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Multifractality of light in photonic arrays based
on algebraic number theory
Fabrizio Sgrignuoli1, Sean Gorsky1, Wesley A. Britton2, Ran Zhang2, Francesco Riboli3,4 & Luca Dal Negro1,2,5✉

Many natural patterns and shapes, such as meandering coastlines, clouds, or turbulent flows,

exhibit a characteristic complexity that is mathematically described by fractal geometry.

Here, we extend the reach of fractal concepts in photonics by experimentally demonstrating

multifractality of light in arrays of dielectric nanoparticles that are based on fundamental

structures of algebraic number theory. Specifically, we engineered novel deterministic pho-

tonic platforms based on the aperiodic distributions of primes and irreducible elements in

complex quadratic and quaternions rings. Our findings stimulate fundamental questions on

the nature of transport and localization of wave excitations in deterministic media with multi-

scale fluctuations beyond what is possible in traditional fractal systems. Moreover, our

approach establishes structure–property relationships that can readily be transferred to

planar semiconductor electronics and to artificial atomic lattices, enabling the exploration of

novel quantum phases and many-body effects.
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In recent years, the engineering of self-similar structures1 in
photonics and nano-optics technologies2–7 enabled the
manipulation of light states beyond periodic8 or disordered

systems9,10, adding novel functionalities to complex optical
media11–14 with applications to nano-devices and metamater-
ials15–17. The concept of multifractality (MF), which describes
intertwined sets of fractals18–20, was first introduced in order to
analyze multi-scale energy dissipation in turbulent fluids20 and
broadened our understanding of complex structures that appear in
various fields of science and engineering21. Specifically, multifractal
concepts provided a number of significant insights into signal
analysis22, finance23–25, network traffic26–28, photonics12,29–35

and critical phenomena36–42. In fact, critical phenomena in dis-
ordered quantum systems have been the subject of intense theo-
retical and experimental research leading to the discovery of
multifractality in electronic wave functions at the metal-insulator
Anderson transition for conductors36,40, superconductors38, as well
as atomic matter waves43. The multifractality of classical waves has
also been observed in the propagation of surface acoustic waves on
quasi-periodically corrugated structures35 and in ultrasound waves
through random scattering media close to the Anderson localiza-
tion threshold44.

Considering the fundamental analogy between the behavior of
electronic and optical waves10, the question naturally arises on
the possibility to experimentally observe and characterize multi-
fractal optical resonances in the visible spectrum using engineered
photonic media. Besides the fundamental interest, multifractal
optical waves offer a novel mechanism to transport and reso-
nantly localize photons at multiple-length scales over extended
surfaces, enhancing light–matter interactions across broad fre-
quency spectra. These are important attributes for the develop-
ment of more efficient light sources, optical sensors and nonlinear
optical components12,45. However, to the best of our knowledge,
the direct experimental observation of multifractal optical reso-
nances in engineered scattering media is still missing.

In this paper, we demonstrate and systematically characterize
the multifractal behavior of optical resonances in aperiodic arrays
of nanoparticles with the distinctive aperiodic order that
is intrinsic to fundamental structures of algebraic number the-
ory46–48. The paper is organized as follows. First, we analyze the
far-field diffraction spectra of these aperiodic photonic systems,
which have been conjectured to exhibit singular-continuous
characteristics49. Second, we perform dark-field microscopy
measurements to directly visualize the scattering resonances of
the fabricated structures across the visible spectrum where they
exhibit complex spatial distributions with intensity oscillations at
multiple-length scales. Third, we perform frequency–frequency
correlation analysis that subdivides the measured scattering
resonances according to their common structural features,
enabling a classification that greatly reduces the dimensionality of
the measured datasets. Finally, we demonstrate that the scattering
resonances of the proposed photonic arrays exhibit strong mul-
tifractal behavior across the entire visible range. Our findings
show the coexistence of resonant states with different localization
properties and multifractal intensity fluctuations in deterministic
two-dimensional structures based on algebraic number theory.
We believe that the results presented here provide yet-unexplored
possibilities to exploit multifractality as a novel engineering
strategy for optical encoding, sensing, lasing and multispectral
devices.

