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Large-scale Ising emulation with four body
interaction and all-to-all connections
Santosh Kumar1,2, He Zhang1,2 & Yu-Ping Huang1,2✉

Optical Ising machines with two-body interactions have shown potential in solving combi-

natorial optimization problems which are extremely hard to solve with digital computers. Yet,

some physical systems cannot be properly described by only two-body interactions. Here, we

propose and demonstrate a nonlinear optics approach to emulate Ising machines containing

many spins (up to a million in the absence of optical imperfections) and with tailored all-to-all

two and four-body interactions. Our approach employs a spatial light modulator to encode

and control the spins in the form of the binary-phase values, and emulates the high-order

interaction with frequency conversion in a nonlinear crystal. By implementing adaptive

feedback, the system can be evolved into effective spin configurations that well-approximate

the ground-states of Ising Hamiltonians with all-to-all connected many-body interactions.

Our technique could serve as a tool to probe complex, many-body physics and give rise to

exciting applications in big-data optimization, computing, and analytics.
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A wide range of modern applications across biology1,
medicine2, finance3, and social networks4 benefit from
efficient processing and optimization of big data with

complex structures and correlations. However, many such tasks
are non-deterministic polynomial-time (NP) hard, which could
take existing supercomputers years to solve5. In this challenge,
intense research efforts are underway to pave alternative
approaches for computing and information processing. Among
them, Ising machines have been shown to offer viable solutions
for important NP hard problems such as cut with maximum
number of edges (MAX-CUT) in a graph6, protein folding7, and
traveling salesman8, among others9–15. To this end, a variety of
Ising machines have been demonstrated in (effective) spin sys-
tems of trapped atoms16, polariton condensates17, and super-
conducting circuits18. Some other artificial Ising machines have
also been implemented using coupled oscillators19–21, nanopho-
tonic waveguides22,23, randomly coupled lasers24,25, and time-
multiplexed optical parametric oscillators26,27.

For the tasks of finding the ground states of many-body
Hamiltonians, photonic systems enjoy the distinct advantages of
high connectivity and speed28–30. For example, a fast coherent
Ising machine can be realized in a looped optical parametric
oscillator with temporally multiplexed pulses31,32, albeit with
limited spin numbers31 or relying on photodetection and elec-
tronic feedback to emulate the spin–spin interaction33,34. In
contrast, a linear-optical Ising machine based on spatial light
modulation was shown to subtend about 80,000 spins by coding
them as the binary phases of pixels on a spatial light modulator
(SLM)35. The far-field optical power of a modulated beam gives
the expected energy of spin–spin interaction. The relatively
simple setup, yet high connectivity and scalability make this
approach attractive to Ising machines with fully connected two-
body interaction.

Yet, there are physical systems and numeric models whose
dynamics cannot be fully captured by two-body interactions, and
proper descriptions of multi-body interaction are required36–40.
Some of the NP hard problems are rooted in the multi-body
interactions present in the spin system. For example, the Boolean
satisfiability (k-SAT) problem is NP hard when k ≥ 3, where k
prescribes the order of interactions or constrains41. This poses a
significant computational challenge, whose complexity and
volume exceed by far that of Ising problems with only two-body
interaction, even for a moderate number of spins42,43. Although a
small class of many-body interaction can be decomposed onto a
series of two-body interactions via some recursive or algebraic
means44–46, they often subject to strict constraints47,48 or require
tedious error corrections49,50. For simulating complex systems
and processing data with high-order correlation, suitable Ising
machines remain desirable that support simultaneously high
connectivity, multi-body interaction, and a large number of spins.

