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Vortices as fractons
Darshil Doshi 1✉ & Andrey Gromov 1✉

Fracton phases of matter feature local excitations with restricted mobility. Despite the

substantial theoretical progress they lack conclusive experimental evidence. We discuss a

simple and experimentally available realization of fracton physics. We note that superfluid

vortices form a Hamiltonian system that conserves total dipole moment and trace of the

quadrupole moment of vorticity; thereby establishing a relation to a traceless scalar charge

theory in two spatial dimensions. Next we consider the limit where the number of vortices is

large and show that emergent vortex hydrodynamics also conserves these moments. Finally,

we show that on curved surfaces, the motion of vortices and that of fractons agree; thereby

opening a route to experimental study of the interplay between fracton physics and curved

space. Our conclusions also apply to charged particles in a strong magnetic field.
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Fracton phases of matter are characterized by the presence of
immobile or partially mobile local excitations. The con-
straints on excitation mobility stem from the conservation

laws of multipole moments of the charge density1–3. Phases that
support fracton excitations were first discovered in exactly sol-
vable quantum lattice models4–6. One systematic approach to
characterization and classification of fracton phases is based on
tensor1,2,7–12 and multipole gauge theories (MGT)3,13. Recent
years have witnessed a significant interest in development and
classification of phases of quantum matter supporting fracton
excitations14–43, with possible applications ranging from quan-
tum memory to quantum elasticity and quantum gravity. For
recent reviews see44,45. Despite substantial theoretical progress
and several proposals for experimental realization of the fracton
physics37,46–48 no conclusive experimental evidence of fracton
physics exists.

One prominent yet down-to-earth example of excitations with
restricted mobility is crystalline defects in quantum crystals and
liquid crystals49–57. There, dislocations satisfy the glide constraint
that forces them to move along their Burgers vector, while dis-
clinations are immobile.

In this note, we point out that fracton physics is exhibited by
superfluid vortices that have been experimentally observed for
many decades. We show that vortices in two spatial dimensions
share the mobility constraints with the traceless scalar charge
theory (TSCT), which is a particular model of particles with
restricted mobility. We review the Hamiltonian formulation of
the vortex dynamics and show that it manifestly conserves dipole
and (trace of) quadrupole moments of vorticity. In superfluids,
the vorticity of individual vortices is quantized and locally con-
served, which leads to identification of vorticity with the scalar
charge. These conservation laws imply that isolated vortices are
immobile, while vortex dipoles move perpendicular to their
dipole moment. Both vortices and their dipoles can be readily
created and studied experimentally in superfluid Helium58,
Bose–Einstein condensates59,60, polariton superfluids61,62, and
non-linear media63. We then consider a hydrodynamic limit
where the number of vortices becomes large; and collective,
hydrodynamic description is applied to the vortices themselves.
Remarkably, the resulting hydrodynamics admits a Hamiltonian
formulation; with Poisson brackets realizing the classical w∞

algebra64. We show that vortex hydrodynamics is also equivalent
to scalar charge theory and provide a microscopic collective field
theory expression for the rank-2 symmetric current. Finally, we
discuss the behavior of vortices and fractons on curved manifolds,
which can be realized as curved 4He films.

Results and discussion
Vortices. We consider a two-dimensional incompressible ideal
fluid. It is described by the Euler equations

ð∂0 þ ui∂iÞuj ¼ �∂jP ; ð1Þ
where P is the pressure and ui is the velocity field. The combi-
nation ∂0+ ui∂i is known as the material derivative. The
incompressibility condition implies that ∂iui= 0. Taking the curl
of (1) we obtain the Helmholtz equation

ð∂0 þ ui∂iÞω ¼ 0 ; ð2Þ
where ω= ϵij∂iuj is the vorticity. Equation (2) admits solutions
where the vorticity is concentrated in a finite number of point
vortices. The complex velocity field uz= u1− iu2 takes form

uzðzÞ ¼ �i
XN
α¼1

γα
z � zαðtÞ

; ωðzÞ ¼
XN
α¼1

γαδ
2ðz � zαðtÞÞ ; ð3Þ

where zαðtÞ ¼ xα1ðtÞ þ ixα2ðtÞ (we will switch between complex and
Cartesian coordinates at will) is time-dependent position of the
αth vortex and 2πγα is its circulation; while γ= ∣γα∣ is the vortex
strength. We have assumed that vorticity is quantized in units of
γ, which is the case in superfluids58.

Remarkably, the vortex coordinates xαi ðtÞ form a Hamiltonian
system65

H ¼ �2π
X
α<β

γαγβln jxα � xβj ; ð4Þ

xα1 ;�2πγβx
β
2

n o
¼ δαβ ; ð5Þ

where α, β= 1, 2, …, N label the vortex strength. We refer the
reader to66,67 for an in-depth review of the vortex systems.

