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Learning the best nanoscale heat engines through
evolving network topology
Yuto Ashida1,2,3✉ & Takahiro Sagawa1,4

The quest to identify the best heat engine has been at the center of science and technology.

Considerable studies have so far revealed the potentials of nanoscale thermal machines to

yield an enhanced thermodynamic efficiency in noninteracting regimes. However, the full

benefit of many-body interactions is yet to be investigated; identifying the optimal interaction

is a hard problem due to combinatorial explosion of the search space, which makes brute-

force searches infeasible. We tackle this problem with developing a framework for reinfor-

cement learning of network topology in interacting thermal systems. We find that the

maximum possible values of the figure of merit and the power factor can be significantly

enhanced by electron-electron interactions under nondegenerate single-electron levels with

which, in the absence of interactions, the thermoelectric performance is quite low in general.

This allows for an alternative strategy to design the best heat engines by optimizing inter-

actions instead of single-electron levels. The versatility of the developed framework allows

one to identify full potential of a broad range of nanoscale systems in terms of multiple

objectives.
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In 1824, Sadi Carnot found1 that the efficiency of heat engines
operating between a hot reservoir at temperature Th and a cold
one at Tc is universally bounded from above by the value

ηC ¼ 1� Tc

Th
; ð1Þ

which is now known as the Carnot efficiency. This limit can be
reached for ideal reversible machines operating at quasistatic
conditions, leading to infinite operation time and vanishing
output power. In contrast, any useful devices must supply non-
vanishing power that necessarily associates with nonzero entropy
productions and efficiency below ηC. Thus, it is of both funda-
mental and practical importance to consider what is the best heat
engine with finite power. In this direction, a seminal work was
done by Curzon and Ahlborn, who have considered2 a thermal
machine operating at the maximum power as the optimal engine.

Since efficiency and power are two conflicting objectives, one
cannot in general find a heat engine that optimizes both of them
simultaneously. This class of problems is known as the multi-
objective optimization problem for which the solution is given by
the quantitative identification of trade-off between multiple
objectives3. More specifically, here we propose to characterize the
best heat engines by a set of machines for which efficiency and
power cannot be further improved without compromising the
other. In the language of the multiobjective optimization theory,
such type of set is known as the Pareto front3. From this view-
point, the engines considered by Carnot1 and Curzon–Ahlborn2

are two specific examples of the Pareto front, i.e., a general set of
the multiobjective-optimal heat engines.

A promising candidate for realizing efficient heat engines is
nanostructured thermoelectric4–6, which converts heat flows into
electrical power (see Fig. 1a). It has attracted considerable interest
as promoted by the prospect of an enhanced efficiency due to
quantum confinement effects and significant reduction of the
phonon thermal conductivity. In the linear-response regime, its
thermodynamic properties are fully characterized by the figure of
merit ZT and the power factor Q, which are related to the
maximum possible values of efficiency and power, respectively.

Thus, we can reduce a problem of seeking the best heat engines to
the search of the Pareto front on the objective space spanned by
ZT and Q (see Fig. 1b). In noninteracting systems, brute-force
optimizations of transport functions have allowed one to identify
the best thermal machine achieving the highest ZT7 and, more
generally, the optimal power-efficiency trade-off8,9. However, the
challenging goal of identifying the best interacting heat engine is
still unexplored.

In the noninteracting case, it is well known that the optimal
engine in terms of both power and efficiency can be realized when
all the single-electron energies are degenerate7. Yet, its thermo-
dynamic performance can significantly be degraded compared to
this optimal case if such a perfect degeneracy is not attained.
Thus, a search for better nanothermoelectrics has so far been
explored mainly in the context of optimizing single-electron
energies in a noninteracting setup. Here, we propose yet another
way toward achieving the best heat engines, namely, by opti-
mizing electron interactions instead of single-electron energies.
This strategy can potentially work even under nondegenerate
single-electron levels.

Indeed, to realize the promise of on-chip power production, it
is indispensable to assemble a large number of nanomachines,
where fluctuations in single-electron energies are often inevitable
and many-body interaction among the constituents is ubiquitous
due to, e.g., long-range nature of the Coulomb interaction. One of
our goals in the present work is to attempt to address such a
major challenge in nanoscale heat engines, that is, an individual
thermal machine can only supply low power output. More spe-
cifically, this challenge motivates us to reveal full potential of
many-body interaction on thermodynamic performance of
nanoscale engines and to ask two questions as follows:

(A) Can one identify the best possible interacting thermal
machines?

(B) Does the interaction enhance efficiency and power and, if
yes, to what extent?

Here, we answer these questions in the affirmative by developing
a framework for reinforcement learning of network topology in

Fig. 1 Graphical representation of interacting nanothermoelectric and characterization of the best heat engines. a Nanoscale heat engine is
characterized by a network, in which each node represents a single-particle level labeled by an integer like m, n. Each edge connecting two nodes indicates
the presence of interaction between the corresponding single-particle levels (in, e.g., quantum dots). The width of the edge between node m and node n is
labeled by wmn, and represents the interaction strength. The system is connected with hot (h) and cold (c) reservoirs at temperatures Th,c and
electrochemical potentials μh,c. Each node exchanges electrons with the reservoirs and can be occupied by at most a single electron. b Set of the best heat
engines is characterized by the best trade-off (known as the Pareto front) between their power P and efficiency η (thick solid curve in the main panel). The
inset illustrates the concept of dominance in terms of power factor Q and figure of merit ZT; machines M1,2 dominate M3, while there are no dominance
relations between M1 and M2. The Pareto front C in the inset is defined by the Pareto-optimal machines (such as M1 and M2) that are not dominated by any
other ones. The dashed loops in the main panel indicate the power-efficiency curves with varying chemical potentials at fixed Q and ZT (cf. Eq. (4)), which
correspond to machines M1,2,3 indicated in the inset. The envelope of all the possible loops provides the Pareto front on the P–η plane in the main panel. The
efficiency and power are normalized by the Carnot efficiency ηC and the maximum power Pmax, respectively.
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interacting thermal systems. The key idea is to map the many-body
interaction among microscopic constituents onto the network (see
Fig. 1a); each node represents a single-electron level that exchanges
electrons with reservoirs and each edge between two nodes indi-
cates the presence/absence of interaction between the corre-
sponding levels. We then train the topology of this network via
varying interaction parameters for the purpose of identifying a set
of the best heat engines. Since the present optimization problem is
computationally hard due to combinatorial explosion of the search
space, we employ the differential evolution, that is, one of the most
competitive training algorithms in high-dimensional nonconvex
search space10,11.

Building on this framework, we reveal a physical mechanism
by which each element of the best heat engines can significantly
improve the thermodynamic properties in comparison with
the noninteracting counterparts. From a broad perspective of
physics, the identified mechanism of enhancing thermodynamic
efficiency and power can be applied to an ensemble of various
nanoscale machines, such as molecular motors, colloidal particles,
and biophysical networks as well as thermoelectric materials.
Moreover, the reinforcement learning framework developed
here will allow one to determine the best trade-off relations in
those nanoscale systems through the global multiobjective
optimization.

Below we first introduce a standard model to describe transport
phenomena of typical nanothermoelectric systems, and present a
reinforcement learning framework for identifying a set of the best
interacting nanothermoelectric systems in terms of thermo-
dynamic efficiency and power. We then provide the main results
of the present paper, namely, a variety of realizations of the best
interacting heat engines that are identified by the proposed fra-
mework. We also reveal the mechanisms of how interacting
machines can improve their thermodynamic efficiency and power
compared to their noninteracting counterparts. Building on these
findings, we propose a designing principle to realize the highest-
power interacting engines. We discuss that the power factor
diverging with the number of single-particle levels can allow one
to attain the asymptotic Carnot efficiency at subextensive, yet
stable and finite power. Finally, we discuss possible experimental
realizations in quantum dot arrays, and suggest several interesting
future directions.