In this study, we propose and experimentally demonstrate such
an Ising machine hosting adjustable two-body interaction, four-
body interaction, and all-to-all connections over a large number
of spins. It realizes the spins as the binary phases of wavelets in a
coherent laser beam, and implements effective multi-body
interaction through nonlinear frequency conversion. Using
SLM’s (or equivalently, digital micromirror devices (DMDs)), one
million spins are possible at present, although optical imperfec-
tions must be taken into account and could limit the actual
accessible spin number in practice. The fully connected two-body
interaction is emulated with the optical power of the modulated
light in the Fourier plane. The four-body interaction, also fully
connected, is realized effectively by passing the modulated light
through a lithium-niobate crystal in the Fourier plane for second
harmonic (SH) generation. By simultaneously measuring the
optical powers of the modulated light and its SH coupling into a

fiber, complex Hamiltonians with all-to-all connected two-body
and four-body interactions can be emulated over a large number
of spins. Through feedback control, the system can be evolved
into the vicinity of the ground state of its Hamiltonian, exhibiting
ferromagnetic, paramagnetic, spin glass, and other novel non-
linear susceptibility phase transitions.

The present Ising emulator could pave a pathway to otherwise
inaccessible territories of big data analytics and quantum
simulation39,40. The high-order, many-body interaction can also
serve as powerful activation functions for all optical machine
learning51,52. For example, an immediate application is to use this
machine as the q-state Potts model with two-body and four-body
interactions on a square lattice53. Finally, while the current setup
uses SH generation, even richer physics and controllability can be
achieved by using other nonlinear optical processing like sum-
frequency generation54, and four-wave mixing55, where other
types of spin interaction and connection can be engineered.

Results
Theoretical analysis. The basic idea of the present Ising machine
is illustrated in Fig. 1, which emulates chemical potential, two-
body interaction, and four-body interaction over a large number
of spins. Each spin is encoded as the binary phase of a pixel on a
SLM. The total chemical potential energy is represented by the
weighted sum of all spins. To realize the interactions, a coherent
Gaussian pump beam is reflected off the SLM, focused using a
Fourier lens to a nonlinear crystal for SH generation. The
resulting beams at the original fundamental wavelength and the
new SH wavelength are then separated at a dichroic mirror and
captured by optical fibers. The pump power in the fiber is then
measured to emulate the energy associated with spin–spin
interaction, and that of the SH beam is to capture the four-body
interaction among spins. Incorporating all three, a Hamiltonian
describing the chemical potential, two-body interaction, and four-
body interaction can be effectively constructed.

To derive the effective Hamiltonian, we consider a Gaussian
input pump beam of wavelength λp, peak amplitude E0, and beam
waist wp. It shines a SLM whose phase mask consists of pixels
(m, n) centered around ðx0m; y0nÞ, each giving 0 or π phase
modulation. The transverse electric field immediately after the
SLM is approximately35

Epðx0; y0Þ ¼
XN
m¼1

XN
n¼1

ξmnσmn
1
a2

Π
x0 � x0m

a

� �
Π

y0 � y0n
a

� �
: ð1Þ

Here ξmn ¼ E0 exp �ðx02
m þ y

02
n Þ=w2

p

h i
is the amplitude at pixel

(m, n), Π is the unity rectangular function, and σmn= ±1 for the
0/π binary phase modulation.

The electric field is then transformed using a Fourier lens of
focal length F and coupled into a periodic-poled lithium niobate
(PPLN) crystal of length L, so that it reads at the center of the

Fig. 1 Illustration of a nonlinear optical Ising machine. The spins are
encoded as the binary phase on a spatial light modulator (SLM). H1, H2, and
H4 represents the chemical potential, all-to-all two-body and four-body
interactions, respectively. In our case, three-body interactions (H3) are not
present. The pump and second harmonic beams are shown in red and blue
colors, respectively.
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crystal (z= 0):

Epðx; y; z ¼ 0Þ

¼
XN
m¼1

XN
n¼1

ξmnσmnηmnsinc
axπ
λpF

 !
sinc

ayπ
λpF

 !
expðiκpzÞ:

ð2Þ

Here, ηmn ¼ exp �2πiðxx0m þ yy0nÞ=λpF
h i

, κp= (2πnp)/λp, and np
is the refractive index of the pump in the PPLN crystal. For
simplification, we introduce contracted notations ξi and σi, with
ξi=m+(n−1)N≡ ξmn, and σi=m+(n−1)N≡ σmn, with i= 1, 2, . . . N2 to
index the N ×N spins (pixels). In our setup, only near-axis light is
fiber coupled and measured, so that sinc(axπ/λpF), sinc
(ayπ/λpF) ≈ 1, giving

Epðx; y; zÞ �
XN2

i¼1

ξiσ iηi expðiκpzÞ: ð3Þ

In the PPLN crystal, the pump creates its SH, whose transverse
electric-field at the output reads

Ehðx; y; L=2Þ ¼ i
ω2
hχ

ð2ÞL
2c2κh

E2
pðx; y;�L=2Þ; ð4Þ

where χ(2) is the second-order nonlinear susceptibility, κh=
(2πnh)/λh is the wave number, nh is refractive index, and ωh is the
angular frequency of the SH wave. The nonlinear dynamics inside
the crystal is shown in the Supplementary Note 1. At the crystal
output, the pump and SH waves are each coupled into a single-
mode fiber for detection, whose optical power is given by

Pp;h ¼
Z Z

Ep;hðx; yÞEp;h
f dxdy

����
����
2

: ð5Þ

where

Ep;h
f ¼

ffiffiffi
2
π
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f Þ2

 !
; ð6Þ

are the normalized back-propagated fiber modes of beam waist
wp
f and wh

f for the pump and SH waves, respectively.
Substituting Eqs. (3), (4), and (6) in Eq. (5), the detected power

for the pump and SH waves is given in the form of

Pp ¼
XN2

i¼1

XN2

j¼1

Jijσ iσ j; ð7Þ

and

Ph ¼
XN2

i¼1

XN2

j¼1

XN2

s¼1

XN2

r¼1

Jijsrσ iσ jσsσr; ð8Þ

where Jij and Jijsr prescribe the strength of the two-body and four-
body interactions, respectively. As an example, Supplementary
Note 2 presents the analytic results of Jij and Jijsr under the
approximation of Eq. (4).

With Eqs. (7) and (8), we can define a single parameter E to
characterize the energy of the whole system, as

E ¼ αC þ βPp þ γPh; ð9Þ
where C ¼PN2

i¼1 μiσ i is the weighted sum of spins that represents
their total chemical energy, with the local chemical potential μi∈
[−1, 1]. In this equation, α, β, and γ are free parameters defining
the contribution of the chemical potential, two-body, and four-
body interaction energy, respectively, to the total energy.

The total energy E can be minimized by optimizing the binary
phase mask on the SLM through adaptive feedback control. This
is equivalent to finding the ground-state solutions of the effective

Hamiltonian

H ¼ αĤ1 þ βĤ2 þ γĤ4; ð10Þ
where Ĥ1 is the Hamiltonian describing the chemical potential,
Ĥ2 for the two-body, and Ĥ4 for the four-body interaction,
respectively, with

Ĥ1 ¼
XN2

i¼1

μiŜi; ð11Þ

Ĥ2 ¼
XN2

i¼1

XN2

j¼1

JijŜiŜj; ð12Þ

and

Ĥ4 ¼
XN2

i¼1

XN2

j¼1

XN2

s¼1

XN2

r¼1

Jijsr ŜiŜjŜsŜr: ð13Þ

The two-body and four-body interactions can be tailored by
modulating the input pump wave, varying the fiber optical
modes, and modifying the phase matching conditions for the
nonlinear process. As an example, Fig. 2 considers a toy system of
four spins, with the input pump partially blocked and the output
pump and SH light across the remaining pixels coupled equally
into the fiber mode. We can use a DMD, which can flexibly
control no light and bright light regions in the input pump wave.
The resulting interaction coefficients Jij and Jijsr are shown in
Fig. 2a, b. For α= β= γ=−1, the system’s ground state is simply
with all spin up. For all the possible spin configurations, we plot
the probability distribution function of the energy (E) and

magnetization, defined as M ¼PN2

i¼1 σ i=N
2, in Fig. 2c, d,

respectively. As shown, the many-body interactions can be
tailored into complex forms by simple linear optics operations.