Dynamical system (4)-(5) also describes charged particles
moving in a strong magnetic field, in the limit of infinite
cyclotron frequency, or equivalently, on the lowest Landau level.
Consequently, all our results apply verbatim to the charged
plasma in a strong magnetic field (see Supplementary Discussion
for the details).

In dealing with (4) and (5) it is useful to use the complex
coordinates zα. In complex notations, the only non-trivial Poisson
bracket takes the form65

zα;�zβ
n o

¼ iðπγαÞ�1δαβ : ð6Þ
The equations of motion are65

_�zα ¼ �i
XN

β¼1;β≠α

γβ
zα � zβ

: ð7Þ

It is worth emphasizing that H is not just the potential energy.
Due to the non-trivial commutations relations between zα and �zα,
H can be viewed as the kinetic energy.

Conservation laws. Hamiltonian H is translation and rotation
invariant. The corresponding integrals of motion are known as
impulse, Pi and angular impulse, L67,68. They are given by

Pi ¼ �2πϵij
X
α

γαx
α
j ; L ¼ 2π

X
α

γαx
α
i x

α
j δij : ð8Þ

We recognize in Eq. (8) that impulse is related to the dipole
moment of vorticity Di (also known as center of circulation),
while angular impulse corresponds the trace of the quadrupole
moment of vorticity, Qij (also known as moment of circulation),
according to

Pi ¼ �ϵijDj ; L ¼ δijQij : ð9Þ
Together, the quantities Pi, L,Di,Qij form a multipole algebra

L; Pif g ¼ 2ϵijPj ; Pi;Dj

n o
¼ �δijΓ ;

L;Dif g ¼ �2ϵijDj ; Pi; δjkQjk

n o
¼ �2Di ;

ð10Þ

where we have introduced the total vortex strength

Γ ¼
XN
α¼1

γα : ð11Þ

Thus, the vortices are equivalent to a TSCT; where the total
charge as well as dipole and trace of the quadrupole moments are
conserved1. Isolated charges are immobile; while isolated dipoles
move perpendicular to their dipole moment. We emphasize that
the conservation of dipole and trace of quadrupole moment does
not originate from an internal symmetry3 as in all previously
studied cases with Z-valued charge. Instead, it originates from
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spatial symmetries and non-commutativity of the configuration
space. We surmise that there is a deeper relation between non-
commutative field theories and fracton physics.

Traceless Scalar Charge Theory (TSCT). We briefly pause to
discuss some properties of the TSCT. More details can be found
in1,45. TSCT describes particles that conserve a U(1) charge as
well as dipole and trace of the quadrupole moments. These
conservation laws are succinctly summarized by the following
equations

_ρþ ∂i∂jJ
ij ¼ 0 ; Tr ðJijÞ ¼ 0 ; ð12Þ

where ρ is the density of the U(1) charge and Jij is the symmetric,
traceless rank-2 tensor. The indices are raised with the spatial
metric gij, which is assumed to be flat and rotationally invariant
gij= δij, unless specified otherwise. Denoting ji= ∂jJij we observe
that ρ satisfies ordinary continuity equation ∂0ρ+ ∂iji= 0; con-
firming the charge conservation. Furthermore, we can find that
dipole moment and trace of quadrupole moment are conserved,
by multiplying Eq. (12) with xi and xixi respectively; and inte-
grating over space.

∂0Dk ¼ ∂0

Z
xkρ ¼

Z
xk∂i∂jJ ij ¼ 0 ; ð13Þ

∂0 Tr ðQijÞ ¼ ∂0

Z
x2ρ ¼

Z
Tr ðJijÞ ¼ 0 : ð14Þ

These conservation laws imply that charge dipoles can only
move perpendicular to their dipole moment1.

One may wonder what kind of microscopic theory would
support Eq. (12) as the conservation laws. In the present paper,
we argue that vortices in incompressible superfluid obey these
conservation equations. Furthermore, using the ideas from69 it is
clear that the following Lagrangian fits the bill

L ¼ _Φ
? _Φþ g1jD1ðΦÞj2 þ g3jD3ðΦÞj2 þ g 01 Re ðΦ?Þ2D1ðΦÞ

� �
þ g 03 Re ðΦ?Þ2D3ðΦÞ

� �þ μjΦj2 þ ¼ ;

ð15Þ
where … stands for the higher-order terms and Φ is a complex
scalar. The derivative operators DI(Φ) are defined as

DIðΦÞ ¼ σIij ∂iΦ∂jΦ�Φ∂i∂jΦ
� �

; ð16Þ
where σIij are the Pauli matrices. A restricted version of the
Lagrangian (15) can be used to describe the defects in two-
dimensional elasticity49.

For generic values of gI ; g
0
I , the theory (15) is invariant under

C4, but not SO(2). Though it is SO(2) invariant for the special case
of g1= g2 and g 01 ¼ g 02. More importantly, the theory is invariant
under the following transformation

Φ0 ¼ eif ðxÞΦ ; f ðxÞ ¼ λþ λkxk þ ζjxj2 ; ð17Þ
where the parameters λ, λk, ζ are arbitrary. Noether’s theorem
then implies that the corresponding conservation laws are
precisely (12). The density is given by the usual expression ρ=
Φ⋆Φ, while the general expression for the current is quite lengthy
and not enlightening.

