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How creating one additional well can generate
Bose-Einstein condensation
Mihály Máté1,2, Örs Legeza1, Rolf Schilling3, Mason Yousif 4 & Christian Schilling4,5✉

The realization of Bose-Einstein condensation in ultracold trapped gases has led to a revival of

interest in this fascinating quantum phenomenon. This experimental achievement necessi-

tated both extremely low temperatures and sufficiently weak interactions. Particularly in

reduced spatial dimensionality even an infinitesimal interaction immediately leads to a

departure to quasi-condensation. We propose a system of strongly interacting bosons, which

overcomes those obstacles by exhibiting a number of intriguing related features: (i) The

tuning of just a single control parameter drives a transition from quasi-condensation to

complete condensation, (ii) the destructive influence of strong interactions is compensated

by the respective increased mobility, (iii) topology plays a crucial role since a crossover from

one- to ‘infinite’-dimensionality is simulated, (iv) a ground state gap opens, which makes the

condensation robust to thermal noise. Remarkably, all these features can be derived by

analytical and exact numerical means despite the non-perturbative character of the system.
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Bose–Einstein condensation (BEC) is one of the most strik-
ing quantum phenomena in nature1–4. While its theoretical
prediction dates back almost one hundred years ago it has

more recently seen a revival of interest due to its realization in
trapped gases5–7. The accurate study of BEC by theoretical and
computational approaches particularly for systems with strong
quantum correlations is rather challenging. This has been the
reason why most studies of BEC so far were concerned with
weakly interacting bosons (corresponding to the experimental
situation for ultracold gases) or even ideal Bose gases, eventually
allowing for feasible mean-field approaches. Prime examples are
the Bogoliubov theory8 for uniform systems, Gross–Pitaevskii
theory9–11 for general inhomogeneous systems, and perturbation
theoretical approaches12–18. Although these widely used
approaches have led to a deeper understanding of BEC, their
range of validity is limited. To go beyond that limitation, various
methods were developed19–22.

Since the experimental realization of BEC, the respective field
of ultracold gases has become one of the most exciting fields of
research with a fruitful interplay between theory and experiment.
It allowed for the experimental verification of numerous other
theoretical predictions as well, stimulated further theoretical
investigations of trapped particles19, and even revealed phe-
nomena not observed before such as the crossover from BEC-
superfluidity to BCS-superconductivity23–26. One of the most
promising recent avenues has been the study of effectively one-
dimensional quantum systems27–33. Their most striking differ-
ence to three-dimensional systems is probably the absence of
BEC: already an infinitesimally weak interaction between the N
bosons leads to a “sublinear” behavior of the number of con-
densed bosons, N0(N) ~Nα34,35, even at zero temperature, for
homogeneous gases as well for gases in a harmonic trap and
regardless of the form of the interaction35–42. A prominent sys-
tem giving rise to this phase called “quasi-condensation”35 is the
Lieb–Liniger model43,44, a ring system with N spinless bosons
interacting via a δ-potential. Tuning the coupling constant to
infinity leads to impenetrable bosons (Tonk–Girardeau gas)45

with the proven scaling N0ðNÞ � ffiffiffiffi
N

p
34.

Thermodynamic phase transitions (at finite temperatures) in D=
3 dimensions have been studied for more than a century. However,
the study of quantum phase transitions (at zero temperature)46, and
particularly of the entanglement close to that transition47,48 have
attracted much attention in recent years, only. The latter studies
were performed mostly for low-dimensional lattice models. They
have revealed a striking similarity between the behavior of the order
parameter and of quantum informational quantities, like entangle-
ment entropy. As discussed above, at zero-temperature an inter-
acting Bose gas exhibits two qualitatively different phases, a quasi-
condensate in D= 1 and a true BE-condensate in D ≥ 3. Therefore,
it is of interest to search for a model that exhibits a transition (or a
crossover) between these two phases, and in particular, allows to
check whether this special transition has common properties with
general quantum phase transitions.

BEC was explored in cylindrical or toroidal trap geometries,
both experimentally27–33 and theoretically49–51. But, changing the
radial dimension of the confinement, neither the transition from
the sublinear N-dependence of N0(N) of the quasi-condensate to
the linear dependence of the true condensate, nor its entangle-
ment properties have been investigated. The only systematic
study of such a transition was performed for a one-dimensional
Bose gas in a harmonic trap52. However, that transition occurs
only at temperatures T > 0.

