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Entanglement growth in diffusive systems
Marko Žnidarič1✉

Entanglement helps in understanding diverse phenomena, going from quantifying complexity

to classifying phases of matter. Here we study the influence of conservation laws on

entanglement growth. Focusing on systems with U(1) symmetry, i.e., conservation of charge

or magnetization, that exhibits diffusive dynamics, we theoretically predict the growth of

entanglement, as quantified by the Rényi entropy, in lattice systems in any spatial dimension

d and for any local Hilbert space dimension q (qudits). We find that the growth depends both

on d and q, and is in generic case first linear in time, similarly as for systems without any

conservation laws. Exception to this rule are chains of 2-level systems where the dependence

is a square-root of time at all times. Predictions are numerically verified by simulations of

diffusive Clifford circuits with upto ~ 105 qubits. Such efficiently simulable circuits should be a

useful tool for other many-body problems.
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Entanglement is one of crucial quantum resources respon-
sible for the emerging 2nd quantum revolution—exploiting
quantumness to perform tasks not possible by classical

means, for instance, quantum computation, teleportation, or
secure communication1. Even if not easily measurable2, it is an
extremely powerful theoretical concept. This was further under-
lined by another discovery from the ’80, from a seemingly
unrelated field, namely the quantum Hall effect3. It gradually
brought to light the fact that there can be phases of matter that
have topological order which goes beyond the Landau’s paradigm
of classifying all phases of matter just by local order parameters.
Today we understand that such topological order is connected to
certain patterns of entanglement4. A modern view in fact uses
entanglement to distinguishing different phases of matter5,6.
Entanglement though plays a role also beyond the equilibrium
phases. An example is for instance a putative non-thermal many-
body-localized phase7, one of the distinguishing features of which
is slow logarithmic-in-time growth of entanglement8.

Conservation laws and the associated symmetries are one of
the most important properties of laws of physics. On the smallest
scale, the elementary particles differ by their symmetries, and on
the large scale, as well, the most violent objects we know—black
holes—are believed to be defined only by their conserved quan-
tities, charge, mass and angular momentum9. Furthermore, the
symmetry to translations in time and its associated generator is
the very object that governs dynamics. In short, symmetries are
crucially responsible for the simplicity of nature at its core.

An important question is what role do conservation laws play
on the dynamics of entanglement? Its growth with time is
important also from a practical point of view. Namely, if it is
small then efficient classical simulation of such systems is pos-
sible10. For generic local systems and initial states one expects
that dynamics explores the whole available Hilbert space and
therefore entanglement grows linearly with time. This holds true
even for integrable systems, see e.g. refs. 11,12. Because symmetries
are about constraints, and because entanglement is given essen-
tially by the number of degrees of freedom (two-level systems)
involved, one might argue that symmetries will certainly affect
entanglement growth. On the other hand, however, in the ther-
modynamic limit (TDL) one could also argue that conservation of
a single charge should not matter much in a large Hilbert space.

Therefore it was surprising and interesting when it was shown13

(focusing on diffusive 1D systems with conserved charge) that the
entanglement, as quantified by the Rényi entropy

SrðtÞ :¼
log 2ðtrA ρrAÞ

1� r
; ð1Þ

grows in fact as S2 �
ffiffi
t

p
starting from a generic separable initial

state, instead of the “expected” S2 ~ t, see also refs. 14,15. This
finding, if holding for generic systems, would have many con-
sequences. For instance, one could argue that simple charge
conservation causes the “Rényi complexity” � 2S2 to grow only as
� b

ffiffi
t

p
, i.e. slower than exponentially (though still super-poly-

nomially). A system with diffusive conserved charge would seem
to be a less powerful quantum information resource than a one
without it.