We discuss the chiral version of the above theory in the
Supplementary Discussion.

Mobility constraints. Conservation laws (8) imply that motion of
many vortices is constrained to preserve the dipole and quadru-
pole moment. Moreover, since the conserved quantities (H,DiDi,
δijQij) are in involution, the problem of N vortices is integrable for

N ≤ 3. Other typical cases are chaotic67. We discuss the “frac-
tonic” motion of vortices next.

A single or well-isolated vortex is immobile. Analogously to
fractons, the mass of an isolated vortex is not well-defined. A
broad class of definitions70 leads to a diverging mass, which
agrees with fracton ideas.

Dipole consisting of two vortices with opposite vorticities
moves in a straight line perpendicular to its dipole moment. At
low temperatures vorticity-neutral systems “condense” into a gas
of neutral dipoles71. The dipole of two vortices with the same
vorticities moves in a closed orbit around their “center of
vorticity”, while keeping the distance between the two vortices
constant. Motion of dipole is illustrated in Fig. 1. Relative
distances can only change if the number of vortices is N ≥ 367.

The quadrupole of two vortex-dipoles exhibits a variety of
complex dynamics. One common type of interactions (particu-
larly at low temperature) is scattering between two dipoles as
shown in Fig. 1. As a result of scattering a vortex dipole makes a
π/2 turn, which agrees with phenomenology of TSCT.

Statistical mechanics. Although many-vortex dynamics are
chaotic, for certain vortex configurations the relative positions of
vortices are completely frozen. Such configurations are called
vortex crystals or vortex equilibria72. The examples include N
identical collinear vortices situated in the roots of N-th Hermite
polynomial as well as Adler-Moser polynomials, identical vortices
located at the vertices of a regular N-polygon, etc. There are many
other examples (see72 for a review). Vortex crystals can move as
rigid objects, in which case they are referred to as relative equi-
libria, or can be stationary. Such configurations explore a very
small fraction of the phase space. This is immediately obvious
since for a vortex system phase space coincides with the

a b

c d

Fig. 1 Motion of point vortices. a An isolated vortex is immobile and
corresponds to a fracton. b A neutral dipole moves perpendicular to its
dipole moment—it is a “lineon”. c A charge 2-dipole moves around the
center of vorticity. In fractonic context this motion is also possible, albeit
never discussed: a pair of identical charges can rotate by constantly
emitting dipoles that cancel. d Scattering of two dipoles of opposite dipole
moments. Upon scattering the dipole makes a π/2 turn.
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configuration space. Vortex crystals emerge experimentally after
relaxation of highly turbulent two-dimensional flows73,74.

It is tempting to compare vortex crystals to the Hilbert space
fragmentation seen in quantum dipole conserving systems48,75–78.
There, the Hilbert space “shatters” into many disconnected
subspaces; within each such subspace either integrability or
thermalization is possible.

Mobility constraints combined with the phase space reduction
lead to an exotic statistical mechanics of vortices79,80. In
particular, above certain critical energies vortices experience
“negative temperature”79,81, which follows from the structure of
the phase space. At negative temperature the vortices of the same
vorticity tend to clamp together, which nicely corresponds to
gravitational attraction of fractons discussed in24. Vortex crystals
may be an obstruction to ergodicity: Clusters of vortices take a
very long time to merge80. To the best of our knowledge, the
ergodicity of vortex system is still an open problem82.

Vortex hydrodynamics. Next we would like to consider the limit
where the number of vortices is very large. Due to the chaotic
behavior and strong interactions between the vortices, this limit
admits a description in terms of an emergent hydrodynamics64.
We will show that in hydrodynamic limit the dipole and trace of
the quadrupole moments are conserved. These conservation laws
will be made manifest by re-writing the continuity equation in the
form (12), where the conserved U(1) density is related to the
vorticity ρ= (2πγ)−1ω.

We would like to emphasize one subtle difference between
traditional TSCT and vortices: The former is non-chiral, while the
latter is chiral. In TSCT a dipole moves perpendicular to its dipole
moment; while for a vortex dipole, the dipole moment and the
direction of motion form a right pair.