It is the challenge of the present work to propose and inves-
tigate a lattice model for strongly interacting bosons that allows
one to drive such a transition by changing just a single parameter,

s/t, which is the ratio of the model’s two hopping rates s and t, as
explained below. One of our major results is to establish by this
model a mechanism which can generate “infinite” range hopping
by increasing s/t. This is important since enhancing the boson’s
mobility allows overcompensating the destructive effects of the
repulsive interactions, leading finally to maximal possible con-
densation, despite infinitely strong repulsion. A further important
feature of our model is the generation of an excitation gap in the
N-particle spectrum for s/t > 0. This makes BEC even robust to
thermal noise and quantum fluctuations and thus may allow
experimentalists to overcome the typical obstacles faced while
realizing BEC. The other important result concerns the applica-
tion of tools from quantum information theory. We show that the
mutual information possesses the qualitatively similar depen-
dence on s/t as the number N0(N) of condensed bosons. This
supports the connection between the behavior of an order para-
meter and of entanglement at a quantum phase transition even
for the transition (or crossover) from a quasi-condensate to a
true one.

All these key findings will be derived by analytical or exact
numerical means despite the nonperturbative character of our
system.

Results
Model Hamiltonian. To motivate our model, let us first recall
that the possible presence of BEC depends in general not only on
the spatial dimensionality and temperature but also on the ratio
between kinetic and interaction energy. In the case of systems,
which are inhomogeneous, e.g., due to the presence of an external
field or disorder, the occurrence of BEC will also depend on these
quantities. Concerning the ratio between kinetic and interaction
energy, lattice systems have the great advantage that the kinetic
energy can be manipulated by varying the hopping range between
the lattice sites. The most prominent lattice model for bosons is
the widely studied Bose–Hubbard model53

Ĥ ¼ �
X
i;j

tijb
y
i bj þ U

X
i¼1

n̂iðn̂i � 1Þ; ð1Þ

where byi ; bi creates/annihilates a spinless boson at site i, n̂i � byi bi
and tij is the hopping rate between sites i and j. It was shown that
the Bose–Hubbard model can be experimentally realized by
ultracold bosonic atoms in an optical lattice54.

The conflict between interaction and mobility is maximized in
the limit of strong interactions U→∞ in which the bosons
become hard-core55,56. By employing respective hard-core boson
(HCB) creation(hyi ) and annihilation operators(hi) (1) takes the
compact form Ĥhc ¼ �P

i;jtijh
y
i hj. Particularly the case of HCBs

makes clear the important role of the hopping range, since for
infinite-range hopping (a kind of mean-field limit53) HCBs
exhibit BEC even at finite temperatures, despite their infinitely
strong repulsion57–59.

Moreover, the effect of the interaction on BEC is distinctively
destructive in one-dimensional systems. At zero temperature even
an infinitesimally weak interaction already leads to a departure
from BEC to the phase of quasi-condensation. This raises a
fundamental question which our work shall answer in an
affirmative and constructive way: after having confined a 3D
Bose gas to one dimension, is it possible to tweak in an
experimentally feasibly way this one-dimensional system with the
effect of enhancing the mobility of the interacting bosons to
reintroduce BEC? From a general point of view, one is
immediately tempted to negate this question. The hopping
amplitudes tij namely resemble the overlap of Wannier orbitals at
sites i, j which in turn decays exponentially as a function of the

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00533-3

2 COMMUNICATIONS PHYSICS |            (2021) 4:29 | https://doi.org/10.1038/s42005-021-00533-3 | www.nature.com/commsphys

www.nature.com/commsphys


spatial separation ∣i− j∣. Screening effects reduce the hopping
even further and eventually motivate the common restriction of tij
in the Bose–Hubbard model to just nearest neighbors. The
potential physical significance of long-range hopping has
motivated experimentalists in recent years to realize at least
effectively hopping terms beyond nearest neighbors. Despite a
remarkable effort, the regime of infinite-range hopping has been
out of reach but only the typical decay of tij could be slowed down
to an algebraic dipolar- and van der Waals-type one60,61. It will
be one of our key achievements to propose a model that
eventually would allow one to enhance mobility even to infinite-
range.