Results
Interacting systems linked with network topology. We here
consider nanothermoelectric systems as a most prototypical and
representative class of nanoscale heat engines, and introduce a
model to describe transport phenomena therein. Specifically, we
consider a fermionic system described by the many-body
Hamiltonian

H ¼
X
l

ðϵl � vgÞnl þ
1
2

X
l≠m

wlmnlnm; ð2Þ

where ϵl denotes single-electron energy of mode l= 1, 2,…, Nf, vg
is the ground voltage, nl= 0, 1 represents the occupation of zero
or one electron, and wlm ≥ 0 are generic two-body interaction
parameters. The system is in contact with hot (h) and cold (c)
common reservoirs at temperatures Th,c and electrochemical
potentials μh,c (see Fig. 1a). We are interested in a general
situation associated with nondegenerate single-electron levels {ϵl}.

We describe the dynamics based on the classical master
equation12. This description can be justified when the tunneling
rates to reservoirs are sufficiently small such that (i) the bath
correlation time is shorter than the relaxation timescale due to the
system-bath coupling, and thus the Born–Markov approximation
is valid and (ii) the sequential limit is achieved, i.e., transport

occurs due to single-electron tunnelings to reservoirs and the
generation of quantum coherence can be neglected (see
“Methods”). We note that it is essential to employ the so-called
global approach13 to the master equation as performed here,
which requires the explicit inclusion of interaction terms in the
system Hamiltonian H. The reason is that we are interested in the
correlated regime with the interaction strength being comparable
to the level spacing of single-electron energies13. The tunneling
rates to reservoirs are assumed to be energy independent and
denoted by γh,c > 0; for the sake of simplicity, we set them to be
the same value γ≡ γh= γc in this paper. Denoting the particle
current and the heat flow out of each reservoir as Ji and Jiq with
i= h, c, the power and the efficiency are given by P=− ∑iμiJi and
η ¼ P=Jhq , respectively.

Our aim is to establish which of electronic systems modeled by
Eq. (2) can fundamentally achieve the best power-efficiency
trade-off. To this end, we take into account all the possible
(repulsive) interactions w, while the phonon contribution to heat
flow is not included as it is external to the electronic system4. The
present model can thus be graphically represented as a network as
shown in Fig. 1a. Here, each node indicates a single-particle level
(in, e.g., quantum dots) that exchanges electrons with reservoirs.
An edge between two nodes represents the presence of interaction
between the corresponding single-particle levels, and its width
indicates the strength of the interaction. From this perspective,
the problem of identifying the best heat engines via optimizing
(i.e., training) parameters w can be considered, as reinforcement
learning of underlying topology and weight values of the
interaction network.

Power-efficiency trade-off and Pareto-optimal machines. We
next introduce a framework to identify a set of the best heat
engines in terms of thermodynamic power and efficiency. To
proceed further, hereafter we focus on the linear-response regime,
δT= Th− Tc≪ Th and ∣δμ∣= ∣μh− μc∣ ≪ kBTh, and denote T=
Th≃ Tc. The thermoelectric properties are then characterized by
the figure of merit ZT and the power factor Q that are defined by

ZT ¼ σS2T
κ

¼ QT
κ

: ð3Þ

Here, σ is the electrical conductance, S is the Seebeck coefficient,
and κ is the thermal conductance; their values can be associated
with the Onsager coefficients (see “Methods”). More explicitly,
the power-efficiency trade-off can be fully characterized by ZT
and Q via the linear-response formula14

ηðPÞ
ηC

¼ P=ðQδT2=4Þ
2 1þ 2=ZT �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� P=ðQδT2=4Þ

ph i ; ð4Þ

which have two branches as they correspond to changing δμ from
zero to SδT at which P= 0 again; the stopping value SδT corre-
sponds to the point at which the sign of the electron flow reverses.
It follows from Eq. (4) that ZT and Q characterize the maximum
possible values of the efficiency η=ηC ≤ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZT þ 1

p � 1Þ=
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ZT þ 1
p þ 1Þ and the power P ≤QδT2/4, respectively.
The problem of finding the best heat engines now reduces to

the multiobjective optimization of ZT and Q. To this end, let MW
symbolically represent a thermoelectric machine characterized by
a set of 1+Nf(Nf− 1)/2 variables W ¼ fvg ;wg, which includes
the ground voltage and interaction parameters while a set of
generic, nondegenerate single-electron energies is fixed through
the optimization process. We call that a machine MW dominates3

MW0 (denoted as MW � MW0 ) if MW is no worse than MW0 in
both ZT and Q, and MW is strictly better than MW0 in at least one
of them. A machine MW� is Pareto-optimal if no other machines
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dominate it. Then, the Pareto front3 C is the curve defined by a
set of ðQðW�Þ;ZTðW�ÞÞ for all the possible Pareto-optimal
machines. We illustrate these concepts in the inset of Fig. 1b,
where the machines satisfy M1,2≻M3, while there are no
dominance relations between M1 and M2.

We emphasize that optimizing ZT alone is insufficient as ZT
has no information about the maximum possible power, which is
crucial for realizing any useful devices. We instead characterize
the best thermal machines in terms of the Pareto front C on the
Q-ZT plane, which allows us to identify the full set of the optimal
engines at finite power. The corresponding Pareto front on the
power-efficiency plane can be also given as the envelope of the
image space of C through the mapping (Eq. (4); (cf. the main
plane in Fig. 1b and also the figures in “Methods”).

We are now left with the task of finding the best nanoscale
engines by using machine learning to train the network
parameters W. However, even after the above simplifications,
the problem still remains challenging as the transport coefficients
σ, S, and κ are adversely interdependent, while brute-force
approaches become quickly infeasible. The latter is due to the

exponential growth � ðLdisÞN
2
f =2 of the search space with the

system size Nf, where Ldis is the number of bins for discretizing a
continuous parameter (see “Methods”). Moreover, the greedy
(gradient-based) algorithms overwhelmingly fail even for few-
level systems because of the proliferation of local optima (see the
figures in “Methods”). To overcome the challenges, we employ a
global search approach based on the differential evolution10,
which is one of the most powerful gradient-free algorithms
inspired by a process whereby biological organisms adapt
and survive. The key advantage is its autonomous adaption of
the balance between exploitation and exploration, which can
significantly expedite an efficient search over a high-dimensional
nonconvex landscape11 (see “Methods” for further details).

Learning the power-efficiency trade-off in nanoscale engines. A
reinforcement learning framework formulated in the previous
section allows us to identify a set of the best heat engines in terms
of fundamental thermodynamic properties. In the linear-response
regime, which is of interest in this paper, such a set is char-
acterized by the optimal trade-off relation between the power
factor Q and the figure of merit ZT. Applying the linear-response
formula (Eq. (4)), one can then readily determine the corre-
sponding trade-off relation between thermodynamic power P and
efficiency η. The heat engines lying on this tradeoff curve defines
the Pareto-optimal solutions, giving a variety of the best nanos-
cale engines. Below, we present the solutions identified by the
present machine learning framework and clarify their physical
properties in detail.

Figure 2f shows the Pareto front on the Q-ZT plane, which is
identified by the above learning protocol. With many-body
interaction and generic (nondegenerate) single-electron levels, the
values of Q and ZT can be enhanced by orders of magnitudes
in comparison with those in the noninteracting case. As a
consequence, interaction can significantly improve power-
efficiency trade-off in heat-to-work conversion (see Fig. 2e). We
emphasize that the noninteracting results are obtained under the
multilevel setting with the same set of single-electron energies as
considered in the interacting case. The substantial enhancements
originate from the ability of interaction to activate many paths of
state transitions, as well as attain the approximate tight-coupling
condition J∝ Jq. The former leads to a much higher Q than that in
the noninteracting case, while the latter can feature a significantly
large ZT15,16.

To further elucidate this physical mechanism, we visualize
typical realizations of the Pareto-optimal heat engines in
Fig. 2a–d. Here, the pentagon-shaped, inset networks show the
identified optimal interactions, where nodes (edges) represent Nf

single-electron levels (interactions between them). The networks
in the main panels of Fig. 2a–d visualize the whole state-transfer
networks with nodes (edges) being 2Nf many-body states
(transitions between them).