Vortex hydrodynamics for the chiral flow (i.e., when all
vortices are of the same vorticity, γα= γ) was derived by
Wiegmann–Abanov in64. The continuum limit of the vortex
Hamiltonian (4) is

HWA ¼ 1
2

Z
v2 � η2ð∂iln ρÞð∂iln ρÞ
� �

d2r ; ð18Þ

where vi is the vortex velocity and η ¼ γ2

4 . Vortex fluid is
incompressible: ∂ivi= 0 and vi is completely determined by the
density through64

ϵij∂ivj ¼ 2πγρþ ηΔln ρ : ð19Þ
The Poisson brackets form the classical w∞ algebra83

ρðxÞ; ρðx0Þf g ¼ ϵrs∂
0
r∂s ρðxÞδðx � x0Þ½ � ; ð20Þ

where ∂0i ¼ ∂
∂x0i
. Brackets between velocity and density are deduced

from (19)

vkðxÞ; ρðx0Þf g ¼ � ∂0k ρðxÞδðx � x0Þð Þ

� ηϵkj∂j
1
ρ
ϵrs∂

0
r∂s ρðxÞδðx � x0Þð Þ

� �
:

ð21Þ

We are interested in computing the equation of motion for the
density ρ

_ρðxÞ ¼ HWA; ρðxÞf g : ð22Þ
Direct calculation gives the continuity equation

_ρþ ∂kjk ¼ 0 () _ρþ vk∂kρ ¼ D0ρ ¼ 0 ; ð23Þ
where jk= ρvk. This is consistent with Helmholtz equation (2).
The consistency is non-trivial since (2) includes the material
derivative with ui, while the material derivative contains vi in (23).
The equivalence of (2) and (23) is established using the relation

between ui and vi64

vi ¼ ui �
γ

4
ϵij∂jln ρ : ð24Þ

Using the identity

2πγuiρ ¼ ϵik ∂jðujukÞ �
1
2
∂kðujujÞ

� �
; ð25Þ

with either (2) or (23) we find

ji ¼ ∂jJ ij ; J ij ¼
1

2πγ
ϵikujuk �

1
2
ϵiju

2

� 	
� γ

4
ϵijρ : ð26Þ

The anti-symmetric part of Jij drops out from (12). In the chiral
case, an equivalent relation was derived in84.

Emergent hydrodynamics for vortices of positive and negative
vorticity was developed by Yu-Bradley85. The conservation of the
impulse and angular impulse holds in their model as well. The
number and charge (vortex-sign) densities are treated separately
in this case. Note that the conservation laws discussed here apply
to the charge density, not the number density. We derive the
tensor current based on their hydrodynamics in the Supplemen-
tary Discussion. We will discuss an independent collective field
theory derivation of the rank-2 conservation law (12) for arbitrary
number of vortices next.

Collective field theory of vortices. We now turn to the collective
form of (7). Vorticities are allowed to take both positive and
negative values: γα= ±γ.

Density and current fields are defined as follows

ρðzÞ ¼ 1
γ

X
α

γαδðz � zαÞ ;

jzðzÞ ¼ ρðzÞvðzÞ ¼ 1
γ

X
α

γα _�zαδðz � zαÞ :
ð27Þ

We will need the complex notation jz= j1− ij2 and the δ-
function identity

∂z
1
�z
¼ ∂�z

1
z
¼ πδðzÞ : ð28Þ

The time derivative of the density is given by

_ρ ¼ � 1
γ

XN
α¼1

½γα _zα∂zδðz � zαÞ þ γα _�zα∂�zδðz � zαÞ� : ð29Þ

Using (7) this is transformed into

_ρþ ∂z∂zJ �z�z þ ∂�z∂�zJzz ¼ 0 ; ð30Þ
where we have introduced a traceless symmetric tensor current

Jzz ¼
1

2πiγ

X
α

γα
z � zα

 !2

þ ∂z
X
α

γ2α
z � zα

 !
; ð31Þ

and J �z�z ¼ �Jzz . It is crucial that in (31) the second order poles
cancel. In Cartesian components the symmetric tensor current is
given by

Jij ¼
1

2πγ
ϵikujuk �

1
2
ϵiju

2

� 	
� γ

4
ϵijn ; ð32Þ

n ¼ ð2πγÞ�1
X
α

jγαjδðz � zαÞ ; ð33Þ
where we introduced the vortex number density n(z). This is the
central result of the present work: The continuity equation takes
form (12). The above derivation is general and applies to hydro
with vortices of both kinds present. In particular, it applies to
the case when total vorticity is 0. We derive (32) in the
Supplementary Discussion.
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Curved space. Symmetric tensor gauge theories do not remain
gauge invariant on a curved space50. Furthermore, the con-
servation law of dipole moment cannot remain unchanged on a
curved space. Below, we show that, in curved space, the dynamics
of vortices and the mobility constraints change. Vortices on a
curved space have been studied in86–88 and can be experimentally
realized in thin 4He films. Vortex hydrodynamics of chiral flows
was generalized to curved spaces in84. Vortex problem on a
surface of a sphere is also relevant for geophysical and atmo-
spheric applications. The Helmholtz equation on a curved surface
takes form84

_ρþ ui∇i ρþ s
4π

R
� �

¼ 0 ; ð34Þ
where ∇i is a covariant derivative, R is the Ricci curvature and
s� 1

2 is the geometric spin of a vortex. Eq.(34) also takes form
(12) with slightly modified Jij84

JijðRÞ ¼ J ijjR¼0 þ
1

2πγ
∇iuj þ

γ

2
ϵij ρ� s

4π
R

� �� �
: ð35Þ

Note that the last term in (35) contributes to the equations of
motion only when curvature is inhomogeneous. We can draw the
following conclusion from (34)-(35). On a surface of constant
curvature an isolated vortex remains immobile87,89, which is
consistent with50. A dipole moves along a geodesic that is
perpendicular to the dipole moment; which is consistent with the
corresponding fracton observations made in90.