In contrast to the rather involved experimental realization of
algebraically decaying hopping rates our proposal to realize
“infinite”-range hopping will be surprisingly simple. As it is
illustrated in Fig. 1, we consider N HCBs on a lattice consisting of
a ring with d sites, lattice constant a, and one additional site at its
center. The ring gives rise to hopping between nearest neighbors
at a rate t > 0. The crucial point is now that the ring’s topology
allows hopping between the central site and any ring site at a rate
s ≥ 0. Accordingly, the central site has an effect similar to an
impurity, making the lattice inhomogeneous.

We remind the reader that proposing and studying this model
shall be seen as one of our key achievements. It is also worth
noticing that various other studies of BEC for inhomogeneous
lattices differ significantly from ours. They either consider the
rather trivial case of ideal bosons62–68 or restrict to the mean-field
regime69,70. At the same time, our model could be particularly
appealing to experimentalists since the underlying graph emerges
from a Mexican hat potential (see below) and HCBs can be
realized experimentally31,71 by tuning the interactions at the
Feshbach resonance72–75.

Accordingly, the Hamiltonian of our proposed model of
bosons with hard-core interaction reads

Ĥ ¼ �t
Xd
i¼1

½hyi hiþ1 þ hyiþ1hi� � s
Xd
i¼1

½hyi hc þ hychi� ð2Þ

where hyc ; hc denote the corresponding operators for the central
site. For s/t→ 0, Ĥ reduces to the pure ring-model (left of Fig. 1)
and the limit s/t→∞ leads to the star-model (right of Fig. 1). The
solution of the eigenvalue problem for these two limiting cases is
known. For s= 0 it follows from the solution for impenetrable
bosons43–45 which only exhibits quasi-condensation, and s=∞
was solved in ref. 76 proving the existence of true BEC with
maximal possible number N0(N, d)=N(d−N+ 1)/d of con-
densed bosons. For finite values of s/t the Hamiltonian (2)
interpolates between the ring-lattice and the star-lattice (cf.
Fig. 1). Hence, changing the single parameter s/t allows us to

investigate in a systematic way the crossover from the regime of
quasi-condensation to maximally possible condensation, even-
tually leading to a number of remarkable insights.

Spectral properties, BEC, and entanglement. The present sec-
tion contains only the crucial steps. Technical details can be
found in “Methods” and particularly in the “Supplementary
Methods.”

Since the central site couples to the (N− 1)- and N-particle
state-space on the ring, a simple and fully analytic solution does
not exist. Yet, after implementing a number of steps, the
eigenvalue problem for Hamiltonian (2) can be rewritten as

1 ¼ s2FðNÞ
d ðE; fAνgÞ ð3Þ

where E is the eigenvalue and {Aν} are amplitudes of the
unperturbed (i.e., corresponding to s= 0) N-particle eigenstates
ψ0
νðNÞ�� �

on the ring. Although this equation cannot be solved
analytically for the entire regime of s, it allows us to derive in a
nontrivial way important qualitatively correct features of the
spectrum. The unperturbed (N− 1)- and N-particle spectrum
forms a band of discrete levels (see Fig. 2a) which becomes
continuous for d→∞. The hopping between the central site and
the ring introduces a “hybridization” of these two spectra leading
on one hand to a shift of order 1/d of the unperturbed band-
levels. On the other hand, some energy levels (marked by crosses)
of the smaller (N− 1)-particle band (assuming n=N/d < 1/2,
which is not a restriction due to the particle-hole duality) are
found to disappear. These levels, however, reappear as new
discrete eigenvalues symmetrically below and above the perturbed
N-particle band(see open circles in Fig. 2b). The larger s and N,
the more of those new discrete energy levels occur. As a matter of
fact, they follow from the eigenvalues of an effective Hamiltonian

for N HCBs with “infinite”-range hopping: Ĥ
eff ¼ ~s2ð1=dÞPd

i;j¼1 h
y
i hj. Here, the parameter ~s ¼ ðs=tÞ ffiffiffi

d
p

is a scaled
dimensionless hopping rate. This mapping of the original model
to an effective one holds for ~s � 2

ffiffiffi
2

p
π=

ffiffiffi
d

p
for the diluted gas

(n≪ 1) and in the case of finite n for ~s � ð4=πÞffiffiffi
d

p
sinðπnÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nð1� nÞp
.