The inset network in Fig. 2c demonstrates that the highest
power has been achieved by a surprisingly sparse interaction.
More specifically, the sparse topology in the interaction network
indicates that the number of other sites interacting with each site
is significantly smaller than the maximally allowed value Nf(Nf−
1)/2. As shown in the state-transfer network (the main panel of
Fig. 2c), probability flows concentrate on the transfer edges
among the fully occupied state, single- and two-hole states as
highlighted by red color. This activation of many transfer paths
originates from the degeneracies of single-hole states and the
suppression of inevitable hole–hole interactions, both of which
are achieved by the observed sparse interaction; we will revisit this
important point in later discussions. In this way, the power is
maximized by activating transfer edges as many as possible.

As making the interaction network stronger and denser, the
Pareto-optimal machines can improve ZT (i.e., efficiency) at the
expense of compromising Q (i.e., power). This can be inferred
from the state-transfer networks in Fig. 2a, b, where the strong
and dense repulsive interaction isolates a particular energy
manifold from the other many-body states, realizing the
approximate tight-coupling condition J∝ Jq within that manifold.
This emergent unicyclic structure in the probability flow allows
for high ZT; yet, it comes at the price of sacrificing Q due to the
reduced number of activated transitions.

The divergence of ZT at Q/Q0≃ 0.21 (cf. Fig. 2f) originates
from an almost perfect unicyclic structure15,16. Here, the dense
interaction isolates two many-body states from the other ones
such that only the probability flow between these two levels is
significant (cf. the main panel in Fig. 2a). This ensures the tight-
coupling condition with great accuracy and thus leads to the
divergent ZT. As concrete realizations of the Pareto-optimal heat
engines in Fig. 2a–c, we illustrate possible real-space configura-
tions in quantum dot arrays in the figures in “Methods”. We
remark that the all-to-all mean-field coupling (i.e., wlm=wMF for
all l ≠m), which has been mainly discussed in the previous
literature12,17–23, does not give the Pareto-optimal solutions here.
In general, we find that this type of uniform, maximally dense
interaction is largely suboptimal.

Figure 2d demonstrates that the noninteracting machine with
multiple and nondegenerate single-electron levels activates only a
few edges, resulting in low power output due to the bipolar effect,
i.e., a nonzero heat conduction at the zero particle current. In
Fig. 2e, it is worthwhile to mention that the obtained Pareto front
in the noninteracting (resp. interacting) case is consistent with the
scaling at low power, 1− η/ηC∝ Pa with a= 1/2 (resp. a= 1; see
the figures in “Methods”). We note that a similar feature has
previously been discussed based on the Landauer–Büttiker
theory8,9 and the molecular simulations24,25. In this respect, the
scaling laws at the low power output hold true independently of a
specific choice of the underlying theoretical formalisms, indicat-
ing their universality in a broad range of physical systems. We
recall that the noninteracting results in Fig. 2d are obtained by
using exactly the same set of nondegenerate and multiple single-
electron levels as used in the interacting case. Physically,
the inclusion of such fluctuations in electron levels is of
fundamental importance in a broad range of physical systems;
for instance, single-electron energies in solid-state devices are

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00553-z

4 COMMUNICATIONS PHYSICS |            (2021) 4:45 | https://doi.org/10.1038/s42005-021-00553-z | www.nature.com/commsphys

www.nature.com/commsphys


highly nondegenerate, and dot energies in quantum dot arrays are
subject to inevitable size fluctuations.

To further elucidate the interplay between many-body
interactions and fluctuations in single-electron levels, in Fig. 3a,
we show the optimal power-efficiency trade-off under random
single-electron energies sampled from the Gaussian distribution
with the width δϵ. When the energy width δϵ is substantially
smaller than the temperature scale kBT, the optimal engines
achieve almost the same performance in both interacting and
noninteracting cases. However, in the noninteracting machines,
the power-efficiency bound substantially degrades as the fluctua-
tion δϵ is increased because only a smaller portion of single-
electron levels close to the (optimized) ground voltage can
contribute to the transport dynamics. Meanwhile, in the
interacting case, one can harness many-body interactions to
nearly attain the optimal power-efficiency bound, and the result is
almost insensitive to a specific choice of single-electron levels
(compare the blue solid curves in Figs. 2 and 3a). One of the main
advantages in the interacting machines is this robustness against
the fluctuations in single-electron levels owing to the flexibility of
the optimal interaction network for realizing high power and
efficiency.

Based on these observations, we now conjecture that the
Pareto-optimal interacting machine at the highest power can be
generally achieved by satisfying the following conditions: (i)
single-hole excitation energies el= ϵl+ ∑m ≠ lwlm are degenerate,
i.e., ∣el− el+ 1∣ ≪ kBT for l= 1, 2, …, Nf− 1, (ii) at most Nf− 1
variables of fwlmgl >m can be nonzero, and (iii) the ground
voltage is set to be vg= eh+ αkBT, where eh is the degenerate
single-hole energy and α≃ 2.40. Physically, the first condition
ensures that all the transfer edges between the fully occupied state
and single-hole states are activated. The second one makes
interactions among hole excitations as sparse as possible, leading
to the maximal activation of transfer edges between single-hole
states and double-hole states. The final one optimizes the ground
voltage in such a way that the power is maximized26–28. We
confirm the conjecture up to a system with 2Nf ¼ 512 states as
demonstrated in Fig. 4a–d, where the concrete examples of the
highest-power machines are also indicated. Figure 4e, f
demonstrates that the maximum possible values of efficiency
and power increase with the number of levels Nf. To further
investigate the size dependence, in Fig. 3b, we perform the finite-
size scaling of the maximum possible power factor Qmax and the
associated figure of merit ZTjQ¼Qmax

. It is clear that both

Fig. 2 Learning network topologies of the best nanoscale heat engines. a–d Topologies of the interaction networks (insets) and the state-transfer
networks (main panels) for the Pareto-optimal heat engines indicated by labels (a–d) in e, f. They attain a the highest ZT, b the suboptimal ZT and Q, c the
highest Q, and d the highest Q in the noninteracting case. The red edges in the state-transfer networks indicate the activated transfer edges along which
the probability flow is significant. In c, the highest power is achieved by the sparse interaction network, where degenerate weakly interacting holes result in
the maximal activation of transfer edges. In a and b, the strong and dense interactions isolate several states from the other ones and solely activate transfer
edges within those isolated manifolds. The thickness of links in the insets represents the strength of interaction. e, f The obtained best trade-offs between e
power P and efficiency η, and f power factor Q and figure of merit ZT. The blue (red) shaded region is allowed for interacting (noninteracting) heat engines
and its upper boundary indicated by solid curves represents the Pareto front, i.e., the set of the optimal machines for which two objectives cannot be further
improved without compromising the other. The dashed curves correspond to the power-efficiency curves for each Pareto-optimal machine. The black
dashed curve in e indicates the scaling 1� η=ηC /

ffiffiffi
P

p
at low power in the noninteracting case (see the figures in “Methods”). We set Nf= 5, ϵl= lΔ with

Δ/kBT= 3, γh= γc≡ γ and plot Q in the unit of Q0= kBγ/T. The efficiency and power factor are normalized by ηC and Q0.
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quantities grow with system size Nf. In particular, in the
thermodynamic limit Qmax diverges in proportion to Nf, and
the power per level asymptotically attains the fundamental bound
set by an ideal unicyclic system27

Qmax

Nf
! ξ

kB
T

γhγc
γh þ γc

ðNf ! 1Þ; ð5Þ

where ξ≃ 0.439. For the noninteracting case with nondegenerate
single-electron levels, both Q and ZT do not grow with Nf and
remain to be small finite values even if the number of available
energy levels diverges.