On a surface of variable curvature an isolated vortex does
move: the dipole conservation law is broken and fractonic
property is lost; in agreement with50. The potential force acting
on an isolated vortex is obtained by differentiating the Robin
function91. The dipole moves along a geodesic in the general
case92.

Conclusions. We have established an equivalence between vortex
dynamics in two-dimensional superfluids and TSCT. We have
shown that vortices provide a Hamiltonian realization of fracton
dynamics for any finite number of vortices as well as in the
hydrodynamic limit. Thus superfluid vortices provide a readily
available platform for experimental realization of fracton quasi-
particles. Vortices and vortex-dipoles are experimentally available
with the present day technology. Another new platform may rely
on chiral active fluids93.

Similar conservation laws hold in three dimensions for vortex
lines. We leave the exploration of higher dimensional case,
discussion of more refined probes of fracton dynamics in
superfluids and BECs, such as role of the trap and finite lifetime,
generalization to chiral superfluids such as 3He and many other
open question to future work. Theory of vortices plays central
role in statistical approach to turbulence79; where the questions of
ergodicity and validity of statistical mechanics are central82. It
would be very interesting to see if fracton-inspired ideas can lead
to new insight into quantum and classical turbulence as well as
the problem of quantization of vortex dynamics. Finally,
dynamics of electrons residing in the lowest Landau level is
formally identical to that of vortices; consequently we expect
applications of fracton-inspired ideas to the physics of fractional
quantum Hall effect.

Data availability
Data sharing is not applicable to this article as no datasets were generated or analyzed
during the current study.

Code availability
Code sharing is not applicable to this article as no code is developed during the
current study.

Received: 3 July 2020; Accepted: 11 January 2021;

References
1. Pretko, M. Subdimensional particle structure of higher rank u (1) spin liquids.

Phys. Rev. B 95, 115139 (2017).
2. Pretko, M. Generalized electromagnetism of subdimensional particles: A spin

liquid story. Phys. Rev. B 96, 035119 (2017).
3. Gromov, A. Towards classification of fracton phases: the multipole algebra.

Phys. Rev. X 9, 031035 (2019).
4. Chamon, C. Quantum glassiness in strongly correlated clean systems: an

example of topological overprotection. Phys. Rev. Lett. 94, 040402 (2005).
5. Haah, J. Local stabilizer codes in three dimensions without string logical

operators. Phys. Rev. A 83, 042330 (2011).
6. Vijay, S., Haah, J. & Fu, L. A new kind of topological quantum order: A

dimensional hierarchy of quasiparticles built from stationary excitations. Phys.
Rev. B 92, 235136 (2015).

7. Kleinert, H. Duality transformation for defect melting. Phys. Lett. A 91,
295–298 (1982).

8. Kleinert, H. Dual model for dislocation and disclination melting. Phys. Lett. A
96, 302–306 (1983).

9. Kleinert, H. Double gauge theory of stresses and defects. Phys. Lett. A 97,
51–54 (1983).

10. Xu, C. Novel algebraic boson liquid phase with soft graviton excitations.
Preprint at https://archive.org/details/arxiv-cond-mat0602443 (2006).

11. Xu, C. & Hořava, P. Emergent gravity at a lifshitz point from a bose liquid on
the lattice. Phys. Rev. D. 81, 104033 (2010).

12. Rasmussen, A., You, Y.-Z. & Xu, C. Stable gapless bose liquid phases without
any symmetry. Preprint at https://www.arxiv-vanity.com/papers/1601.08235/
(2016).

13. Bulmash, D. & Barkeshli, M. Generalized u(1) gauge field theories and fractal
dynamics. Preprint at https://arxiv.org/abs/1806.01855 (2018).

14. Prem, A., Pretko, M. & Nandkishore, R. M. Emergent phases of fractonic
matter. Phys. Rev. B 97, 085116 (2018).

15. Prem, A., Huang, S.-J., Song, H. & Hermele, M. Cage-net fracton models.
Phys. Rev. X 9, 021010 (2019).

16. Prem, A., Vijay, S., Chou, Y.-Z., Pretko, M. & Nandkishore, R. M. Pinch point
singularities of tensor spin liquids. Phys. Rev. B 98, 165140 (2018).

17. Slagle, K., Prem, A. & Pretko, M. Symmetric tensor gauge theories on curved
spaces. Annals of Physics 410, 167910 (2019).

18. Song, H., Prem, A., Huang, S.-J. & Martin-Delgado, M. A. Twisted fraction
models in three dimensions. Phys. Rev. B 99, 155118 (2019).