Most importantly, these findings imply also the opening of an
energy gap ΔE ¼ E0

low � E0 between the perturbed ground state
energy E0 and E0

low, the lower edge of the N-particle band:

ΔE ’ jEF=2j½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ~s2d nð1� nÞ=ðEF=2tÞ2
�q

� 1� : ð4Þ

Also, the number N0 of condensed HCBs can be derived
analytically since it is related to the largest eigenvalue of Heff.

Fig. 1 Topology of the lattice. An interpolation between the 1D regime and the “star” through the “wheel”.
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We obtain

N0 ’ N½ð1� nÞ � jβj2ð1� 2nÞN�1� ð5Þ
where the prefactor ∣β∣2 of the 1/N-correction is given in the
Supplementary Eq. (S30).

In order to support these analytical results and to extend those
for finite d to small and intermediate values of ~s we have
performed large-scale density matrix renormalization group
computations (DMRG)77–79. The corresponding results together
with the analytical ones are presented in Figs. 3 and 4. The
log–log representation of the gap ΔEð~sÞ in Fig. 3 reveals a
distinctive crossover from a ~s2-dependence for ~s � 1 to the linear
dependence on ~s for ~s � 1. For the diluted gas, i.e., n≪ 1, the
analytical and DMRG results in the ~s2- and ~s-regime are in good
agreement. When the density is increased this agreement remains
excellent in the linear regime while it gets worse in the
complementary range. Figure 4 illustrates clearly for the diluted

gas (Fig. 4a) and for higher densities (Fig. 4b) the crossover from
a quasi-condensate with N0 �

ffiffiffiffi
N

p
to the maximally possible

condensation N0(N, n)≃N(1− n). The deviation from theffiffiffiffi
N

p
-dependence for small ~s and higher densities (see lower

panel) is an effect of the lattice-discreteness. In the regime in
which the mapping to the effective Hamiltonian is valid (see
above) the analytical and DMRG results agree well.

To explore a possible relationship between BEC and the
entanglement structure of the ground state we have used DMRG
for calculating the mutual information between the central site c

Fig. 2 Schematic representation of the unperturbed and perturbed spectrum for n≤ 1/2. a The unperturbed band spectrum of (N− 1) hard-core bosons
(red dashed lines) and N hard-core bosons (blue solid lines). The crosses mark those levels which disappear under the perturbation. b The perturbed
spectrum consisting of the shifted unperturbed levels (dashed red and solid blue lines) and the crosses mark those levels of the unperturbed (N− 1)-
particle spectrum which has disappeared. The open circles are the new levels generated by the perturbation.

Fig. 3 Excitation gap. Log–log plot for the excitation gap as a function of ~s
for d= 199 and various filling factors n. Results from density matrix
renormalization group calculations (symbols) and the analytical result (Eq.
(4)) (solid lines). The dashed-dotted and dashed lines represent slope two
and one, respectively. Fig. 4 Number of condensed bosons. a N0 as a function of log ð~sÞ for fixed

low-density n≃ 0.05 and various site numbers d. b N0 as a function of
log ð~sÞ, various numbers of particles N, and a fixed number of sites d= 199.
The dots on the vertical axis represent N(1− n). Symbols: results from
density matrix renormalization group calculations, dashed lines: a guide for
the eye, solid lines: analytical result (Supplementary equation S28). The
dotted lines mark the asymptotic values for finite N, s= 0, d→∞ obtained
by the exact numerical calculation of a Toeplitz determinant39.
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and any ring site i (Ii∣c) and between two ℓth nearest neighbor ring
sites (Ii∣i+ℓ) (see “Methods”). The corresponding results for d=
199 and n≃ 0.05 are shown in Fig. 5. The change in the respective
pattern related to the crossover from quasi-BEC to genuine BEC
is clearly visible through the mutual information, as well. The
correlation between the central and any ring site, Ii∣c, vanishes for
~s small while it saturates to a finite value in the limit of large ~s
when the model exhibits “infinite”-range hopping. Iijiþ‘ saturates
also with increasing ~s to a constant value for all ℓ demonstrating
the growth of long-range correlations. This relates to the
generation of BEC. For ~s ¼ 0, Ii∣i+ℓ decays algebraically with
increasing ℓ which reflects the algebraic dependence of the quasi-
condensate on N. Whereas for finite values of ~s its decay becomes
exponential as the gap opens, and saturates to finite value for very
large ℓ values.