Results and discussion
The investigated devices consist of TiO2 nanopillars deposited
atop a transparent SiO2 substrate and arranged according to the
prime elements of the Eisenstein and Gaussian integers47, as well

as two-dimensional cross sections of the irreducible elements of
the Hurwitz and Lifschitz quaternions48. These arrays have
recently been shown to support spatially complex resonances with
critical behavior49 akin to localized modes near the Anderson
transition in random systems40,44. Figure 1a outlines the process
flow utilized for the fabrication of the arrays (details can be found
in the Methods section). Scanning electron microscope (SEM)
images of the fabricated devices are reported in Figs. 1b, e, whereas
their geometrical properties, illustrated in Supplementary Figs. 1
and 2, are discussed in the Supplementary Note 1. The multi-
fractality in the optical response of these novel photonic structures
is demonstrated experimentally by analyzing the intensity fluc-
tuations of their scattering resonances that are measured using
dark-field scattering microscopy across the visible spectral range.
Before addressing the multifractal nature of the measured scat-
tering resonances, in the next section we discuss the far-field
diffraction properties of the fabricated arrays because they provide
insights on the fundamental nature of these novel aperiodic
systems.

Spectral characterization of fabricated arrays. Aperiodic sys-
tems can be rigorously classified according to the nature of their
Fourier spectral properties. In fact, according to the Lebesque
decomposition theorem50, any positive spectral measure (here
identified with the far-field diffraction intensity) can be
uniquely expressed in terms of three primary spectral compo-
nents: a pure-point component that exhibits discrete and sharp
(Bragg) peaks51, an absolutely-continuous one characterized by
a continuous and differentiable function52 and a more complex
singular-continuous component where scattering peaks appear
to cluster into a hierarchy of self-similar structures forming
a highly-structured spectral background53,54. Systems with
singular-continuous spectra do not occur in nature. Moreover,
their spectral properties, which are often associated to the
presence of multifractal phenomena, are difficult to characterize
mathematically51. In this section, we introduce and characterize
the spectral properties of our scattering systems by investigating
their measured far-field diffraction spectra.

When laser light uniformly illuminates the arrays at normal
incidence, sub-wavelength pillars behave as dipolar scattering
elements and the resulting far-field diffraction pattern is propor-
tional to the structure factor defined by:

SðkÞ ¼ 1
N

XN
j¼1

e�ik�rj
�����

�����
2

; ð1Þ

where k is the in-plane component of the wavevector and rj are the
vector positions of the N nanoparticles in the array. This is
demonstrated in Fig. 1, where we compare the calculated structure
factors, shown in Figs. 1f–i, with the measured diffraction
patterns, shown in Figs. 1j–m. The optical setup used to measure
the diffraction is schematically illustrated in Fig. 1n and further
discussed in the Methods section. The experimental diffraction
patterns match very well with the calculated ones and display
sharp diffraction peaks embedded in a weaker diffuse background,
particularly noticeable in the case of Gaussian and Eisenstein
primes. The coexistence of sharp diffraction peaks with a
structured (self-similar) background is characteristic of singular-
continuous spectra described by singular functions that oscillate at
every length scale49,51,53. The strength of the continuous spectral
component weakens progressively from Eisenstein and Gaussian
primes to Hurwitz and Lifschitz structures, which display a more
regular geometry. See also Supplementary Fig. 3 and the related
discussion in the Supplementary Note 1.

A remarkable property of structures that support singular-
continuous components is that their resonant modes are
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critical55–58. Critical modes exhibit local fluctuations and spatial
oscillations over multiple-length scales that are quantitatively
described by multifractal analysis45,59. These peculiar scattering
resonances have been demonstrated in one-dimensional aperiodic
systems55–58 and in the propagation of surface acoustic waves on
quasi-periodically corrugated structures35. In the following, we
experimentally demonstrate, using dark-field imaging technique,
the multifractal nature of the scattering resonances of aperiodic
arrays based on generalized prime numbers in the visible range.

Dark-field scattering measurements. Dark-field (DF) micro-
scopy is a well-established technique to image the intensity dis-
tributions of the scattering resonances supported by dielectric and
metallic nanoparticles arrays60,61, to visualize the dynamic of
microtubules-associated protein62 and to analyze the formation
of colorimetric fingerprints of different aperiodic nano-patterned
surfaces63,64. In this section, we use DF microscopy to directly
visualize the distinctive scattering resonances supported by the
fabricated arrays of nanoparticles at multiple wavelengths across
the visible spectrum. In particular, we use a confocal DF micro-
scopy setup in combination with a line-scan- hyperspectral

imaging system in illumination-detection configuration as
explained in the Methods section (see also Supplementary
Note 2). A large dataset of 355 different dark-field scattering
images, for each investigated structure, was collected corre-
sponding to the excitation of the scattering resonances at different
frequencies ranging from 333 THz up to 665 THz with a reso-
lution of ~0.9 THz.