We address the question of the Rényi entropy growth in local
systems in any spatial dimension d and for any local Hilbert space
dimension q. Theoretical predictions for a bipartition (L is the
linear system size, being also proportional to the subsystem size),
are numerically verified on large systems, with the total number
of qubits up-to e.g. 252 × 252 ≈ 6 × 104 in 2D, and 48 × 48 × 48 ≈
105 in 3D. While we confirm13, the main finding is that in higher
d and q the asymptotic

ffiffi
t

p
growth is in fact not what one will

typically observe. While for diffusive qubit systems (spin-1/2, i.e.
q= 2) the asymptotic growth is still � ffiffi

t
p

, it starts in d > 1 only at

a time when the entropy already becomes extensively large, S2 ~
Ld−1, in other words, in the TDL the S2 grows linearly with time
at any finite value of the entropy. For qudit systems (q > 2), even
in d= 1, one expects instead a linear asymptotic growth, except in
cases where the dynamics of all diagonal operators is diffusive. In
this respect the often studied qubit systems in 1D are rather
special—diffusive growth is there observed already at early times
and for all diffusive systems because a single diffusive charge,
together with an identity operator, already exhausts the algebra of
diagonal operators. As a side result, the presented new class of
efficiently simulable systems with nontrivial dynamics could be
useful in addressing other questions of many-body physics.

Results
Theoretical prediction. A class of systems that we study are lattice
systems with local nearest-neighbor (n.–n.) interactions in d spatial
dimensions and with q-dimensional local Hilbert space, whose
dynamics has a nontrivial conservation of the total particle number
or the total spin in z-direction (i.e., a U(1) symmetry). The
dynamics of that conserved degree of freedom is assumed to be
diffusive, while the rest of dynamics is generic (we exclude integr-
able systems). Specifically, the influence of possible non-U(1)
symmetries is left for future work. In numerical demonstrations we
also focus on Floquet systems in order to avoid having to deal with
an additional conserved quantity (the energy). Linear dimension is
denoted by L, and the total number of qudits by n:= Ld.

We shall discuss the entropy growth as quantified by the Rényi
entropy Sr (integer index r > 1) starting from a pure product initial
state. We prefer Sr over von Neumann entropy Sr→1 due to its
analytical simplicity. In generic systems all Sr, including S1, are
expected to behave in the same way, whereas for diffusive systems
the S1 (which we don’t discuss) can behave differently13. We will
mostly focus on S2 as a representative case of Sr>1. We remark that
sometimes S2, rather than e.g. S1, is a more relevant quantity16, and
is furthermore also easier to measure17. Using a bipartition to
regions A and B the reduced density operator is ρAðtÞ ¼
trB ψðtÞj i ψðtÞh j. The size of region A will be extensive, ∣A∣ ~ Ld,
in order to avoid the effects of measure concentration that becomes
prominent when the ratio of subsystem Hilbert space sizes ∣B∣/
∣A∣ → ∞. Specifically, when that ratio grows the reduced density
operator ρA(t) for a typical state ψðtÞj i becomes increasingly closer
to ~ 118. More precisely, tracing a random state over ∣B∣ ≫ ∣A∣
results in a spectrum of ρA whose relative deviation from a flat one
is ~ q−(∣B∣−∣A∣)/2 19, and become negligible. Therefore, because we
are interested in the influence of dynamics on S2, and not simple
kinematic effects of Hilbert space sizes, we require ∣A∣ → ∞ in
the TDL. For finite ∣A∣ the saturation value of S2 would also be
finite, so that one could not unambiguously differentiate between
different powers in S2 ~ tα. To facilitate comparison of different d
and L we will measure t in such units that one will generate a unit
of entanglement in a unit of time, S2ð1Þ � Oð1Þ, i.e., in the
language of quantum circuits � Oð1Þ gates connecting regions A
and B are applied per unit of time. Compared to local Hamiltonian
evolution this means a rescaling of time by Ld−1. None of our
conclusions depends on the chosen time-units, i.e., on the values of
potential crossover times. In all our numerical demonstrations
shown in figures time is a dimensionless integer denoting the
number of applied steps of a given quantum circuit.