In general, to enhance the power factor per level Q/Nf, one has
to activate a larger portion of the transfer edges in the state-
transfer network. The convergence to the unicyclic limit in Eq. (5)
can be understood from a simple scaling argument on the
activation of the state-transfer network as follows. On one hand,
the condition (i) for the highest-power machines above allows
one to activate all the transfer edges between the fully occupied
state and single-hole states (Fig. 5a), leading to the linear scaling
of the power factor Qmax / Nf . On the other hand, at the next
level of transitions between single- and double-hole states, only a
part of the transfer edges can be activated due to the inevitable
hole–hole interaction causing the energy mismatch (Fig. 5b).
The discrepancy between Qmax=Nf and Quni originates from this
imperfect activation of the transfer edges in the state-transfer
network. Yet, because of the condition (ii), one can estimate the
fraction f1− 2 of the activated transfer edges between single- and
double-hole sectors as f1− 2= 1− 2/Nf, which still converges to
the ideal value f1− 2→ 1 in the thermodynamic limit. It is this
convergence that lies at the heart of the asymptotic realization of
the unicyclic limit as indicated in Eq. (5) and Fig. 3b (see
“Methods” for further discussions). Given that not only the
power, but also the efficiency scales with system size (cf. Fig. 4e, f),

we expect the present analysis to be generalized to Pareto-
optimal machines other than the highest-power machine
discussed here. We remark that the above arguments are based
on a setup of the single-electron energies with a finite spacing,
which is a common setting in studies of nanothermoelectrics; for
example, energy levels in quantum well structures of multilevel
dots can be described in this way21. These scalings can in general
be different if one chooses an alternative set of single-electron
energies.

The asymptotic Carnot efficiency at nonzero power. It has
previously been argued that a Carnot engine at nonzero power
accompanies divergent fluctuation of power in steady-state
regimes29,30 or under cyclic protocols at the criticality31,32. Pre-
vious studies31,32 have discussed the possibility of attaining the
Carnot efficiency at the power output with superextensive scaling.
In contrast, it is still worthwhile to note that the diverging power
factor Qmax / Nf of the highest-power machines discussed in the
previous section suggests a pathway to asymptotically realize the
Carnot efficiency at (subextensive, yet) nonzero and stable power
even under generic single-electron levels.

To this end, we note that the maximum-power machine found
in the previous section can be used as a faithful engine as long as
the mean power satisfies P / Nζ

f with 1/2 < ζ < 1 because its

fluctuation scales with a weaker exponent as δP / ffiffiffi
σ

p / ffiffiffiffiffiffi
Nf

p
.

The latter follows from the expression of the power P= Jδμ, the
fluctuation-dissipation theorem δJ2= 2kBTσ, and the fact that σ is
the extensive quantity that linearly scales with Nf in the highest-
power machines (see “Methods”); we note that the chemical
potential difference δμ does not scale with Nf at the leading order.

As inferred from Eq. (4), the diverging Q and ZT of the
highest-power engines then enable the asymptotic Carnot
efficiency η(P)→ ηC in the limit of Nf→∞ with sustaining

/
C

P/(Q  T /4)0
2
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Fig. 3 Comparisons between noninteracting and interacting optimal heat engines. a Power-efficiency bound under randomly generated single-electron
energies. The inset illustrates the fact that single-electron energies are randomly sampled from the Gaussian probability distribution with the width δϵ.
The main panel shows the efficiency-power bounds obtained at different widths δϵ, and with or without interactions. The noninteracting bounds
substantially degrade as the width δϵ is increased. The interacting bound is almost insensitive to a specific choice of δϵ, and we plot the result for δϵ/kBT=
15 as a blue solid curve. The dashed error bars indicate the standard deviations of the numerical results. We set Nf= 5, γh= γc≡ γ, and plot the power in
terms of Q0δT2/4 with Q0= kBγ/T. Here, Nf is the number of single-electron levels, γh,c are hopping rates to the hot and cold reservoirs, respectively.
b Finite-size scaling of the maximum possible power. The blue dashed curve shows an extrapolation of the highest-power factors at different sizes Nf

using the form Qmax=Q0 ¼P4
i¼1 aiN

i�3
f , with fitting parameters a1,2,3,4. It asymptotically achieves the fundamental bound (cf. Eq. (5)) indicated by the

green solid curve. The inset plots the associated figure of merit ZTjQ¼Qmax
of the highest-power machine against Nf, where the blue dashed line shows

the fitted scaling ZTjQ¼Qmax
/ N1:31

f . The noninteracting results obtained under the same setting of generic (nondegenerate) single-electron levels fitted
from Nf-independent extrapolations are shown by the red dashed lines. The dots represent the data points at each value of Nf. We set ϵl= lΔ with Δ/kBT=
3 and γh= γc≡ γ.
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subextensive, but still stable power P≫ δP. The price one must
pay is precise control of the chemical potentials according to
δμ ¼ SδTð1� Nζ�1

f Þ, where we note that S is the intensive

quantity S / N0
f . Then, the scaling P / Nζ

f follows from that of
the power factor Qmax / Nf and the following linear-response
formula

P
Q
¼ 4

δμ

SδT
1� δμ

SδT

� �
/ Nζ�1

f : ð6Þ

The inset in Fig. 3b numerically indicates the scaling of the figure
of merit ZT ¼ QT=κ / N1:31

f , leading to the vanishingly small
thermal conductivity κ / N�0:31

f . This disappearance of κ is
indeed consistent with the asymptotic tight-coupling condition
associated with the convergence to the unicyclic limit, which we
have discussed in Eq. (5). Our consideration does not contradict
with a known trade-off33,34, such as P ≤M(1− η/ηC), since a
constant M is diverging in the present case.

Several remarks are in order. Firstly, we remark that the above
mechanism can in principle be applied to the noninteracting case
if single-electron levels are perfectly degenerate7. Specifically,
suppose that a system possesses Nf electron levels connected with
the common two reservoirs, and it can operate as a heat engine

owing to electrical current flowing between them. Then, the
power factor Q of the corresponding heat engine can linearly
scale with Nf provided that all the single-electron energies are
degenerate in such a way that all the single-electron levels can
equally contribute to the transport dynamics. In contrast, one of
main contributions in the present work is to show the universality
of this mechanism in a broad range of interacting systems beyond
the restrictive noninteracting case. More specifically, we reveal the
potential of harnessing many-body interactions to realize the
asymptotic Carnot efficiency at nonzero power even under
generic single-electron levels {ϵl}. Indeed, for any set of {ϵl}, we
show that there exist an excessive number of the highest-power
interacting machines satisfying the conditions (i)–(iii) above as
appropriate for a variety of physical systems. In this respect, our
finding mitigates the severe restriction in the noninteracting case,
thus demonstrating great promise for utilizing many-body
interactions to enhance thermodynamic performance.

Secondly, we note that our main conclusion, i.e., thermo-
dynamic efficiency and power can in general be better in the
presence of interaction, is qualitatively valid independent of a
specific choice of single-electron levels (cf. Fig. 3a). That said,
some quantitative feature, such as the scaling of the highest power
with respect to system size, can still depend on those specifics. For
instance, if one randomly samples single-electron energies from a

Fig. 4 Size dependence of the highest-power nanoscale heat engine. a–d Topologies of the interaction networks (insets) and the state-transfer networks
(main panels) for the highest-power heat engines with a 2Nf ¼ 64, b 128, c 256, and d 512 states. The red edges in the state-transfer networks indicate the
activated transfer edges associated with significant probability flows. The interaction networks are optimized such that single-hole excitation energies are
degenerate and its topology is sparse as much as possible. The former leads to the activation of all the transfer edges between the fully occupied state and
single-hole states (see also magnified insets in c and d). The latter eliminates unfavorable interactions among hole excitations, leading to the maximal
activation of transfer edges between single-hole states and double-hole states. Here, the white and black nodes represent the empty and occupied levels,
respectively, and the thickness of links indicates the strength of interaction. e The best trade-offs between power P and efficiency η for the highest-power
heat engines at different system sizes Nf. f The corresponding Pareto fronts in terms of power factor Q and figure of merit ZT. In e, f, the allowed regions
(color shaded with the upper bounds indicated by the solid curves) expand with increasing Nf. The dashed curves represent the efficiency-power curves for
the maximum-power machines. The data of the noninteracting case for Nf= 9 with the same set of (nondegenerate) single-electron levels as used in the
interacting case are given in e, f. We set ϵl= lΔ with Δ/kBT= 3, γh= γc≡ γ, and plot Q in the unit of Q0= kBγ/T. The efficiency and power factor are
normalized by ηC and Q0.
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fixed distribution, the power factor can scale linearly with system
size Qmax ¼ cNf even in the absence of interaction. Especially,
this implies that the above mechanism of attaining the asymptotic
Carnot efficiency at subextensive power can be realized in the
noninteracting case, if the figure of merit diverges sufficiently
faster in the sense that ZT=N1�ζ

f ! 1. The latter condition can
in principle be met, e.g., when the fluctuation of single-electron
energies is vanishingly small compared to the temperature.
Nevertheless, in a general case of the nonzero fluctuation, the
coefficient c in the power factor is still smaller than the optimal
value in Eq. (5) (i.e., the optimal power is higher in interacting
cases than the noninteracting counterpart), and the scaling of ZT
with respect to system size is rather modest.