Figure 2 shows representative dark-field images of the scattering
resonances of Eisenstein 2a–d, Gaussian 2e–h, Hurwitz 2i–l and
Lifschitz 2m–p arrays collected at different frequencies across the
visible range, as specified by the markers in Fig. 3. The scattering
resonances of the Eisenstein and Gaussian prime structures display
a clear transition from localization in the center of the arrays to a
more extended nature in the plane of the arrays. On the other
hand, this scenario is far richer for the Hurwitz and Lifschitz
configurations. In particular, we found that the spatial distributions
of their scattering resonances exhibit the following characteristics:
(i) weakly localized around the central region of the arrays,
(ii) localized at the edges of the arrays and (iii) spatially extended
over the whole arrays (more details are provided in Supplementary
Note 3, Supplementary Fig. 4 and in the next section).
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Fig. 1 Experimental realization of sub-wavelength prime arrays and their diffractive properties. a Process flow used to fabricate the TiO2 nanocylinders
on a SiO2 substrate. b–e Scanning electron microscope images of fabricated samples: b–e Eisenstein, Gaussian, Hurwitz and Lifschitz prime configurations,
respectively. Insets: enlarged view of the central features for each pattern type. Nanocylinders have a 210 nm mean diameter, 250 nm height and average
inter-particle separation of 450 nm. Calculated (f–i) and measured (j–m) k-space intensity profiles corresponding to the prime arrays reported in b–e,
respectively. n Optical setup for measuring far-field diffraction patterns of laser illuminated sample. IP image plane, AS Aperture stop, FP Fourier plane.
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All the measured scattering resonances exhibit complex spatial
distributions characterized by intensity fluctuations at multiple-length
scales. However, by inspecting Fig. 2, we can also recognize structural
features in the intensity distributions that are shared by modes of
different frequencies (compare for instance Fig. 2j with 2l). In order
to quantitatively classify the measured scattering resonances accord-
ing to their common structural features, we employ in the next
section frequency–frequency correlation analysis.

Correlation analysis of dark-field scattering resonances. Image
cross-correlation techniques are widespread in signal processing
where they are used to compare different data and identify
structural similarities. In this section, we apply the frequency–
frequency correlation analysis introduced by Riboli et al.65 to a
dataset of 1420 measured scattering resonances. This approach
enables to reduce the enormous complexity of our total dataset
into a few constituent groups of resonances that are identified by
the frequency–frequency correlation matrix. The off-diagonal
elements of this matrix provide the degree of spatial similarity
between two scattering resonances with frequencies ν and ν′, as

defined below65:

Cðν; ν0Þ ¼
1
n

Pn
s¼1

δIðrs; νÞδIðrs; ν0Þ

1
n

Pn
s¼1

Iðrs; νÞ
� �

1
n

Pn
s¼1

Iðrs; ν0Þ
� � ; ð2Þ

where the counting variable s identifies the pixel of the intensity I
of the considered dark-field image, n is the total number of pixels,
rs = (xs, ys) denotes the in-plane coordinates, and δIðrs; νÞ ¼
Iðrs; νÞ � ½Pn

s¼1 Iðrs; νÞ�=n describes the fluctuations of the
intensity I (see also the Methods section and Supplementary
Note 3).