Let us first argue why and how conservation of magnetization
(charge) matters for the long-time behavior of S2. As we shall see,
in the TDL S2 is self-averaging (which is expected for generic, i.e.,
chaotic systems) and we will for simplicity focus on the purity
IðtÞ :¼ 2�S2ðtÞ ¼ trðρ2AðtÞÞ. A non-rigorous intuitive meaning of
the entropy is that it measures the effective number of the
explored degrees of freedom needed to "describe” ρA(t). For
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purity one can write I � 1
Neff

, where Neff � 2Leff is the effective
Hilbert space size on which ρA is supported, resulting in
S2 � log 2Neff � Leff .

More quantitatively, the average purity I over all computational
initial states is

�IðtÞ ¼ 1
qn

X
c!

tr Dð c!Þ
A ðtÞ

� �2
; ð2Þ

where DðckÞ
k :¼ ckj i ckh jk is a basis of diagonal matrices (projectors)

with ck 2 Zq labeling the local computational state, and

Dð c!Þ
A ðtÞ ¼ trB½UtDðc1Þ

1 � � � � � DðcnÞ
n U�t�. We see that at large

times what matters is the spreading of the reduced diagonal

operators Dð c!Þ
A ðtÞ, specifically their Hilbert-Schmidt norm. In

particular, the average purity gets contribution from all possible
products of initial projectors, where at each site we have q
different ones. The operator spreading in diffusive systems has a
rich structure, having in general diffusive and ballistic features,
see20 for details. Operators with a large initial overlap with the
conserved charge will have a hydrodynamic (power-law) tail, as
well as some other operators (a trivial example is the associated
conserved current). Such operators will tend to cause diffusive
behavior of �I. On the other hand, regardless of the diffusion, most
operators will not exhibit any diffusive tails at long times. While

in Eq. (2) one actually needs the reduced Dð c!Þ
A ðtÞ, regardless of

details one can say that if the dynamics of all diagonal operators is
diffusive, one expects diffusive �I and S2 �

ffiffi
t

p
. For qubits, q= 2,

there are just two local diagonal operators, 1k and σzk, and
therefore if σzk is diffusive one expects a long-time asymptotic
growth S2 �

ffiffi
t

p
13. However, for higher dimensional qudits, q ≥ 3,

the diagonal basis is spanned by q linearly independent diagonal
operators, only one of which is the conserved operator (the local
magnetization). While one might think that diffusive modes that
contribute to purity decay as e�

ffiffi
t

p
will due to their slow decay still

dominate over non-diffusive ones, which decay as e−t, a simple
counting argument shows that this is not to be expected. Namely,
in a system of n qubits the number of diagonal operators that are
products of only diffusive magnetization σzk and the identity 1k is
2n, while the number of all other diagonal ones, that will in general
be non-diffusive, is (qn− 2n). The diffusive contribution to I will
then be � 2ne�

ffiffi
t

p
while a non-diffusive one is ~(qn− 2n)e−t, so

that in the TDL the non-diffusive contribution wins. Simply put,
for higher q there are exponentially more non-diffusive operators
than diffusive ones. For generic q ≥ 3 with only one conserved
charge one therefore expects the asymptotic linear growth S2 ~ t.

How about the short-time behavior of S2(t)? We shall argue
that it is, instead, always linear in time, even for qubits. Let us
limit our discussion to qubits, q= 2, as for q ≥ 3 one anyway has
linear growth S2 ~ t even at long times. For short-time behavior it
is crucial to account for correlations spreading in a direction
transversal to the boundary of dimension d− 1 and area A(d− 1)

between regions A and B (in 2D A(d−1) is a circumference l, in 3D
a true two-dimensional area A, in 1D the number of boundaries c,
Table 1). Starting from a product initial state the dynamics tries to
generate entanglement across the boundary. For local (n.–n.)
interaction the natural first candidate sites to be entangled are
all ~Ld− 1 n.–n. pairs lying on the boundary between A and B.
Only after all those qubits are entangled can a slowing down due
to diffusion in a transversal direction kick in. Let us be more
specific, with a view on numerical demonstration. In our random
quantum circuits we will apply L gates between random n.-n.
qubits per unit of time. Such scaling is in-line with the mentioned
units of time—probability that such a random n.–n. gate connects