Possible experimental implementations. Our findings can be of
experimental relevance to nanoscale heat engines described by the
classical master equation. As a concrete realization, one may use
semiconductor quantum dots embedded into an insulator weakly
connected with metallic electrodes. An amorphous insulator
(such as SiO2) can be used for this purpose since it has low
phonon conductivity and its high-potential barrier can block
interdot electron hopping35. Interaction strengths should be
controlled by varying the dot distances. For typical experimental
conditions, the temperature is 1–30 meV, quantum dots with
nanometer size have interaction that is the order of 10–100meV,
and tunneling rates are ~10 GHz, which are well within the
sequential regime. We note that a typical width δϵ of the single-
electron levels due to size fluctuations is an order of 100 meV
(ref. 5), corresponding to δϵ ~ 4kBT at a room temperature for
which the interaction enhancement is expected to be significant
(cf. Fig. 3a). In practice, however, fluctuations may also exist in
interaction parameters depending on controllability of dot con-
figurations, which can in general degrade thermodynamic
properties.

To implement the heat engine supplying the maximum power,
we propose two specific examples of quantum dot arrays with
nearest-neighbor interactions, as illustrated in Fig. 6. This type of
systems might be engineered by applying manipulation capabil-
ities of nanoporous molecular structures36 or nanoparticles37.

The configurations in Fig. 6 can attain the conditions (i)–(iii)
discussed above, and thus realize the highest-power heat engines
(see “Methods”). More generally, a guiding principle of realizing
the highest-power machine is to make interactions among low
(high) single-electron levels strong (weak) to compensate energy
differences and make hole excitations degenerate as much as
possible. While it may in practice be challenging to achieve the
ideal limit Nf→∞, the proposed configurations can still attain
high efficiency even at modest system sizes. For instance,
assuming Nf= 20 and the scaling of power P / N0:6

f , one can
achieve the efficiency η/ηC≃ 0.90 with controlling the chemical
potential δμ at the level of ~8% accuracy of the stopping value
SδT. We remark that a specific choice of dot configurations does
not alter the results discussed here, as long as the corresponding
interaction network among electron levels satisfies the conditions
(i)–(iii) proposed above. For instance, while we envision that a
two-level dot can be used to realize the interaction network in
Fig. 6b, it can in principle be realized also by using only single-
level dots.

Discussion
We formulated a machine learning framework to identify a set of
the best nanoscale systems in terms of multiple objectives, and
applied it to identify the best interacting nanothermoelectric
systems. We found a class of the Pareto-optimal engines whose
thermoelectric figure of merit and power factor can in principle
be enhanced by orders of magnitudes in comparison with the
noninteracting counterparts (see Fig. 2). We revealed the physical
mechanisms underlying in a variety of the best heat engines and,
in particular, proposed a designing principle to attain the
asymptotic Carnot efficiency at subextensive, yet still finite and
stable power. A possible experimental realization in quantum dot
arrays is also proposed (cf. Fig. 6).

The identified physical mechanism to improve thermodynamic
properties can be applied to other types of interacting thermal
machines obeying the standard (classical) master equation16, as
employed here. Such universality indicates the broad implications
of our results; for instance, the developed framework for rein-
forcing network topology on discrete physical states can be

Fig. 5 Transport processes relevant to the highest-power machines. a Transport process between two reservoirs associated with a single-hole excitation.
This type of processes lead to the activation of all the transfer edges in the state-transfer networks between the fully occupied state (i.e., the no-hole state)
and the single-hole states. The blue and red reservoirs represent the cold and hot ones, respectively. b Transport processes between two reservoirs
associated with two-hole excitations, which correspond to activated and inactivated state transitions, respectively. In the latter, the inactivation of the
transitions originates from the energy mismatch in two-hole states due to the inevitable hole–hole interaction between two holes. Here, the white and black
nodes represent the empty and occupied electron levels, respectively. The wavy lines indicate the interaction and the arrows represent the exchanges of
electrons with reservoirs. Only a part of the transfer edges between single-hole states and double-hole states can be activated, where red (blue) edges
correspond to activated (inactivated) edges. The fraction of the activated edges in the highest-power machines can asymptotically approach to the unity in
the thermodynamic limit (see the figures in “Methods”).
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applied to the multiobjective optimization problem in assembled
biomolecules38, chemical reactions39, and photovoltaic devices40.
One can then maximize desired objective functions, e.g., mobility,
reaction yield, and rectifications, while keeping a high thermo-
dynamic efficiency.

We here put our work in broader contexts. Firstly, the
mechanism of enhancing thermodynamic properties mentioned
above is reminiscent of what has been discussed in the case of
noninteracting systems7. There, the optimal heat engine can be
realized when all the single-electron energies take the same value,
i.e., the density of states becomes the delta function. The main
contribution of the present work, however, is to point out the
ubiquity of this mechanism in interacting systems under generic
nondegenerate single-electron levels, in contrast to the perfectly
degenerate levels required in noninteracting systems. Impor-
tantly, we propose concrete conditions for interaction to attain
the enhancement as detailed below, and find that there exist an
excessive number of interaction parameters to satisfy those con-
ditions. Secondly, thermodynamic efficiency and power of
nanoscale interacting systems have previously been discussed in
refs. 12,17–23. While these studies have focused on the case of all-
to-all homogeneous two-body couplings, our study permits all the
possible two-body interactions in the optimization process.
Interestingly, the present machine learning framework reveals
that the all-to-all homogeneous couplings are suboptimal in terms
of both thermodynamic efficiency and power in general.

It still remains as an intriguing open question to include fur-
ther complexities, such as nonlinear effects, time-reversal sym-
metry breaking, and quantum coherence41–44 into the present
analysis, and address whether they can be advantageous or det-
rimental in terms of thermodynamic efficiency and power.
Genuine quantum many-body effects, e.g., the Kondo physics45,
require an explicit account of the entanglement between a
system and reservoirs. Combining the present framework
with efficient solvers of quantum many-body problems might
thus bring insights into quantum thermodynamics. Also, it

merits further study to explore possible nonreciprocity under
asymmetric coupling strengths γh ≠ γc to different reservoirs.
Finally, it is intriguing to analyze interacting nanothermoelectrics
from a perspective of the scattering formalism.