19. Slagle, K. & Kim, Y. B. Fracton topological order from nearest-neighbor
twospin interactions and dualities. Phys. Rev. B 96, 165106 (2017).

20. Slagle, K. & Kim, Y. B. Quantum field theory of x-cube fraction
topological order and robust degeneracy from geometry. Phys. Rev. B 96,
195139 (2017).

21. Slagle, K. & Kim, Y. B. X-cube model on generic lattices: Fracton phases and
geometric order. Phys. Rev. B 97, 165106 (2018).

22. Shirley, W., Slagle, K. & Chen, X. Foliated fracton order from gauging
subsystem symmetries. SciPost Phys. 6, 041 (2019).

23. Slagle, K., Aasen, D. & Williamson, D. Foliated field theory and
stringmembrane-net condensation picture of fracton order. Scipost Phys. 6, 43
(2019).

24. Pretko, M. Emergent gravity of fractons: Mach’s principle revisited. Phys. Rev.
D. 96, 024051 (2017).

25. Pretko, M. Higher-spin witten effect and two-dimensional fracton phases.
Phys. Rev. B 96, 125151 (2017).

26. Devakul, T., Parameswaran, S. & Sondhi, S. Correlation function diagnostics
for type-i fracton phases. Phys. Rev. B 97, 041110 (2018).

27. Devakul, T., You, Y., Burnell, F. & Sondhi, S. Fractal symmetric phases of
matter. Scipost Phys. 6, 7 (2019).

28. You, Y., Devakul, T., Burnell, F. & Sondhi, S. Subsystem symmetry protected
topological order. Phys. Rev. B 98, 035112 (2018).

29. You, Y., Devakul, T., Burnell, F. & Sondhi, S. Symmetric fracton matter:
Twisted and enriched. Annals of Physics 416, 168140 (2020).

30. You, Y., Devakul, T., Sondhi, S. & Burnell, F. Fractonic chern-simons and bf
theories. Phys. Rev. Research 2, 023249 (2020).

31. Weinstein, Z., Cobanera, E., Ortiz, G. & Nussinov, Z. Absence of finite
temperature phase transitions in the x-cube model and its zp generalization.
Annals of Physics 412, 168018 (2020).

32. Wang, J., Xu, K. & Yau, S.-T. Higher-rank non-abelian tensor field theory:
Higher-moment or subdimensional polynomial global symmetry, algebraic
variety, noether’s theorem, and gauge. Preprint at https://arxiv.org/abs/
1911.01804 (2019).

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00540-4 ARTICLE

COMMUNICATIONS PHYSICS |            (2021) 4:44 | https://doi.org/10.1038/s42005-021-00540-4 | www.nature.com/commsphys 5

https://archive.org/details/arxiv-cond-mat0602443
https://www.arxiv-vanity.com/papers/1601.08235/
https://arxiv.org/abs/1806.01855
https://arxiv.org/abs/1911.01804
https://arxiv.org/abs/1911.01804
www.nature.com/commsphys
www.nature.com/commsphys


33. Aasen, D., Bulmash, D., Prem, A., Slagle, K. & Williamson, D. J. Topological
defect networks for fractons of all types. Phys. Rev. Research 2, 043165 (2020).

34. Ma, H., Lake, E., Chen, X. & Hermele, M. Fracton topological order via
coupled layers. Phys. Rev. B 95, 245126 (2017).

35. Ma, H., Schmitz, A., Parameswaran, S., Hermele, M. & Nandkishore, R. M.
Topological entanglement entropy of fracton stabilizer codes. Phys. Rev. B 97,
125101 (2018).

36. Yan, H. Fracton topological order and holography. Preprint at https://arxiv.
org/abs/1807.05942 (2018).

37. Yan, H., Benton, O., Jaubert, L. D. & Shannon, N. Rank-2 u(1) spin liquid on
the breathing pyrochlore lattice. Phys. Rev. Lett. 124, 127203 (2020).

38. Yan, H. et al. Hyperbolic fracton model, subsystem symmetry, and
holography. Phys. Rev. B 99, 155126 (2019).

39. Schmitz, A., Ma, H., Nandkishore, R. M. & Parameswaran, S. Recoverable
information and emergent conservation laws in fracton stabilizer codes. Phys.
Rev. B 97, 134426 (2018).

40. Ma, H. & Pretko, M. Higher-rank deconfined quantum criticality at the lifshitz
transition and the exciton bose condensate. Phys. Rev. B 98, 125105 (2018).

41. Gromov, A., Lucas, A. & Nandkishore, R. M. Fracton hydrodynamics. Phys.
Rev. Research 2, 033124 (2020).

42. Wang, J. & Yau, S.-T. Non-abelian gauged fractonic matter field theory: Sigma
models, superfluids and vortices. Phys. Rev. Research 2, 043219 (2020).