A and B is � Ld�1

Ld
¼ 1

L, and therefore applying L of them means we
will have ~1 gates connecting regions A and B, and therefore, at
least initially, generate one bit of entanglement in a unit of time.
More precisely, the probability that a random gate connects A
and B is Aðd�1Þ

dLd
, where the denominator dLd is the number of all

nearest-neighbor bonds on a d dimensional square lattice. The
initial growth of entanglement is therefore expected to be

S2 �
Aðd�1Þ

dLd�1 t: ð3Þ

We expect this linear growth to hold for any Sr, including r= 1.
Such linear growth will continue until the time t1 ~ Ld−1 at which
S2(t1) ~ A(d−1). After that one will crossover into the asymptotic
diffusive growth S2 �

ffiffi
t

p
, until at t∞ ~ Ld+1 a finite-size

saturation value S2(t∞) ~ Ld is reached.
We see that in higher spatial dimensions the region of diffusive

growth is parametrically small, it lasts from t1 ~ Ld− 1 till t∞ ~ Ld+1.
Furthermore, in the TDL it is pushed to infinitely large values of
entropy Ld−1 ≲ S2 ≲ Ld and will be hard to observe. Qubits in d= 1
are rather special because the linear growth ends at S2 ~ L0= 1 (i.e.,
at short time t1 ~ 1) and one gets S2 �

ffiffi
t

p
in the whole range of S2

(and t). In short, in d= 1 the asymptotic � ffiffi
t

p
growth is “easy” to

observe, while in d > 1 it is hard because it appears in the TDL only
at infinitely large values of S2. Therefore the generic behavior after
a quench from a product state is in d > 1 the linear growth (which
is as fast as allowed by the Lieb-Robinson bound21). Table 1
summarizes these findings.

Clifford circuits. It is always useful to take the simplest model,
analytically or numerically, that displays the physics one wants to
explore. A setting for which one can get exact results for the
entanglement dynamics are so-called random quantum circuits22

composed of a series of (random) local unitaries. Random circuits
can be thought of as handy toy models of many-body physics but
also as a useful theoretical concept called a unitary designs23. One
of the first exact results was obtained by rewriting the dynamics of
purity on average as a classical Markov process24, mapping it to a
solvable quantum spin chain and getting an exact expression for
the gap Δ or the decay rate25, i.e., entanglement speed26 vE in
modern language. For instance, for a circuit composed of a
random 2-site unitaries applied to a random n.-n. pair of qubits
in a chain with L sites, one gets25 vE ¼ ð1� 4

5 cos
π
LÞ � 1

5. If
one would instead take a regular brick-wall pattern of applied
gates, like in27, one instead has to calculate the gap of a
product of Markovian matrices, obtaining a “multiplicative” form
vE ¼ 2ln 5

4 cosπL
, going in the TDL to vE � 2ln 5

4, as also calculated

Table 1 Entanglement growth in diffusive lattice systems of
linear size L in d spatial dimensions with q-level local Hilbert
space (subsystem size is also ∝ L).

d q S2(t < t1) t1 S2(t1 < t < t∞) t∞
1D 2 ct Oð1Þ � c

ffiffi
t

p OðL2Þ
2D 2 l

2L t OðLÞ �
ffiffiffiffi
Lt

p OðL3Þ
3D 2 A

3L2
t OðL2Þ �

ffiffiffiffiffiffi
L2t

p
OðL4Þ

d 2 Aðd�1Þ

dLd�1 t OðLd�1Þ �
ffiffiffiffiffiffiffiffiffiffi
Ld�1t

p OðLdþ1Þ
d ≥3 ~t t1= t∞ OðLdÞ

For qubits one has two regimes: linear growth for t < t1, and a slow square-root growth at later
times, before the finite-size saturation S2(t∞) ~ Ld is reached at t∞. Time units are such that
dS2(0)/dt≈ 1 for all L and d, A(d−1) is the area of a (d− 1)-dimensional boundary between the
two subsystems (in dimension d= 3, 2, 1 this goes into area A, circumference l, and the number
of boundaries c).
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in27,28. Studies of random circuits have expanded in recent years,
including U(1) conserving ones20, with many nice exact results,
see e.g. refs. 20,26–31. They have been also notably used in a race
toward quantum supremacy32.