Methods
Stochastic thermodynamics of nanothermoelectric heat engines. Here, we
provide details about the master equation framework to describe the dynamics of
nanothermoelectric heat engines discussed in the main text. We consider a many-
body system governed by an interacting Hamiltonian

H ¼
X
l

ðϵl � vg Þnl þ
1
2

X
l≠m

wlmnlnm; ð7Þ

where ϵl is single-particle energy of mode l= 1, 2, …, Nf, vg is the ground voltage,
and wlm ≥ 0 denotes a two-body interaction between electrons occupying single-
particle levels l and m. Corresponding to different sets of the occupation numbers
nl= 0, 1 (i.e., Fock states), there are 2Nf states which we label by a, b, …. The
system is connected to hot (h) and cold (c) reservoirs. We consider the dynamics
that can be described by the master equation12,14,16

dpa
dt

¼
X
b

Wabpb; Wab ¼ Γab � δab
X
d

Γdb;

Γ ¼ Γh þ Γc;

ð8Þ

where pa denotes the probability distribution in the energy eigenbasis (i.e., the Fock
basis), and Wab is the 2Nf ´ 2Nf transition matrix. The elements of tunneling
matrices Γh,c associated with two reservoirs are given by

Γiab ¼ γi f ðδsiabÞ; f ðxÞ ¼ 1
1þ ex

;

δsiab ¼
Ea � Eb

kBTi
þ ðNa � NbÞ � μi

kBTi

� �
;

ð9Þ

where f(x) is the Fermi distribution, δsiab describes the entropy production asso-
ciated with the transition from state b to a via reservoir i= h, c, Ea is a many-body
eigenenergy of the Hamiltonian (Eq. (7)) with respect to state a, Na is the corre-
sponding particle number, and μi and Ti are the chemical potential and tem-
perature of reservoir i= h, c, respectively. We here assume that the tunneling rates
are independent of energies, i.e., γah;c ¼ γh;c for all a. In particular, we set γ≡ γh=
γc > 0 in all the results presented in the main text. For the sake of simplicity, we do
not include transitions between eigenstates with the same particle number; such a
transition can be relevant when the electron–phonon interaction becomes
important46,47. This assumption together with the fact that transport occurs due to

Fig. 6 Designing the highest-power nanoscale heat engines with quantum dot arrays. Illustrations of specific array configurations that can achieve the
maximum-power heat engines. The single-electron energies are assumed to be equally spaced, i.e., ϵl= lΔ with Δ being energy spacing. a Each quantum
dot (gray circles) has a single level and exchanges electrons (green arrows) with reservoirs at temperatures Th,c (where h stands for hot, the red reservoir,
and c stands for cold, the blue reservoir). Quantum dots are linearly aligned from the center in order of increasing energies ϵl with l= 1, 2, …, . Distances
are controlled in such a way that nearest-neighbor interactions represented by u (wavy lines) progressively weaken with the distance from the center.
The corresponding network topology of the interaction is also shown. b The leftmost dot has two levels, while the other dots have a single level and are
linearly aligned in order of increasing energies. Distances are controlled in such a way that the interdot (nearest-neighbor) interaction between two
leftmost dots is weak, while the other interactions progressively weaken as distance from the left. The corresponding network topology of the interaction is
also shown.
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single-electron tunnelings to reservoirs can uniquely fix the connectivity of the
transition matrix W. We note that the master equation has a unique steady-state
solution Wpss= 0, since the transfer matrix satisfies the ergodicity15.

The description based on the master Eq. (8) can be justified when (I) the
Born–Markov approximation is valid and (II) the sequential limit is attained. The
former condition can be satisfied when the system-bath coupling is sufficiently
weak such that the backaction from the system on the bath can be ignored. More
specifically, denoting the bath correlation time and the relaxation time due to the
system-bath couplings as τbath and τrel, respectively, the condition (I) requires

τbath � τrel �
δ

γ2
; ð10Þ

where δ is a typical level spacing in the system Hamiltonian. The second condition
(II) can be attained if γ is much smaller than the level spacing such that no
quantum coherence is generated during the dynamics:

γ � δ: ð11Þ
We note that the condition (Eq. (11)) automatically ensures the secular condition
1/δ≪ τrel, that is, another requirement necessary to justify the use of the master
equation in the Gorini–Kossakowski–Sudarshan–Lindblad form in general. In the
present work, we always consider a temperature regime, in which the energy scale
of the parameters in the system Hamiltonian (Eq. (7)) is an order of kBT. Thus,
typical level spacing between Fock states can be estimated as

δ � Δ; vg;w � OðkBTÞ; ð12Þ
where Δ characterizes the level spacing between single-electron energies. Thus, the
condition (II) can be basically attained if

γ � Δ; vg;w � OðkBTÞ: ð13Þ
For a sufficiently short τbath, this condition can also ensure the condition (I).

Two remarks are in order. First, it is essential to employ the so-called global
approach13,48,49 to the master equation (i.e., the explicit inclusion of the interaction
term in the system Hamiltonian) in the present work because interaction
parameters w can be an order of the detuning of single-electron energies. It is
worthwhile to note that the crucial importance of using the global approach has
recently been pointed out in a number of works especially in the context of its
consistency with thermodynamics13,48,49. Second, while our estimation on the level
spacing δ above holds true for most of the Fock states, it might break down if a part
of Fock states exhibit the degeneracy as found in, e.g., the case of the highest-power
machines. Yet, the master equation description can be still justified because this
degeneracy condition requires δ≪ kBT while, owing to the energy-scale separation
γ≪ kBT, one can find sufficiently small γ such that

γ � δ � kBT; ð14Þ
which recovers the condition (II).

To calculate the transport coefficients, we focus on the regime δT= Th− Tc≪
Th and ∣δμ∣= ∣μh− μc∣ ≪ kBTh, and denote T= Th≃ Tc. We set μc≃ μh= 0
without loss of generality. The figure of merit ZT and the power factor Q are then
given by the Onsager coefficients as

ZT ¼ σS2T
κ

¼ L12L21
detðLÞ ; Q ¼ σS2 ¼ L212

T3L11
;

Jh

Jhq

 !
¼ L

δμ=T

δT=T2

� �
;

ð15Þ

where σ is the conductance, S is the Seebeck coefficient, κ is the thermal
conductance, and L is the Onsager matrix. The charge and heat currents into the
system from the hot reservoir are denoted by Jh and Jhq , respectively. The present
system can operate as a heat engine when we set δμ < 0 if S > 0, while δμ > 0 if S < 0.
We numerically obtain the Onsager coefficients (and thus ZT and Q accordingly)
from Eq. (15) by calculating the steady currents ðJss; Jssq ÞT for two different steady-
state solutions corresponding to δT= 0, δμ ≠ 0 and δT ≠ 0, δμ= 0. The nonzero
values of δT and δμ are kept sufficiently small in such a way that the linear-
response theory is valid.

In the main text, we find that the power factor and the figure of merit of the
highest-power machines scale as (see Fig. 3b in the main text):

Q ¼ σS2 / Nf ; ZT ¼ σS2T
κ

/ N1:31
f : ð16Þ

From these scalings together with the fact that the electrical conductance (the
Seebeck coefficient) is the extensive (intensive) quantity, we obtain the scalings of
transport coefficients as

σ / Nf ; S / N0
f ; κ / N�0:31

f : ð17Þ
The vanishingly small thermal conductance κ indicates the asymptotic realization
of the tight-coupling condition J∝ Jq as inferred by its definition

κ � Jq
δT

� �
J¼0

: ð18Þ

We note that the disappearance of κ is indeed consistent with the asymptotic
convergence of the power factor to the unicyclic value as indicated by Eq. (5) in the
main text, since the unicyclic machine can automatically attain the tight-coupling
condition.

Size scaling of the highest-power machines. We provide a simple size-scaling
argument of the fraction of the activated transfer edges in the state-transfer
network of the highest-power machines, which is briefly mentioned in the main
text. The residual discrepancy between the power factor per level Qmax=Nf and
the unicyclic value Quni (cf. Fig. 3b in the main text) originates from the
imperfect activation of the transfer edges in the state-transfer network. To be
concrete, we consider the highest-power machine shown in Fig. 6a in the main
text, while the argument presented here remains valid for general types of the
highest-power machines satisfying the conditions (i)–(iii) provided in the
main text.