The results of the correlation analysis separate the set of
collected scattering resonances into two spectral classes. The first
class includes the Eisenstein and Gaussian arrays and is
characterized by large fluctuations in the correlation matrix
concentrated around two distinct spectral regions, as shown in
Figs. 3a, b. Specifically, these two well-defined spectral regions are
located at ν ≈ 460 THz and ν ≈ 600 THz, respectively. The off-
diagonal peaks of the correlation matrices reported in Figs. 3a, b
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Fig. 2 Direct observation of the scattering resonances of prime arrays. Representative multispectral dark-field images of the scattering resonances of
Eisenstein (a–d), Gaussian (e–h), Hurwitz (i–l) and Lifschitz (m–p) prime arrays. These quasi-modes are the scattering resonances that most interact with
their corresponding geometrical supports at a fixed frequency. The scale bars indicate the scattering resonance intensities normalized with respect to the
transmission signal of a reference Ag-mirror and reported in arbitrary units. The x and y axis express the length and the width of the investigated devices
expressed in micron scale.
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show that these resonances are correlated, indicating that their
spatial distributions share common structural features. Moreover,
a reduction of the intensity fluctuations is observed around ν ≈
550 THz in both Eisenstein and Gaussian arrays. All these
features can also be visually recognized in the spatial distributions
of the selected scattering resonances reported in Figs. 2a–h. In
fact, the representative resonances displayed in Fig. 2, which
correspond to the different markers in Figs. 3a–d, have been
identified based on the results of the correlation analysis.
Specifically, Figs. 2a, c do not share any common features: the
resonance in Fig. 2a shows the maximum of its intensity at the
center of the array, whereas the resonance shown in Fig. 2c
displays an intensity minimum in the same region. On the other
hand, the spatial distributions displayed in Figs. 2b, d are highly
correlated. Similar results are obtained for the Gaussian arrays:
while the resonances reported in Fig. 2e and in Fig. 2g are not
correlated, the spatial distributions in Figs. 2f, h exhibit a similar
structure.

In the second class, which includes the Hurwitz and Liftschitz
arrays, the C(ν, ν′) matrices are more structured and exhibit
multi-scale fluctuations spreading over the entire frequency
spectrum, as shown in Figs. 3c, d. Specifically, their normalized
variances are characterized by peaks and dips that spread over the
entire measured spectrum. This characteristic behavior indicates
that the spatial intensity distributions of the measured scattered
radiation rapidly fluctuate with frequency due to the excitation of
scattering resonances in the systems. In the Hurwitz configura-
tion, for example, some of these fast fluctuating resonances are
correlated (or anti-correlated), as highlighted by the off-diagonal
elements of the correlation matrix of Fig. 3c. In fact, the scattering
resonances of the Hurwitz array can be classified in four different
spectral regions: (i) [350, 420] THZ, (ii) [430, 480] THz, (iii) [480,
600] THz, (iv) larger than 600 THz (see also Supplementary
Fig. 5). Specifically, region (i) is characterized by the same
scattering resonances of Fig. 2i that are mostly localized at the
center of the array and that are anti-correlated with all the others.
On the other hand, modes in region (ii) are correlated with the
ones in region (iv). This correlation can also be recognized by
visually comparing the scattering resonance of Fig. 2j with the one
reported in Fig. 2l. Finally, region (iii) is populated by scattering
resonances spatially localized at the edge of the arrays, as shown
in Fig. 2k. The same considerations apply to the Lifschitz prime

array, as shown in Figs. 2m–p and 3d. This complex scenario is
well-reproduced also in our numerical simulations, shown in
Supplementary Figs. 6 and 7. The scattering resonances in the
second class display a more complex spatial structure as
compared to the ones of the first class. This is confirmed by
comparing the normalized variance of the frequency–frequency
correlation matrices with the spectral behavior of the computed
optical density of states (DOS) of the systems, which we obtained
using the Green’s matrix spectral method (see the detailed
derivation in the Supplementary Note 4).

Figures 3e–h present the comparison between the DOS and the
normalized variance C(ν, ν) (see Methods for more details). The
Eisenstein and Gaussian prime arrays feature a DOS with two main
peaks demonstrating that their scattering resonances are predomi-
nantly located within the two spectral regions identified using the
correlation analysis. On the other hand, the behavior of C(ν, ν) and
of the DOS for the Hurwitz and Lifschitz configurations is far richer
and features multiple spectral regions of strong intensity fluctua-
tions. Although this comparison remains qualitative in nature, it is
consistent with the presence of spectral sub-structures that appear
on a finer scales in these arrays, which is typical of aperiodic
systems with singular-continuous spectra51,53,59. Interestingly, the
classification of our structures into two broad spectral classes may
reflect a fundamental number-theoretic difference in the nature of
the corresponding rings. In fact, although the Eisenstein and
Gaussian structures are constructed based on the prime elements of
the rings associated to the imaginary quadratic fieldsQð ffiffiffiffiffiffiffi�3

p Þ and
Qð ffiffiffiffiffiffiffi�1

p Þ, which are the commutative rings Z½ð�1þ i
ffiffiffi
3

p Þ=2� and
Z½i�, the Hurwitz and Lifschitz structures are constructed based on
two-dimensional cross sections of the irreducible elements of
quaternions, which form a non-commutative ring66–68.