43. Yuan, J.-K., Chen, S. & Ye, P. Fractonic superfluids. Phys. Rev. Research 2,
023267 (2020).

44. Nandkishore, R. M. & Hermele, M. Fractons. Annual Review of Condensed
Matter Physics 10, 295313 (2019).

45. Pretko, M., Chen, X. & You, Y. Fracton phases of matter. Int. J. Mod. Phys. A
35, 2030003 (2020).

46. Sous, J. & Pretko, M. Fractons from polarons and hole-doped
antiferromagnets: Microscopic models and realization. Preprint at https://
arxiv.org/abs/1904.08424 (2019).

47. Guardado-Sanchez, E. et al. Subdiffusion and heat transport in a tilted
twodimensional fermi-hubbard system. Phys. Rev. X 10, 011042 (2020).

48. Khemani, V., Hermele, M. & Nandkishore, R. Localization from hilbert space
shattering: From theory to physical realizations. Phys. Rev. B 101, 174204
(2020).

49. Pretko, M. & Radzihovsky, L. Fracton-elasticity duality. Phys. Rev. Lett. 120,
195301 (2018).

50. Gromov, A. Chiral topological elasticity and fracton order. Phys. Rev. Lett.
122, 076403 (2019).

51. Radzihovsky, L. & Hermele, M. Fractons from vector gauge theory. Phys. Rev.
Lett. 124, 050402 (2020).

52. Gromov, A. & Surówka, P. On duality between cosserat elasticity and fractons.
Scipost Physics 8, 65 (2020).

53. Pretko, M. & Radzihovsky, L. Symmetry enriched fracton phases from
supersolid duality. Phys. Rev. Lett. 121, 235301 (2018).

54. Kumar, A. & Potter, A. C. Symmetry-enforced fractonicity and
twodimensional quantum crystal melting. Phys. Rev. B 100, 045119 (2019).

55. Pretko, M., Zhai, Z. & Radzihovsky, L. Crystal-to-fracton tensor gauge theory
dualities. Phys. Rev. B 100, 134113 (2019).

56. Gromov, A. A duality between u (1) haah code and 3d smectic a phase.
Preprint at https://arxiv.org/abs/2002.11817 (2020).

57. Nguyen, D. X., Gromov, A. & Moroz, S. Fracton-elasticity duality of
twodimensional superfluid vortex crystals: defect interactions and quantum
melting. Scipost Phys. 9, 76 (2020).

58. Donnelly, R. J. Quantized Vortices in Helium II, Vol. 2 (Cambridge University
Press, 1991).

59. Neely, T., Samson, E., Bradley, A., Davis, M. & Anderson, B. P. Observation of
vortex dipoles in an oblate bose-einstein condensate. Phys. Rev. Lett. 104,
160401 (2010).

60. Freilich, D., Bianchi, D., Kaufman, A., Langin, T. & Hall, D. Real-time
dynamics of single vortex lines and vortex dipoles in a bose-einstein
condensate. Science 329, 1182–1185 (2010).

61. Sanvitto, D. et al. All-optical control of the quantum flow of a polariton
condensate. Nat. Photonics 5, 610–614 (2011).

62. Nardin, G. et al. Hydrodynamic nucleation of quantized vortex pairs in a
polariton quantum fluid. Nat. Phys. 7, 635–641 (2011).

63. Mamaev, A., Saffman, M. & Zozulya, A. Vortex evolution and bound pair
formation in anisotropic nonlinear optical media. Phys. Rev. Lett. 77, 4544
(1996).

64. Wiegmann, P. & Abanov, A. G. Anomalous hydrodynamics of
twodimensional vortex fluids. Phys. Rev. Lett. 113, 034501 (2014).

65. Lin, C. On the motion of vortices in two dimensions: I. existence of the
kirchhoff-routh function. Proc. Natl Acad. Sci. USA 27, 570 (1941).

66. Newton, P. K. The N-vortex Problem: Analytical Techniques, Vol. 145
(Springer Science & Business Media, 2013).

67. Aref, H. Point vortex dynamics: a classical mathematics playground. J. Math.
Phys. 48, 065401 (2007).

68. Saffman, P. G. Vortex Dynamic (Cambridge University Press, 1992).
69. Pretko, M. The fracton gauge principle. Phys. Rev. B 98, 115134 (2018).
70. Thouless, D. & Anglin, J. Vortex mass in a superfluid at low frequencies. Phys.

Rev. Lett. 99, 105301 (2007).
71. Kraichnan, R. H. & Montgomery, D. Two-dimensional turbulence. Rep. Prog.

Phys. 43, 547 (1980).
72. Aref, H., Newton, P. K., Stremler, M. A., Tokieda, T. & Vainchtein, D. L.

Vortex Crystals. Technical Report, Department of Theoretical and Applied
Mechanics (UIUC) (2002).

73. Fine, K., Cass, A., Flynn, W. & Driscoll, C. Relaxation of 2d turbulence to
vortex crystals. Phys. Rev. Lett. 75, 3277 (1995).

74. Schecter, D., Dubin, D., Fine, K. & Driscoll, C. Vortex crystals from 2d euler
flow: Experiment and simulation. Phys. Fluids 11, 905–914 (1999).