Firstly, in the sector between the fully occupied state and single-hole states, the
condition (i) in the main text ensures the activation of all the transfer edges.
Secondly, however, the inevitable hole–hole interaction leads to the imperfect
activation in the next sector between single- and double-hole states. Among the
total number Nf(Nf− 1) of transfer edges in this sector, a transition cannot be
activated if it involves a double-hole state whose holes position at neighboring sites,
and thus interact with each other. One can count the number of such double-hole
states as Nf− 1 because of the nearest-neighbor-type interaction realized in the
highest-power machine of interest here. This fact results in 2(Nf− 1) inactivated
transfer edges. Thus, one can estimate the fraction f1− 2 of the activated transfer
edges between single- and double-hole states as

f 1�2 ¼ 1� 2
Nf

: ð19Þ

This scaling exactly agrees with the numerical values extracted from the state-
transfer networks of the highest-power machines shown in Fig. 4a–d in the main
text (see Fig. 7). Importantly, in the thermodynamic limit Nf→∞, this fraction
converges to unity f1− 2→ 1 as realized in the unicyclic machine. The scaling
argument presented here can be readily generalized to the activation fractions
f2− 3, f3− 4, … in the other sectors, such as the sector between double-hole states
and three-hole states, the one between three-hole states and four-hole states, and
so on. In particular, they can also be shown to converge to unity in the
thermodynamic limit. It is this asymptotically perfect activation of the transfer
edges in the highest-power interacting machines that results in the convergence
of the power factor per level to the unicyclic value, as indicated in Eq. (5) in the
main text.

Analysis of noninteracting machines. To obtain the results for the non-
interacting case discussed in the main text, we consider the transport problem
involving Nf multiple and nondegenerate single-electron levels. We emphasize
that all the comparisons between the noninteracting results and the interacting
ones presented in the main text are performed based on the same setting. In
particular, we use exactly the same set of generic (nondegenerate) single-electron
energies for both cases. Physically, such fluctuating single-electron energies are
ubiquitous in a broad range of physical systems, such as solid-state devices and
quantum dot arrays.

Fig. 7 Size scaling of the activated transfer edges in the highest-power
machines. The fraction f1− 2 of the activated transfer edges between single-
hole states and double-hole states is plotted against the inverse of system
size 1/Nf. Blue dots correspond to numerical values of f1− 2 extracted from
the state-transfer network shown in Fig. 4a–d. Green dashed line indicates
the analytical scaling f1− 2= 1− Nf/2.
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When there exists only one single-electron level Nf= 1, the optimal power
factor corresponds to the ideal unicyclic value

Quni ¼ ξ
kB
T

γhγc
γh þ γc

; ð20Þ

where ξ ≃ 0.439. In the multilevel case, except the special situation that all the
single-electron levels are perfectly degenerate, the power factor per level Q/Nf in
noninteracting machines severely degrades from this ideal unicyclic limit Quni in
general.

To determine the power-efficiency bound in a general case of multiple and
nondegenerate single-electron levels, we firstly identify a set of the Pareto-optimal
values of (Q, ZT) by performing the multiobjective optimization with using the
ground voltage vg as a variational parameter (see Fig. 8). For each pair of (Q, ZT),
we next draw the lasso-type power-efficiency curve based on the linear-response
formula (4). This procedure leads to a generation of a large number of the power-
efficiency loops, as shown in the red curves (see Fig. 8). Finally, the power-
efficiency bound is determined by numerically determining the envelope curve of
these loops. At low power output, the resulting bound is consistent with the square-
root scaling / ffiffiffi

P
p

, as shown by the black dotted curve (see Fig. 8). The power-
efficiency bounds of the interacting cases shown in the main text are also obtained
by following the similar procedures outlined above, while the scaling at the low
power output is consistent with the linear one∝ P in the interacting cases.

Global optimization for the best heat engines. We here describe in detail the
global optimization algorithm introduced in the main text, which is used to identify
the best nanoscale heat engines. We start from finding the engine that achieves the
maximum possible power factor. This has been done by using the differential
evolution10,11 to optimize the objective function Q with respect to the parameters

W ¼ vg; fwlmgl >m

n o
.

Specifically, we first randomly generate a population of Npd-dimensional real-
valued vectors fW i

t¼0g with i= 1, 2, …, Np. Here, d= 1+Nf(Nf− 1)/2 is the
number of variables in the present problem. At each iteration step t, we create a
mutant vector Vi

t 2 Rd with i= 1, 2,…,Np by

V i
t ¼ Wk

t þ FðW l
t �Wm

t Þ ð21Þ
where k, l, m ≠ i are mutually exclusive integers randomly chosen from [1,Np], Wk

t
is a vector sampled from the population at step t, and F > 0 is the scaling factor. We
next prepare an offspring vector X i

t 2 Rd by randomly choosing an integer k from
[1, d] and then applying the following rule to each element of X i

t :

ðX i
tÞj ¼

ðV i
tÞj if j ¼ k or randi;j½0; 1�≤Cr

ðWi
tÞj otherwise

(
ð22Þ

where randi,j[0,1] denotes a randomly generated number from [0,1] for each pair of
(i, j) and Cr > 0 is the crossover factor. We then update all the vectors fW i

tg in the
population according to the rule

W i
tþ1 ¼

X i
t if QðX i

tÞ≥QðW i
tÞ

W i
t otherwise

(
ð23Þ

To improve the convergence, we restrict the search space by setting the lower and

upper bounds on the parameters as 0 ≤ wlm ≤ wmax and �vmax ≤ vg ≤ vmax; we set
wmax ¼ vmax ¼ 50kBT for all the results provided in the main text. The population
number Np is set to be Np= 2d. We find it useful to implement the heuristics
proposed in ref. 50, where the scaling factor and the crossover factor (F, Cr) are
chosen uniformly at random from three choices (1, 0.1), (1, 0.9) and (0.8, 0.2) at
each iteration. The choice of (1, 0.9) leads to large perturbations on the donor
vectors and thus expedites the exploration of the search space, while the other two
choices expedite the exploitation of the search space. In this way, we can find the
optimal parameters W�

Q for the highest-power heat engine, which provides an
unambiguous element of the Pareto-optimal solutions3. It thus allows us to
determine the Pareto front on the Q-ZT plane by starting the search of the front
with setting W�

Q to be the initial point.

Nonconvex landscape and the failure of the local algorithms. The search of the
Pareto front has been performed based on the standard alternate search algo-
rithm51. Specifically, at the initialization stage, the algorithm randomly samples the
values of both Q and ZT around a given input of the parameters for the initial
thermal machine. In practice, to improve the optimization performance, it is
advantageous to use an unambiguous element of the Pareto-optimal solutions as
the initial search point. We found that the machine with the parameters W�

Q

achieving the highest Q, which is identified after the first step of the optimization
process outlined above, is the most legitimate choice in this respect. In contrast, if
one starts the search of the Pareto front from random initial values, the perfor-
mance of the optimization can be degraded.

After generating the samples, the algorithm next defines the feasible parameter
region for searching the Pareto-optimal solutions. Specifically, the algorithm
creates a list of previously evaluated nondominated points in the samples, which
are the points with (at least) one of Q and ZT being strictly better than that of the
other evaluated points. At each iteration, the algorithm uses this list of the
nondominated points and the corresponding neighbors as the feasible parameter
region to choose the next evaluation point. If the newly evaluated point dominates
some of the previous nondominated points, i.e., if both of Q and ZT of the newly
evaluated point are no worse than some of the previous nondominated points and
at least one of them is strictly better, the algorithm accepts the newly evaluated
point as a new member of the list for the feasible parameter region, while
eliminates the dominated previous points from the list. Thus, the multiobjective
algorithm is based on this alternate search of the feasible parameter region and the
higher values of the objective functions Q and ZT. In particular, one may
summarize the iterative update outlined above as follows:

W i
tþ1 ¼ X i

t if ðQðX i
tÞ;ZTðX i

tÞÞ � QðW i
t ;ZTðW i

tÞÞ
�

W i
t otherwise

(
ð24Þ

where we recall that the symbol ≻ indicates that (Q, ZT) values for the newly
evaluated machine W i

tþ1 dominates a previous member X i
t in the list, i.e., both of

Q and ZT for W i
tþ1 are no worse than those for X i

t , while at least one of them for
W i

tþ1 is strictly better than the corresponding value for X i
t . Importantly, it has been

theoretically proved that this algorithm is guaranteed to converge to points close to
the correct Pareto-optimal solutions after performing a sufficiently large number of
iterations51.