Experimental setup. The experimental setup for the present
nonlinear optical Ising machine is shown in Fig. 3. We use an
optical pulse train at 1551.5 nm as the pump. Each pulse has 5 ps
full-width at half-maximum (FWHM) and 50MHz repetition
rate. The pump’s average power is about 40 mW and its pulse
energy is ~0.8 nJ. We use a portion of the input pump beam to
monitor the power fluctuation which is <5% during a whole day
operation. The transverse FWHM of the pump beam is 2.6 mm
incident on the SLM (Santec SLM-100, 1440 × 1050 pixels, pixel
pitch 10.4 × 10.4 μm) at a 50° incidence angle54,56. Initially, a
random binary phase mask with phase value 0 or π is uploaded
onto the SLM. Half waveplate is used to ensure the vertically
polarized light parallel to the crystal’s optical axis. A lens focused
the beams (focus length F= 200mm) inside a temperature-
stabilized PPLN crystal with a poling period of 19.36 μm (5 mol.%
MgO-doped PPLN, 10 mm length, 3 mm width, and 1 mm height
from HC Photonics) for SH generation. The pump beam waist
inside the crystal is 45 μm. The output is then filtered with a
dichroic mirror to separate the SH and pump light57. Each arm is
coupled into a single-mode fiber (SMF-28) using a fiber colli-
mator consisting of aspheric lens (Thorlabs C220TMD-C and
A375TM-B) and then detected by power meters (Thorlabs PM-
100D with sensors S132C and S130C). The measurement results
are sent to a computer through a MATLAB interface for feedback
control, which updates the phase mask on the SLM to find the
ground state of the customized Ising Hamiltonian.

To visualize the evaluation of the optimization process, we can
split the SH and pump light in two parts using flip-able beam
splitters (BS). Lenses placed at one arm of the flip-able BS are
used to image the pump on a near-infrared (NIR) camera (FIND-
R-SCOPE Model No. 85700 with a pixel resolution of 17.6 μm)
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and the SH light on a charged coupled device (CCD) camera
(Canon Rebel T6 with a pixel pitch of 4.3 μm). The present
optical Ising machine is susceptible to the noises from a laser
power fluctuation, beam misalignment, phase mismatching, etc.
Those noises can be minimized by real time monitoring and
periodically re-calibrating the input laser power, SH generation
efficiency, temperature variation, optical alignment, fiber cou-
pling efficiency, and so on.

Feedback-control optimization. As shown in Eq. (11), the che-
mical potential of each spin is flexibly defined by μi and their
collective contribution to the total energy is controlled by α. This

provides the knob of studying the magnetization under a variety
of local and global single-spin parameters. For this paper, how-
ever, we will focus on the many-body interaction and consider
only μi= 1 in all of the following results. Meanwhile, we will leave
fine tuning two and four-body interaction to our future work, but
only control each’s aggregated contribution to the total energy by
varying β and γ, respectively. One can tailor these interactions by
amplitude modulation of the input Gaussian beam using, e.g.,
SLMs or DMDs, varying the numerical aperture of the output
fiber couplers, slightly changing the quasi-phase matching con-
ditions, and so on.

To find the ground states of the total Hamiltonian, the SLM’s
initial phase mask is prepared in small clusters with randomly
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Fig. 2 A toy Ising model with 4 spins. The second spin σ2 does not interact with the rest by blocking the input pump wavelet on the corresponding pixel.
a The two-body interaction term Jij, with Ji2= J2j= 0 for any i, j (gray squares) and all other Jij= 1 (white squares). b The four-body interaction term Jijsr by
the same color scheme. c, d The probability distribution function (PDF) of the energy and magnetization, respectively.