Multifractal analysis of dark-field scattering resonances. In this
section, we directly demonstrate that the measured dark-field
scattering resonances of the investigated arrays exhibit strong
multifractal behavior. We limit our analysis to the representative
scattering resonances shown in Fig. 2 that, as previously discussed
based on the frequency–frequency correlation matrix, are repre-
sentative of the variety of structural features observed across the
visible spectrum. In order to quantitatively describe intensity
oscillations that occur at multiple scales, we apply the multifractal
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Fig. 3 Frequency–frequency correlation analysis of scattering resonances. a–d Frequency–frequency correlation matrix C(ν, ν′) of Eisenstein, Gaussian,
Hurwitz and Lifschitz arrays, respectively. The white line indicates the diagonal elements, i.e., the normalized variance C(ν, ν) of the scattered intensity.
The different markers identify the frequency location of representative scattering resonances that capture the main features of the correlation analysis.
e–h Normalized variance as compared to the normalized density of states (DOS) as a function of the frequency ν.
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scaling method developed by Chhabra et al.19. In particular, we
employ the box-counting method to characterize the size-scaling
of the moments of the light intensity distribution. This is achieved
by dividing the system into small boxes of varying size l. We then
determine the minimum number of boxes N(l) needed to cover
the system for each size l and evaluate the fractal dimension Df

using the power-law scaling NðlÞ � l�Df .
Traditional (homogeneous) fractal structures are characterized

by a global scale-invariance symmetry described by a single fractal
dimension Df. On the other hand, heterogeneous fractals or
multifractals are characterized by a continuous distribution f ðαÞ of
local scaling exponents α such that NðlÞ � l�f ðαÞ19. The so-called
singularity spectrum f(α) generalizes the fractal description of
complex systems in terms of intertwined sets of traditional fractal
objects. Different approaches are used to extract f(α) from the
local scaling analysis.

Here, we have obtained the multifractal spectra directly from the
dark-field measurements by employing the method introduced in
ref. 19. Details on the implementation are discussed in the Supple-
mentary Note 5 and in Supplementary Figs. 8–11. Figures 4a–d
demonstrate the multifractal nature of the measured scattering
resonances of the prime arrays. All the singularity spectra f(α)
exhibit a downward concavity with a large width Δα, which is the
hallmark of multifractality19. The behavior of the width Δα as a
function of frequency reflects the previously identified classification
in terms of the correlation matrix (Supplementary Fig. 10). In
particular, the arrays with more significant intensity fluctuations,
i.e., Eisenstein and Gaussian arrays, also display the broadest
singularity spectra. Therefore, our findings establish a direct
connection between the multifractal properties of the geometrical
supports of the arrays (discussed in the Supplementary Note 1), the
MF of the corresponding scattering resonances and the singular-
continuous nature of their diffraction patterns. To further
characterize the MF of the scattering resonances, we also compute,
based on the experimental data, the mass exponent τ(q) and the
generalized dimension D(q), which provide alternative descriptions
of multifractals. Multifractals are unambiguously characterized by a
nonlinear τ(q) function and a smooth D(q) function18. This is

reported in Supplementary Fig. 9 and discussed in the Supple-
mentary Note 6.

A direct consequence of multifractality is the non-Gaussian
nature of the probability density function (PDF) of the light
intensity distribution near, or at, criticality36,44. We have evaluated
the PDF of the scattered radiation from the histogram of the
logarithm of the box-integrated intensities, i.e., Pðln�IlÞ. We show
in Figs. 4e–h the histograms produced by a box size of ~0.8 × c/ν,
where c is the speed of light and ν is the frequency of the
considered scattering resonance. We note that, although the
intensity distributions of the scattering resonances in Fig. 2 show
different degrees of spatial variations, all the PDFs are very-well
reproduced by a log-normal function model (continuous lines in
Figs. 4e–h). Furthermore, we have verified that these findings do
not depend on the box-counting size l, as shown in Supplementary
Fig. 11.