75. Pai, S., Pretko, M. & Nandkishore, R. M. Localization in fractonic random
circuits. Phys. Rev. X 9, 021003 (2019).

76. Khemani, V. & Nandkishore, R. Local constraints can globally shatter Hilbert
space: a new route to quantum information protection. Preprint at https://
www.arxiv-vanity.com/papers/1904.04815/ (2019).

77. Sala, P., Rakovszky, T., Verresen, R., Knap, M. & Pollmann, F. Ergodicity
breaking arising from hilbert space fragmentation in dipole-conserving
hamiltonians. Phys. Rev. X 10, 011047 (2020).

78. Moudgalya, S., Prem, A., Nandkishore, R., Regnault, N. & Bernevig, B. A.
Thermalization and its absence within krylov subspaces of a constrained
hamiltonian. Preprint at https://arxiv.org/abs/1910.14048 (2019).

79. Onsager, L. Statistical hydrodynamics. Il Nuovo Cim. (1943-1954) 6, 279–287
(1949).

80. Lundgren, T. & Pointin, Y. Statistical mechanics of two-dimensional vortices.
J. Stat. Phys. 17, 323–355 (1977).

81. Montgomery, D. & Joyce, G. Statistical mechanics of “negative temperature”
states. Phys. Fluids 17, 1139–1145 (1974).

82. Eyink, G. L. & Sreenivasan, K. R. Onsager and the theory of hydrodynamic
turbulence. Rev. Mod. Phys. 78, 87 (2006).

83. Volovik, G. & Dotsenko, V. Poisson brackets and continuous dynamics of the
vortex lattice in rotating he-ii. JETP Lett. 29. (1979).

84. Bogatskiy, A. Vortex flows on closed surfaces. J. Phys. A: Math. Theor. 52,
475501 (2019).

85. Yu, X. & Bradley, A. S. Emergent non-eulerian hydrodynamics of quantum
vortices in two dimensions. Phys. Rev. Lett. 119, 185301 (2017).

86. Hally, D. Vortex Motion in Thin Films. Ph.D. thesis, Univ. British Columbia
(1980).

87. Kimura, Y. Vortex motion on surfaces with constant curvature. Proc. R. Soc.
Lond. Ser. A: Math., Phys. Eng. Sci. 455, 245–259 (1999).

88. Hally, D. Stability of streets of vortices on surfaces of revolution with a
reflection symmetry. J. Math. Phys. 21, 211–217 (1980).

89. Dritschel, D. G. & Boatto, S. The motion of point vortices on closed surfaces.
Proc. R. Soc. A: Math., Phys. Eng. Sci. 471, 20140890 (2015).

90. Slagle, K., Prem, A. & Pretko, M. Symmetric tensor gauge theories on curved
spaces. Ann. Phys. 410, 167910 (2019).

91. Boatto, S. & Koiller, J. Vortices on closed surfaces. Fields Institute
Communications 73 (2015).

92. Koiller, J. & Boatto, S. Vortex pairs on surfaces. In AIP Conference
Proceedings, vol. 1130, 77–88 (American Institute of Physics, 2009).

93. Reichhardt, C. & Reichhardt, C. J. O. Dynamics of magnus-dominated particle
clusters, collisions, pinning, and ratchets. Phys. Rev. E 101, 062602 (2020).

Acknowledgements
We thank A. Abanov, A. Bogatskiy, S. Moroz for their comments on the manuscript; and
A. Bogatskiy for bringing the results of 84 to our attention. A.G. and D.D. were supported
by Brown University.

Author contributions
A.G. conceived the work. A.G. and D.D. performed the calculations and wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42005-021-00540-4.

Correspondence and requests for materials should be addressed to D.D. or A.G.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00540-4

6 COMMUNICATIONS PHYSICS |            (2021) 4:44 | https://doi.org/10.1038/s42005-021-00540-4 | www.nature.com/commsphys

https://arxiv.org/abs/1807.05942
https://arxiv.org/abs/1807.05942
https://arxiv.org/abs/1904.08424
https://arxiv.org/abs/1904.08424
https://arxiv.org/abs/2002.11817
https://www.arxiv-vanity.com/papers/1904.04815/
https://www.arxiv-vanity.com/papers/1904.04815/
https://arxiv.org/abs/1910.14048
https://doi.org/10.1038/s42005-021-00540-4
http://www.nature.com/reprints
www.nature.com/commsphys


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00540-4 ARTICLE

COMMUNICATIONS PHYSICS |            (2021) 4:44 | https://doi.org/10.1038/s42005-021-00540-4 | www.nature.com/commsphys 7

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsphys
www.nature.com/commsphys

	Vortices as fractons
	Results and discussion
	Vortices
	Conservation laws
	Traceless Scalar Charge Theory (TSCT)
	Mobility constraints
	Statistical mechanics
	Vortex hydrodynamics
	Collective field theory of vortices
	Curved space
	Conclusions

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