Let us check the above predictions for S2 by numerical
simulations of random circuits. In order to be able to simulate
large systems we resort to the so-called Clifford circuits. For a q
level system the local generalized Pauli operators X and Z are
defined33,34 as

X jj i ¼ j	 1j i; Z jj i ¼ ωj jj i; j ¼ 0; ¼ ; q� 1; ð4Þ
where ω:= e2πi/q, and all additions are modulo q (the sign ⊕).
Generators of the local Pauli group are all q2 products XvZw, with
v, w= 0, …, q− 1. The generalized Pauli group (GPG) on n sites
is then formed by the tensor product of q2 local Paulis, allowing
also for all overall phases ωj. Due to ZX= ωXZ, a product of two
members of the GPG is again in the GPG. The action of such
Pauli operators on the computational basis states is simple, for
instance, Xx1Zz1 � � � � � XxnZzn aj i ¼ ωz�x a	 xj i.

A Clifford circuit is a series of Clifford gates U, each of which
preserves the GPG. That is, Uj,k acting nontrivially on sites j and k
maps a member of the GPG to another member of the GPG
(instead of to a superposition of GPGs as for generic U). A
sequence of such Clifford gates acting on a stabilizer state can be
efficiently simulated (see Methods for details). A common choice
of Clifford gates are the phase gate P jj i ¼ ωjðj�1Þ=2 jj i, the
Hadamard gate H jj i ¼ 1ffiffi

q
p

P
kω

kj kj i, and a 2-qudit controlled-

NOT gate CNOT12 j; kj i ¼ j; k	 jj i. The dynamics of Clifford
circuits therefore boils down to modular arithmetic38. They also
form a unitary 2-design39 (correctly reproduce Haar averages
over all 2nd order polynomials in ρA(t → ∞), e.g., a purity), with
the same convergence behavior as generic random circuits.
Therefore, in absence of conservation laws S2(t) behaves similarly
for Clifford and for generic random circuits. So far Clifford
circuits have been extensively studied in quantum information,
but not so much in condensed matter or statistical physics. The
reason being that their dynamics is typically either ballistic or
localized40 (fluctuations though can exhibit interesting beha-
vior26). We shall study a new class of random Clifford circuits
that conserve magnetization and whose dynamics is diffusive. By
looking at random circuits we are also able to focus exclusively on
the role of the U(1) symmetry without any stray effects caused by
other conservation laws (e.g., conservation of energy).

Numerical verification. Let us first focus on qubits. For qubits
the elements of the local GPG are just the ordinary Pauli matrices
fσx; σy; σz;1g. To preserve the total magnetization our Clifford
circuit consists of applying the XY gate UXY :¼ expð�i π4 ðσxj σxk þ
σyj σ

y
kÞÞ to a randomly selected n.-n. pair of sites on a d dimen-

sional square lattice. It is easy to verify that Uy
XY1jσ

z
kUXY ¼ σzj1k

and Uy
XYσ

z
j1kUXY ¼ 1jσ

z
k, and therefore the total magnetization

σzj þ σzk is conserved. It also implies that a pair of oppositely
polarized spins is exchanged, UXY "#j i ¼ #"j i. Because the pair
(j, k) is chosen at random, it is also immediately clear that the
dynamics of magnetization is diffusive, e.g., starting from a
domain wall initial state # ¼ #" ¼ "j i the average profile at
time t can be expressed exactly in terms of binomial probabilities,
that can be approximated in the large-t limit by the error function
(see Fig. 1 for an explicit numerical demonstration).