Fig. 3 Experimental setup for the present nonlinear optical Ising machine. Pump laser pulses at wavelength 1551.5 nm with 5 ps pulse width and 50MHz
repetition rate are incident on a spatial light modulator (SLM), and focused into a periodic-poled lithium niobate (PPLN) crystal to generate second harmonic (SH)
light at wavelength 775.75 nm. After the crystal, the pump and SH beams are coupled into separate optical fibers and measured using power meters. BS beam
splitter, CCD charged coupled device camera, HWP half waveplate, NIR near-infrared camera, PD photodiode, PM power meter, SMF single-mode fiber.
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chosen 0 or π phases. The resulting pump and SH waves are
coupled separately into single-mode fibers, whose optical power is
measured for feedback control. To minimize the total energy, we
adaptively flip the spins within a randomly chosen cluster,
following the standard Monte Carlo approach58. A flow chart of
this procedure is shown in Fig. 4, where the spin flipping during
each iteration is accepted or rejected according to a Boltzmann’s
probability function P ¼ exp½�U=τ�, with U= Enew− Eold being
the change in energy and τ the thermal energy. To avoid trapping

into a local minimum, we vary both the cluster size s and τ during
iterations. It is noteworthy that this algorithm is not necessarily
the most efficient, but nevertheless adequate for our current
demonstrations as the first case study of this Ising platform. A
machine-learning-based Monte Carlo method could be utilized in
the future to speed up this optimization59.

Figure 5 illustrates the process of optimization for 800 ×
800 spins with eight initial random phase masks. Figure 5a shows
how the optical pump power is increased; thus, the decrease of
total energy E to approach the ground state of the system. With α
= 0, there is spontaneous symmetry breaking, as the system
energy remains unchanged if all spins are flipped. As such, the
feedback control will optimize the spins toward either positive or
negative magnetic states with equal probability35. This is clear in
Fig. 5b, where the magnetization trends both ways. For all initial
phase trials, the absolute value of average magnetization can
reached to ~ 0.75.

In Fig. 6, we show the two sets of measurements (a) and (b) for
400 × 400 spins and (c) and (d) for 800 × 800 spins, respectively,
with purely four-body interactions, i.e., α= 0 and β= 0. Figure 6a,
c plot the SH power evolution for γ= 1, for which the system
ground states correspond to the minimum SH power. In both
figures, different initial spins are optimized to give similar
minimum SH power, which indicates the robustness of our
optimization method. For γ= 1, the system evolves into a
paramagnetic-like state that minimizes the SH power in the fiber.
In Fig. 6c, the values are close to the minimum detectable power
of our optical sensor (~5 nW). Because of a smaller pixel size in
Fig. 6c, the spin disorder is stronger to give lower SH power in
Fig. 6a. In opposite, Fig. 6b, d are for γ=−1, where the ground
states are obtained at the highest SH power. In this case, the
system exhibits a ferromagnetic-like behavior. For 400 × 400 and
800 × 800 spins, the optimization leads to similar maximum SH
power despite different initial spin conditions. The convergence is
slower for the latter case, as there are four times more spins to be
optimized. Overall, our system can reliably and efficiently evolve
into the vicinity of its ground state.

To further understand the optimization mechanism, we take
images of the pump and SH beams at the crystal output by
splitting them using flipping beam splitters, as shown in Fig. 3.
Through 4F systems, the pump is imaged on a NIR camera, and
the SH on a CCD camera. Figure 7a, b show the pump and SH
images, respectively, under different iteration numbers as they
minimize the energy of 800 × 800 spin system with α= 0, β= 1,
and γ= 1. As shown, both light beams become scattering and
show speckle patterns as the optimization goes. The resulting
fiber-coupled SH and pump power is shown in Fig. 7c. Both
decrease with the iteration numbers, dropping by orders of
magnitude to minimum values after 150 iterations. It is