Potential experimental realization. As a possible experimental
realization of our model (2) we propose in a first step to confine N
ultracold bosonic atoms into two dimensions subject to a
Mexican-hat-type potential V(x, y) with d local wells (Fig. 6a) in
complete analogy to several recent years’ experiments80–84. Then,
one may tune the interaction at the Feshbach resonance to realize
HCBs in the same way as reported in ref. 31 for cigar-shaped

confinement to realize quasi-condensation of HCB with N0(N)∝
N1/2. Next, the creation of a local well at the hat’s center (Fig. 6b)
and increasing its depth more and more would strongly enhance
the mobility of the HCBs due to their possible transitions back
and forth between any ring-well and the central one. This would
significantly change the physical behavior and BEC would occur
with N0(N) ~N. In order for this to happen already for finite d it
must be s=t � 2

ffiffiffi
2

p
π=d in case of a diluted gas (see the previous

section) which is the regime relevant for ultracold gases. The
hopping occurs due to tunneling between the corresponding
wells. Let (Vr, lr= a) and (Vc, lc= ad/(2π)) denote the potential
barrier and tunneling distance, respectively, between two adjacent
ring-wells and between a ring-well and the central one. Use of the
WKB tunneling rate yields the estimate s=t � ðγc=γrÞ exp
½�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma2=_2

q
ð ffiffiffiffiffiffi

Vc
p

d=ð2πÞ � ffiffiffiffiffiffi
Vr

p Þ� withm the particle’s mass and

γα, α= c, r the so-called attempt frequency related to the zero-
point oscillation frequency in the corresponding well. For
instance, if d= 79 and N= 4 (one data set in Fig. 4a) “BEC”-like
behavior should occur for s/t > 1. This can be satisfied if Vc/Vr ≈
(2π/d)2 or if a compared to _=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m maxfVc;Vrg

p
is small enough,

provided γc/γr ≈ 1.
If the trap potential in Fig. 6 is chosen such that it represents a

good experimental realization of the “wheel” lattice (cf. Fig. 1)
there is true condensation for sufficiently large s/t. In particular,
since only a single one-particle state (zero-momentum state) is
macroscopically occupied, no fragmented condensation exists per
definition. This is consistent with the expectation that homo-
geneous bosonic systems with purely repelling pair interactions
do not exhibit fragmented condensation4. Although the presence
of the central well (central site) makes the system inhomogeneous
it can not generate fragmentation, because it accommodates
maximally one HCB, only. But increasing the width of the central
well in Fig. 6b such that it can accommodate a macroscopic
number of bosons of an ultracold gas, a situation similar to the
double-well-like trap potential in one dimension occurs85. As
shown in that work, fragmented condensation may then occur if
the barrier height of the double-well is high enough.

It is worth noticing that according to the DMRG results (see
also Fig. 4) one would not need to realize a macroscopically large
ring to observe our crossover. Yet, in the case of experimentalists
could even realize our model with a huge number d of sites on a
ring of fixed size (i.e., the limit d→∞, a→ 0 with ad fixed) this
would generate a true Mexican-hat potential with continuous
rotational invariance and the HCBs would become a
Tonks–Girardeau gas. Again, creating a central well would
generate genuine Bose–Einstein condensation.

Fig. 5 Quantum informational quantity. Two-site correlation measured in
terms of the mutual information Ii∣c between the central site and a ring site
(red stars), and Ii∣i+ℓ for two sites on the ring separated by distance ℓ= 1, 3,
10, 99 for d= 199 and n≃ 0.05 (other symbols). The dashed and dotted
lines are a guide for the eye.

Fig. 6 Mexican-hat-type trap potential. a Realization of the ring lattice for d= 10 by a Mexican-hat-potential. b Realization of the wheel lattice for d= 10
by a Mexican-hat-like potential with a local well at its center. Loading hard-core bosons into the potential landscape in (a) and creating a local well as
shown in (b) generates a crossover from quasi to complete Bose–Einstein condensation.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00533-3 ARTICLE