Finally, the multifractal spectrum f(α) can be rigorously
obtained from the PDF of the intensity within the parabolic
approximation21,44:

f ðαÞ ¼ Df � ðα� α0Þ2=4ðα0 � dÞ; ð3Þ
where Df = f(α0) is the fractal dimension of the geometrical support
and d is the dimensionality of the investigated problem (d is equal
to 2 in our analysis). Equation (3) uniquely associates f(α) to the
PDF of the logarithm of the box-integrated intensities through the
parameter α0 via the formula α0 ¼ 2μd=ð2μþ σ2Þ, where μ and σ
are the mean and the standard deviation of the PDF, respectively.
In our data, we find deviations from the parabolic spectrum, which
are associated to the strong MF of the scattering resonances of
prime arrays across a broad range of frequencies44 (see Supple-
mentary Fig. 12 and the related discussion in Supplementary
Note 7). The observed strong MF in the scattering resonances is
thus uniquely associated to the multi-scale geometrical structure of
prime arrays. In contrast, only weak MF was previously reported in
uniform random scattering media at their metal-insulator Anderson
transitions36,44.

In conclusion, we have provided an experimental observation of
multifractality of classical waves in the optical regime by studying
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the scattering resonances of deterministic photonic structures
designed to reflect the intrinsic aperiodic order of complex primes
and irreducible elements of quaternion rings. Beyond its
fundamental interest with respect to the discovery and character-
ization of multifractality in certain fundamental structures of
number theory69,70, our findings establish a novel mechanism to
transport and resonantly localize photons at multiple-length scales
and to enhance light–matter interactions, with applications to
active photonic devices and novel broadband nonlinear compo-
nents. Moreover, the concepts developed in this work can be
naturally transferred to quantum waves71,72 and stimulate the
exploration of novel quantum phases of matter and many-body
phenomena that emerge from fundamental structures of algebraic
number theory.

Methods
Sample fabrication. TiO2 thin films were grown by reactive direct current (DC)
magnetron sputtering (MSP) on quartz (SiO2) substrates with a Denton Discovery
D8 Sputtering System. A 3 inch diameter Ti target (Kurt J. Lesker, 99.998%) was
used. The deposition was performed under a 200 Watt power at a 3.0 mTorr
deposition pressure with a 1:3 Sccm flow rate ratio of O2 to Ar gases. These growth
conditions resulted in a deposition rate of about 1 nm/min. Chamber base pressure
was kept below 5 × 10−7 Torr, the target–substrate distance was fixed at 10 cm, and
substrates were rotated at a speed of 0.1 Hz. Substrates were solvent washed and
plasma cleaned in O2 prior to deposition.

The optical constants of the films were determined using a variable angle
spectroscopic ellipsometer (V-Vase, J.A. Woollam) in the wavelength range of
300–2000 nm. The measured data were fitted in good agreement with the Cauchy
model, which provides an empirical relationship between refractive index and
wavelength. The film thickness, verified with ellipsometry and SEM, was targeted at
250 nm.

Nanoparticle fabrication was performed with electron beam lithography. A
polymethyl methacrylate (PMMA) resist layer of about 100 nm thickness was spun
and baked before sputtering a thin conducting layer (~6 nm) of Au to compensate
for the electrically insulating SiO2 substrate. The resist was exposed at 30 keV by an
SEM (Zeiss Supra 40) integrated with Nanometer Pattern Generation System direct
write software. The sample was then developed in isopropyl alcohol to methyl
isobutyl ketone (IPA:MIBK) (3:1) solution for 70 s followed by a rinsing with IPA
for 20 s. Next, a 20-nm-thick layer of Cr was deposited on top of the developed
resist with electron beam evaporation (CHA Industries Solution System). After this
deposition, unwanted Cr was removed with a three minutes lift-off in acetone and
the nanoparticle patterns were transferred from the Cr mask to the TiO2 thin film
by reactive ion etching (RIE, Plasma-Therm, model 790) using Ar and SF6 gases.
Finally, the Cr mask was removed by wet etching in Transene 102073.