Fig. 4 A flow chart of the adaptive feedback-control algorithm using a
Monte Carlo method. Step 1: generate an initial random binary phase spin
pattern on a spatial light modulator (SLM). Step 2: define the total energy of
the system. Step 3: define the range for s and τ and run t random trials for
each. Step 4: detect the pump and second harmonic (SH) powers. Step 5:
find the energy difference U= Enew− Eold (where Eold is the previous
minimum energy), Boltzmann's probability function P ¼ exp½�U=τ�, and a
random variable R∈ [0, 1]. Step 6: check if the optimization criteria, U≤ 0
or P > R, is met. Step 7: check the number of iterations. Step 8: if the criteria
is not satisfied in Step 6 and Step 7, flip the spins within a randomly chosen
cluster and update the binary phase mask on a SLM. Step 9: repeat Steps
3–8 if optimum criteria is not satisfied. Step 10: stop the feedback loop and
collect the results.
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Fig. 5 Evolution of the pump power and magnetization with only two-body Ising interactions. a Measured pump power and b magnetization over
optimization iterations for 800 × 800 spins with α= 0, β=−1, and γ= 0.
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noteworthy that the final SH power level is very close to the
detection level of the sensors, which prohibits further reduction
via the present feedback control.

As seen in Eq. (10), the two-body and four-body interaction
energies are dependent only on the relative alignment of the
spins, but not on each’s absolute orientation. Thus, spontaneous
symmetry breaking could occur during the optimization, leading
to bifurcation35. To avoid this symmetry breaking, one could set a
non-zero α to control the convergence direction of spin
optimization. As an example, in Fig. 8, we compare the results
with α= 1 in (a, b) and α=−1 in (c, d), both with β=−0.5 and
γ=−1. As shown, α can indeed dictate the spin alignment to
result in either positive or negative magnetization states. In both
cases, starting from a rather randomized phase mask shown in
the inset of Fig. 8a, c, the spins become relatively aligned to
increase the SH and pump power, but magnetization can have
positive or negative orientation as can be seen Fig. 8b, d. The inset
of Fig. 8b, d shows the final phase mask of the optimum solution,
where black and white colors represents the positive and negative
orientation of the spins, respectively. Similar results are shown in
Supplementary Note 3 with other input phase masks. It is
noteworthy that in our setup, the computing tasks such as matrix
multiplication, Fourier transformation, and four-body interac-
tions, are realized through linear optics, nonlinear optics, and
optical detection. The relaxation of the spin system to its ground
state, on the other hand, is achieved through feedback control. To
speed it up, field-programmable gate arrays (FPGAs) or field-
programmable photonic gate arrays (FPPGAs) can be employed
in the future60–62.

We last consider the cases where two-body and four-body
interactions contribute oppositely to the total energy of the
system. For instance, the two-body interaction can be attractive
but four-body be repulsive, or vice versa. Such systems can be
conveniently configured by defining the pre-factors β and γ in Eq.
(10). The optimization will maximize one, while minimizing the
other. As an example, Fig. 9 plots the optimization trajectory for

opposite two-body and four-body interactions. In Fig. 9a, β= 1,
and γ=−1, so that the system energy is maximized by reducing
the pump power, while increasing the SH power. Its opposite
configuration is in Fig. 9b, where β=−1, and γ= 1 so that the
same optimization increases the pump power, while reducing the
SH power. This example suggests that the nature of two-body and
four-body interactions can be conveniently maneuvered in our
Ising machine, which makes it versatile for simulating various
systems in solid-state physics63–65, chemical engineering66, and
so on. This Ising machine is efficient, because it calculates the
many-body interaction energy during a single pass through a
nonlinear crystal, realizing simultaneously matrix multiplication,
Fourier transformation, etc., of large-size data.