COMMUNICATIONS PHYSICS |            (2021) 4:29 | https://doi.org/10.1038/s42005-021-00533-3 | www.nature.com/commsphys 5

www.nature.com/commsphys
www.nature.com/commsphys


Discussion
We proposed and comprehensively studied a physical model of
strongly interacting bosons that allows one to drive a non-trivial
transition from quasi-condensation to maximal BEC. It is particu-
larly appealing that this necessitates the tuning of just a single
control parameter which changes the underlying topology in such a
distinctive way that the “infinite” range hopping model is simulated.
The enhanced mobility of the bosons then compensates for the
destructive effects of the strong interaction to generate BEC.
Without solving the model’s eigenvalue equation exactly, our kind of
analytical approach (see the section “Spectral properties, BEC, and
entanglement” above and also the “Supplementary Methods”) allows
us to show on a qualitative level why an excitation gap occurs in the
N-particle spectrum, which usually is highly demanding. Similarly
to, e.g., superconductivity, the quantum Hall effect, and the Haldane
phase the existence of such a gap has an enormous influence on the
physical behavior, e.g., making the BE-condensate robust to thermal
noise and perturbations in general.

It is worth highlighting the striking potential of our
mechanism for generating BEC. As a matter of fact, it is con-
ceptually quite different from the well-known generation of
BEC at finite temperatures for non-interacting bosons. The
latter is either merely due to the opening of a gap in the “one-
particle” spectrum or deformation of the density of states (in
analogy to the transition from D ≤ 2 to D= 3)62–68. The
same effect applies to the experimental27–33 and theoretical
studies49–51 in which the cylindrical or toroidal confinement is
relaxed to reach the mean-field regime. In our system, however,
it is the interplay between mobility and interaction within the
“non-perturbative” regime which generates genuine BEC (see
the rather involved derivation in the Supplementary Methods).
The non-trivial influence of the interaction is also well illu-
strated by the analytical result for the ground state gap (Eq. (4))
which in the regime of maximal BEC differs from one of the
non-interacting bosons by the crucial factor

ffiffiffiffiffiffiffiffiffiffiffi
1� n

p
. Remark-

ably, 1− n is nothing else than the universal reduction of the
maximal possible degree of condensation due to the hard-core
constraint76, which is the quantum depletion. In the case of
finite on-site interactions, this depletion factor ν(n) is expected
to interpolate between both extremal cases of hard-core and
ideal bosons, 1− n ≤ ν(n) ≤ 1. This would provide a remarkable
exact relation between the ground state gap, quantum deple-
tion, and the interaction strength of the ultracold atoms. Since
the latter can systematically be tuned at the Feshbach reso-
nance72–75 this would open an avenue for steering ground state
gaps and controlling the number of bosons in BEC.

Finally, inspired by the fruitful interplay of theory and
experiments in the field of ultracold gases our work based on
analytical and exact large-scale DMRG calculations shall be
understood as a proposal to the experimentalists as well. Our
model could be particularly appealing since the underlying graph
emerges from a Mexican-hat-type potential and the entire tran-
sition can be driven by tuning just a single control parameter. It is
then exactly the respective central site, which can be probed to
confirm that transition. At the same time, this would also exploit
the fruitful link47,48 between quantum phase transitions and
entanglement or related promising quantum informational the-
oretical concepts, as illustrated in Fig. 5.

Methods
Eigenvalue problem. The central site generates for the N-particle state a super-
position ΨNj i ¼ α ϕN

�� �
r
	 0j ic þ β φN�1

�� �
r
	 1j ic of an N- and (N− 1)-particle

ring-state. Expansion of these states with respect to the unperturbed (N− 1)- and
N-particle ring-states allows decoupling of the original eigenvalue problem. This
leads to a nonintegrable eigenvalue problem on the ring itself. Straightforward
manipulation allows deriving Eq. (3). For details see the Supplementary Methods.

Density matrix renormalization group. The DMRG calculations were performed
for d ≤ 199 and N ≤ 98. In the DMRG procedure, we have performed calculations
using the dynamic block state selection approach86. We have set a tight error
bound on the diagonalization procedure, i.e., we set the residual error of the
Davidson method to 10−9 and used ten DMRG sweeps. We have checked that the
various quantities of interest are practically insensitive to the bond dimension
being larger than 1024.

Besides calculating energy eigenvalues and the one-(ρi) and two-site(ρij)
reduced density matrices we have also determined one- and two-site von Neumann
entropies si and sij, respectively, as well as the two-site mutual information, Ii∣j,
given as Ii∣j= si+ sj− sij87,88. Here si ¼ �Trρiln ρi and sij ¼ �Trρijln ρij .

Data availability
The data used in this manuscript are available from the corresponding author upon
reasonable request.
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