Finally, to obtain the Pareto front on the power-efficiency plane, we generate a
large number of loops according to the linear-response formula (Eq. (4)) with

Fig. 8 Determination of the power-efficiency bound in the noninteracting machines. a The Pareto-optimal values of (Q, ZT) pairs are determined from
the multiobjective optimization. b For each pair of the optimal solutions of (Q, ZT) plotted in a, the lasso-type power-efficiency curve (red dotted curve) is
drawn as indicated by the black dotted arrow. c Magnified plot of the power-efficiency bound at the low power output. Black dotted line indicates the
envelope curve of the power-efficiency loops (red dotted curves), which agrees with the square-root scaling /

ffiffiffi
P

p
. We use the multilevel setting with the

number of single-electron levels Nf= 9 and generic (nondegenerate) single-electron levels. We set ϵl= lΔ with Δ/kBT= 3, γh= γc≡ γ, and plot Q in the unit
of Q0= kBγ/T. The efficiency and power factor are normalized by ηC and Q0.
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substituting the values of (Q*, ZT*) for the Pareto-optimal solutions into it. The
envelope curve of these loops provide the Pareto front on the P–η plane (see, for
example, Fig. 2e in the main text and also Fig. 8).

Full training for the interacting case with the largest system size has been done
by running the algorithm within ~3 days on a single 24-core CPU machine. Most
of the time is spent on the diagonalization of the transition matrix to evaluate the
fitness values of machines in a large population at each iteration. Thus, the
exponential computational cost for the matrix diagonalization currently limits the
available number of single-particle levels Nf. A reduction of computational times
could be made possible by applying the efficient solvers of many-body
problems52,53 or by parallelizing the code over large-core CPU+GPU machines.

When the optimization landscape is smooth and local traps therein are
negligible, the greedy algorithms should be the primary choice since they can
usually reach to the global optimum with faster convergence rate than that for the
global (derivative-free) algorithms. We here briefly mention the difficulties of
applying such greedy (gradient-based) optimization algorithms to identify the best
interacting nanoscale heat engines. To demonstrate this, we show typical training
processes in optimizing the minus of the power factor, −Q, see Fig. 9. The result is
presented for a small system size with 2Nf ¼ 16 states. We here apply three
standard local optimization algorithms: the sequential quadratic programming
(green)54, the quasi-Newton method (black)55, and the interior-point algorithm
(red)56. As inferred from the figure, all of three greedy algorithms overwhelmingly
fail to identify the global-optimum solution and are easily trapped by the local
optima. For instance, through the training processes shown, the value of the
suboptimal power factor reached by the greedy algorithms is almost the same as in
that of the best power factor achieved by the noninteracting engine (see, e.g., Fig. 2f
in the main text). This observation can be understood from the fact that the
suboptimal engines are able to activate only a very few number (one or two) of
transfer edges in the state-transfer network (cf. Fig. 2a, d in the main text), resulting
in low (yet locally optimal) values of the power factor.

Numerical evidence of the failure of the greedy algorithms indicates the
presence of a large number of proliferated local optima in the nonconvex landscape
of the search space. To demonstrate this more explicitly, we visualize the
optimization landscape based on the approach previously applied to the problem of
optimizing the deep neural network57. Specifically, we randomly choose vectors

ϕ;ψ 2 Rd with d= 1+Nf(Nf− 1)/2 and project the landscape onto the two-
dimensional surface via introducing the objective

Lðα; βÞ ¼ QðW�
Q þ αϕþ βψÞ; ð25Þ

where W�
Q is the global-optimum solution and α, β are real parameters. Figure 9a

shows a typical example of the obtained two-dimensional projected optimization
landscape. It exhibits the dramatic nonconvexities and, in many regions, the
surface gradients do not point toward the global optimum positioned at the center.
Thus, most trials of the greedy algorithms to find the global optimum converge to
local traps in the landscape. It is this complex nature of the optimization landscape
that leads to the failure of the greedy (gradient-based) algorithms as demonstrated
in Fig. 9b. In contrast, the differential evolution (detailed in the previous section) is
known as one of the most powerful approaches to find the global solution in the
high-dimensional nonconvex landscape11, and has indeed been able to find the
globally optimal power factor (see the blue line in Fig. 9b).

We finally mention the difficulty of applying the brute-force search to the
present problem. Since the brute-force approach requires the search over all the
possible patterns of the interaction network, one has to discretize the range of each
continuous parameter in W with a total amount Ldis of bins. Thus, the resulting
number of the required trials becomes exponentially large, i.e., it scales as / ðLdisÞd
with d=Nf(Nf− 1)/2+ 1. Since the computational cost for each trial also grows
exponentially with Nf due to the need of diagonalizing the transition matrix W, the
brute-force search leads to the double-exponential growth of the numerical cost as
increasing the system size. We note that the resulting solutions may still not reach
the global optimum since the search is (by nature) nonexhaustive due to the
discretization of the continuous parameters.

Details of the parameters for the asymptotic Carnot engines at nonzero
power. We here mention the concrete examples of the interaction parameters
appropriate for realizing the highest-power heat engines discussed in the main text.
They can asymptotically achieve the Carnot efficiency at nonzero and stable power
in the thermodynamic limit Nf→∞, owing to the diverging power factor Q. Firstly,
as the parameters appropriate for the one-dimensional chain configuration with

Fig. 9 Visualization of the nonconvex landscape and the failure of the greedy algorithms. a The optimization surface of (minus) the power factor −Q
around the global-optimum solution W�

Q positioned at the center. We here project the high-dimensional optimization landscape onto the two-dimensional
surface based on the approach used in ref. 57. b The convergence behavior of the optimization of the objective function −Q for the sequential quadratic
programming (SQP; green), the quasi-Newton method (black), the interior-point algorithm (red), and the differential evolution (blue). The parameters are
Nf= 4, ϵl= lΔ with Δ/kBT= 3, γh= γc≡ γ, and we plot the power factor in the unit of kBγ/T. Here, Nf is the number of single-electron levels, Δ is the energy
spacing, and γh,c represent the hopping rates to the hot and cold reservoirs.

Fig. 10 Graphical representations of the optimal configurations. Panels a–c correspond to concrete examples of realizations of the Pareto-optimal
interacting machines identified in Fig. 2a–c, where ϵl is a (nondegenerate) single-electron energy of lth level considered in Fig. 2. A wave line between
quantum dots indicates the presence of interaction between them. The width of the wave line shows the interaction strength.
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single-particle energies ϵl= lΔ (cf. Fig. 5a in the main text), one may use

w12 ¼ 2
Nf þ 1

4

� �
Δ; ð26Þ

wl;lþ2 ¼
Nf � 1

2

� 	
� l

2

� �� �
Δ for l ¼ 1; 2; 5; 6; ¼ ; ð27Þ

wl;lþ2 ¼ w12 � 2
l
4

� 	
Δ for l ¼ 3; 4; 7; 8; ¼ ; ð28Þ

and set the other interaction parameters to be zero. Here, [⋅] is the Gauss symbol
and ⌈⋅⌉ is the ceiling function. Secondly, as the parameters appropriate for the
semi-infinite chain configuration (cf. Fig. 6b in the main text), one may use

w23 ¼
d3Nf =2e � 6

2
Δ; w12 � Δ ¼ w13 ¼

½Nf =2�Δ
2

; ð29Þ

w14 ¼ ðdNf =2e � 2ÞΔ; ð30Þ

wl;lþ1 ¼
Nf � l

2

� �
Δ for l ¼ 4; 5; ¼ : ð31Þ

One can check that these two sets of the parameters satisfy the optimality condi-
tions for the maximum-power engines (proposed in the main text), which include
(i) single-hole excitation energies are degenerate and (ii) the number of nonzero
parameters in fwlmgl >m is minimal. Figure 10 illustrates further concrete examples
of realizations of the Pareto-optimal machines in interacting regimes.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding author on request.
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