Far-field diffraction setup. We measure the far-field diffraction pattern of laser
light passing through the sample using the setup depicted in Fig. 1n. A 405 nm
laser is focused onto the patterned area to overfill the pattern and to ensure
uniformity in intensity across it. The forward scattered light is collected by a high
numerical aperture objective (NA= 0.9 Olympus MPlanFL N), which collects light
scattered up to 64° from the normal direction. A 4-F optical system, immediately
behind the objective, creates an intermediate image plane and intermediate Fourier
plane. An iris located at the intermediate image plane was used to restrict the light
collection area only to the patterned region. A second 4-F optical system then re-
images the intermediate Fourier plane onto the charged coupled device (CCD) with
the appropriate magnification. Finally, digital filtering was employed to remove the
strong direct component of the diffraction spectra to produce clear images.

Dark-field scattering setup and image acquisition. In order to measure the
spatial distribution of the scattering resonances of prime arrays, we used a line-
scan-hyperspectral imaging system (XploRA Plus by Horiba Scientific). This
integrated microscope platform provides both widefield and hyperspectral imaging.
Its enhanced dark-field system produces much higher signal-to-noise than stan-
dard dark-field imaging systems, such the one described in Supplementary Note 2,
which results in much cleaner and accurate images, optimizing dark-field detection
capability for non-fluorescing nanoscale sample. Specifically, the field of view is
illuminated by light from a lamp through the microscope objective. A line-like
region of the field of view is projected into the spectrograph entrance slit. The slit
image is then spectrally dispersed by means of a grating onto the camera image
sensor. This allows the collection of all the spectra corresponding to a single line in
the field of view. Scanning the sample with a stage then produces the hyperspectral
image of the entire field of view. In our system, scanning 696 lines results in square-
size hyperspectral image. The resolution of the CCD (Cooke/PCO Pixelfly PCI
Camera) was set to be 430 × 470, where 430 and 470 corresponds to a spatial and
spectral resolution of 30 nm and 0.25 THz, respectively. The exposure time was set

to be 1000 ms with a time interval of 1 min between different scanning lines.
Finally, the dark-field data were normalized with respect to a reference signal of an
Ag-mirror.

Correlation analysis. Each element C(νi, νj) of the frequency–frequency correla-
tion matrices of Figs. 4a–d is the result of an average over 9 × 104 correlated values.
Equation (2) can be written in the compact form65:

Cðν; ν0Þ ¼ hδIðr; νÞδIðr; ν0Þi
hIðr; νÞihIðr; ν0Þi : ð4Þ

The normalization of the covariance hδIðr; νÞδIðr; ν0Þi with respect to the product
of the average values hIðr; νÞihIðr; ν0Þi minimizes the intrinsic spectral effects
related to the illumination source of the experimental apparatus. Each element of
Cðν; ν0Þ is a combination of spatial intrinsic fluctuations of the system’s para-
meters, extrinsic effects related to the illumination-collection efficiency, and to the
point spread function of the experimental apparatus. The spectral dependence of
the extrinsic effects can be mitigated by the proper normalization of the correla-
tions matrix65. The white diagonal elements of Figs. 3a–d as well as the continuous
lines in Figs. 3e–h are the normalized variance of the scattering resonance inten-
sities of prime arrays and are calculated by the equation:

Cðν; νÞ ¼ hδIðr; νÞ2i
hIðr; νÞi2 ¼ σ2ðνÞ

μ2ðνÞ ; ð5Þ

where μ(ν) is the average value and σ(ν) is the standard deviation.

Multifractal analysis. The multifractal analysis of both structural and dynamical
properties was performed from the corresponding 600 dpi bitmap image using the
direct Chhabra–Jensen algorithm19 implemented in the routine FracLac (ver.
September 2015) developed for the National Institutes of Health (NIH) distributed
Image-J software package74. This method is a useful tool to determine the scaling
properties of a certain image, but has to be handled with care. First of all, the size of
the boxes must satisfy some requirements. In the FracLac routine, the largest box
should be larger than 50% but not exceed the entire image, whereas the smallest
box is chosen to be the point at which the slope starts to deviate from the linear
regime in the log(N) versus log(1/r) plot74. Furthermore, the scattering resonance
maps are not binary. Therefore, it is necessary to specify the threshold value above
which the pixels are part of the object under analysis. Different calculations were
performed for several threshold percentages (between 55% and 75%) of the max-
imum intensity of each scattering resonance of Fig. 2. Another source of error
could be the scaling method used during the analysis. For each dark-field image, we
employed a linear, a rational and a power scaled series of box sizes74. All these
aspects do not affect the main results of our paper, as shown by the error bars of
Figs. 4a–d.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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