarized core and
itinerant spins FM-aligned along θi. In this case, σ= ↑. For quasi-particle excitations
with σ= ↓, configurations with M ≤ S− 1/2 must also be populated, Eq. (2).

We introduce the following quasi-particle intersite coherences:

ρ�σσji ðβ; αMÞ ¼ hêyβ�σðjÞ êασðiMÞi; ð9Þ

where êyβσðjÞ ¼ ∑MFσðMÞêyβσðjMÞ: These coherences describe the time-dependent
changes in the local populations and on-site density matrix, ∂tρi (see
Supplementary Note 1). They determine the electronic current defined by the
continuity equation. We calculate the time evolution of the above density matrix,
with both lattice- and off-diagonal elements, by solving quantum kinetic equations
of motion derived using the Hamiltonian discussed next (see Supplementary
Note 1).

Model Hamiltonian. We split the Hamiltonian H(t) into local (atomic limit of
independent lattice sites) and intersite coherent hopping parts, where the latter
includes the coupling of the light-wave electric field: H(t)=Hlocal+Hhop(t). The
spin interactions here are part of Hlocal, described by

Hmag ¼ �JH ∑
i
Si � si

� gμBBext ∑
i
Szi � 2μBBext ∑

i
szi :

ð10Þ

The first term is the strong FM interaction between the itinerant and core spins
(Hund’s rule). The last two terms describe the coupling of a magnetic field Bext,
whose role in our calculation is to break the symmetry during the time evolution
and thus allow for magnetic states. μB= e_

2m is the Bohr magneton and g= 2. To
separate the quantum canting dynamics, we work in the local coordinate systems,
whose z-axis point at an angle θi with respect to the laboratory (global) z-axis. We
assume for simplicity that such spin canting is entirely within the x–z plane and
transform from global (S0i) to local (Si) spin coordinates as follows:

S0z ¼ Szi cos θi � Sxi sin θi; S
0
y ¼ Syi ; S

0
x ¼ Szi sin θi þ Sxi cos θi: ð11Þ

Using the above transformation, we obtain in terms of local coordinates

Hmag ¼ � JH ∑
i
Si � si

� gμBBext ∑
i
Szi cos θi � Sxi sin θi
� �

� 2μBBext ∑
i
szi cos θi � sxi sin θi
� �

:

ð12Þ

Here, we consider an AFM reference state with θi= 0, π. In the chosen basis of
local configurations, the local Hamiltonian is expressed as

Hlocal½Qi; θi� ¼ ∑
i
∑
αM

EQ
i ðαMÞ iαMj i iαMh j

þ∑
i
∑
m
EQ
i ðmÞ imj i imh j:

ð13Þ

Off-diagonal terms can also be included, but are not considered here. The Hubbard
quasi-particle, Eq. (8), excitation energies are given by

εQασ ðiMÞ ¼ EQ
i ðαMÞ � EQ

i M � σ

2

� �

: ð14Þ

They depend on the local lattice displacements Qi, treated as classical variables
here. Using

iαMh jSzi iαMj i ¼ M � M
2Sþ 1

ð15Þ

to calculate the magnetic energy contribution, we obtain

εQθασ ðiÞ ¼ �JHS� σμBBext cos θi � EJT
α Qi; ð16Þ

where σ= ±1. EJT
α describes the lattice dependence of the quasi-particle energies for

different local configurations α, expanded to O(Q). An M dependence of the quasi-
particle energy can also be included in the calculation, not considered here.

Hhop(t) describes the coherent hopping of the above quasi-particle excitations
and conserves the total spin for any local canting angles θi. After transforming to
the local coordinate system at each site i,

HhopðtÞ ¼ �∑
ij
∑
σ
∑
αβ
Vαβði� jÞ cos

θij
2

êyασðiÞ êβσðjÞ
	

þ σ sin
θij
2

êyασðiÞ êβ�σðjÞ



;

ð17Þ

where θij= θi− θj. The hopping amplitudes, Vαα0 ¼ tαα0 þ ΔVαα0 ðtÞ, have both
static (tαα0 ) and transiently modulated (ΔVαα0 ) contributions, where the latter arise
from the coupling of the light-wave electric field and/or from phonon oscillating
coherence. For example, the Peierls expression of the hopping amplitude between
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sites ri and rj in terms of the laser vector potential A(t) gives

Vαα0 ðj� iÞ ¼ tαα0 ðj� iÞ exp½�ieAðtÞðrj � riÞ=_c�: ð18Þ
Since the details of the short-lived time-periodic, multicycle modulation of the
hopping amplitudes are not crucial for the transient state results obtained here, we
expand in terms of A for simplicity and consider the linear term that drives
quantum transport and electronic current:

ΔVαα0 ði� jÞ � dRðtÞ
_ωp

tαα0 ði� jÞ: ð19Þ

A more complete derivation of light-wave quantum transport may be found in
ref. 65. For σ= 1, the first term of Eq. (17) recovers the double exchange
Hamiltonian66,68. This is the only allowed term if we assume FM-locked itinerant
and core spins at all times, but vanishes for AFM spins, θij= ±π, considered here.
The rest of the terms in Hhop describe intersite quasi-particle hopping accompanied
by local spin excitations33,67 induced by electron–magnon coupling58–60. The latter
permits electronic hopping between AFM sites even in the limit JH→∞ (Fig. 1c).

By using the above general Hamiltonian, we derived a closed system of

quantum kinetic equations of motion for ρi(m), ραβi ðMÞ, and ρ�σσji ðβ; αMÞ for all
lattice sites, which are presented in Supplementary Note 1. We thus describe the
time-evolved quantum state on a three-dimensional lattice with periodic boundary
conditions. We obtained reasonable convergence for a 4 × 4 × 4 lattice with two
configurations per site. As discussed in Supplementary Note 1, by introducing
Hubbard operators, we obtain exact equations for ∂tρi that do not explicitly depend
on the local interactions. In particular, ∂tρi couples to intersite coherences of the
form hêyασðiÞ êβσðjÞi and hêyασðiÞ êβ�σðjÞi, where i ≠ j. We thus satisfy charge and
spin conservation in an exact way.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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