Discussion
Our nonlinear optical Ising machine can be applied to some of
the NP hard problems involving multi-body interactions, such as
k-SAT problems41, and spin-glass models67. Yet, the main lim-
itation with our current setup comes from the slow response of
the SLM’s. To establish a practical advantage, we will need to
replace the SLM’s with fast digital micromirrors controlled by
FPGA, use all-optical feedback, or design hybrid optical-FPPGA
hardwares60–62. Meanwhile, although the present optical Ising
machine only supports two and four-body interactions, other
processes of nonlinear optics, such as sum frequency, four-wave
mixing, and high-order harmonic generation, can be employed to
realize even higher-order interactions, whose computational
complexity and intensity could quickly grow beyond the cap-
ability of existing computing platforms.

Using spatial phase modulation and SH generation, we have
constructed Ising emulators with all-to-all connections and tai-
lored chemical potential, two-body interaction, and four-body
interaction. Their ground-state solutions can be effectively and
reliably approximated by adaptive feedback control, whose speed
is currently limited by the processing time of the SLM. A
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Fig. 6 Measured second harmonic (SH) power (in log scale) evolving during the feedback-control optimization. a The decrease in power over iterations
for 400 × 400 spins and an Ising machine with α= 0, β= 0, and γ= 1. b The increase in SH power, which corresponds to approximate the ground state of
an Ising machine with α= 0, β= 0, and γ=−1. c, d Similar results but for 800 × 800 spins. Here, curves in different colors are for the results obtained
from different initial random phase masks.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-020-0376-5

6 COMMUNICATIONS PHYSICS |           (2020) 3:108 | https://doi.org/10.1038/s42005-020-0376-5 | www.nature.com/commsphys

www.nature.com/commsphys


#2

#136#62

#108#45

#98

(b) Pump images

#136#62

#108#45

#98#2

(a) SH images

0 50 100 150
Iteration number

10-1

100

101

102

SH
 p

ow
er

 (
W

)

102

3 102

103

3 103

Pu
m

p 
po

w
er

 (
W

)

(c)

Fig. 7 Evolution of the second harmonic (SH) and pump lights with different iteration numbers. a, b The resulting images of the SH and pump lights,
respectively, at the crystal output upon different numbers of iterations (shown inside of the images)). The system contains 800 × 800 spins and the goal is
to find the ground state of the Ising Hamiltonian with α= 0, β= 1, and γ= 1. The blue and red circles indicate the coupling areas of the SH and pump light
into the single-mode fibers, respectively. The labels in each image are the corresponding iteration numbers. c The measured SH (blue dashed curve) and
pump (red solid curve) power over iterations.
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Fig. 8 Evolution of the second harmonic (SH) power, pump power, and magnetization during feedback optimization. a The evolution of experimentally
measured SH power (blue dashed curve) and pump (red solid curve) power with different iteration numbers, set to find the ground state of the Ising
machine with α=−1, β=−0.5, and γ=−1. b The evolution of magnetization. c, d Similar results but with α= 1, β=−0.5, and γ=−1. Insets show the
initial and final phase masks in each case, respectively, where the black and white pixels indicates the positive and negative orientated spins, respectively.
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significant speedup is achievable by using ferroelectric liquid-
crystal based SLMs or programmable plasmonic phase
modulators68,69. At the present, the maximum number of
accessible pixels is about 1 million and can be further increased
by using modulators with more pixels or combining multiple
modulators. The total supported spin number, on the other hand,
is less in practice, due to the optical perfections. Although this
study considers only SH generation, it can be straightforwardly
extended to other nonlinear processes, such as sum-frequency
generation, difference-frequency generation, four-wave mixing,
for other interesting Ising machines54–57,70. Such nonlinear
optical realizations of Ising machines could contribute as sup-
plements for big data optimization and analyses that remain
challenging for classical supercomputers or forthcoming quantum
machines but with a limited number of qubits.

Data availability
The data that support the plots and other findings of this paper are available from the
corresponding author upon a reasonable request.

Code availability
The code is available from the corresponding author upon a reasonable request.
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