Starting with the initial state ψj i � ð "j i þ #j iÞ�n stabilized by
gj ¼ σxj , we can simulate our Clifford circuit for thousands of
qubits up-to very long times, despite the entanglement eventually
being a volume-law S2 ~ Ld. Entanglement calculation is

simplified by the fact that the state at any time is composed of
an integer number M of generalized EPR pairs, 1ffiffi

q
p

P
j jj i1 � jj i2,

stabilized by two generators X1X2 and Z1Z
�1
2 . Eigenvalues of the

reduced density operator ρA(t) are all equal, and using the base-q
logarithm one has Sr=M for all r. In this respect Clifford circuits
are special, however, their dynamics of S2 will be generic and
consistent with the presented theory. In addition, we will also
numerically demonstrate that a similar behavior is obtained also
for non-Clifford circuits where the spectrum of the reduced
density operator is not flat. Therefore, while one can not extract
the difference between different Sr from Clifford circuit simula-
tions (in particular that S1 can behave differently), or use any
finer measures of complexity that involve the individual spectral
components, e.g. ref. 41, we argue that they do result in generic
behavior of S2. This is in-line with the fact that while Clifford
circuits are not universal, already very small modifications, see
e.g. refs. 42,43 (that might not influence many quantities), do
result in universal behavior, e.g. universal quantum computation.
For another solvable evolution that also results in a flat spectrum
of ρA see ref. 44.

In Fig. 2a–c we show S2 for 1D, 2D, and 3D lattice, and for
different bipartite splitting of n spins into regions A and B. For
1D we see that the asymptotic growth is S2 ¼ c

ffiffiffiffiffiffiffiffiffiffi
2t=π

p
with c

being the number of boundaries between A and B (c = 1 for a
half-cut, and c = 2 for the middle-13 cut). We also observe that at
short times t≲ 10 the growth is a bit faster than diffusive. This
means that in small systems L ~ 30 (being a typical maximal size
amenable to other methods) it would be very difficult to see the
true asymptotic growth over a significant range of times. In 2D
we show data only for the case where the region A is the middle-13
part of the full square lattice with n= L × L qubits, as this
bipartition gives a clearer transition between linear and diffusive
growth (see “Methods” for the half-cut data). Numerics confirms
the short-time growth given by Eq. (3) without any additional
prefactors (A(1)= 4L/3). We also note that to see the asymptotic
growth � ffiffiffiffiffi

Lt
p

one needs fairly large systems; even for L= 252
one can see only about one decade in time of S2 �

ffiffi
t

p
, while on

the other hand three decades of S2 ~ t. In 3D the situation is even
less favorable for slow asymptotic diffusive growth. Nevertheless,
in the more favorable half-cut bipartition we can see a transition
from the short-time S2 ¼ Að2Þ

3L2 t to the long-time S2 �
ffiffiffiffiffiffiffi
L2t

p
. Again,

for t < t1 the linear growth Eq. (3) has no additional prefactors
(for a half-cut A(2)= L2, for the middle-13 cut A

ð2Þ ¼ 2
3 L

2). For the
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Fig. 1 Diffusive melting of a domain wall in a 1D random Clifford circuit
with UXY gate. The inset shows the domain wall profile zk, while the main
plot show a diffusive growth of transferred magnetization ΔZ across the
domain wall (averaged over 103 circuit realizations and for L= 1000).
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middle-13 cut, despite a large number of qubits, n= 483= 110,592,
one can barely hint the eventual � ffiffi

t
p

growth. Finally, we show
entanglement profiles (Fig. 3a), i.e. S2 for a bipartite cut with
region A being the first k spins. Also shown are the fluctuations of
S2 between different circuit realizations (Fig 3b), showing that the
relative fluctuations scale as σðS2Þ=S2 � 1=

ffiffiffiffiffi
S2

p
, and therefore in

the TDL at large times dynamics is self-averaging. It suffices to
look at a single random circuit realization. In “Methods” we also
show data for more complicated Clifford gates than UXY, leading
to similar results.

We also check the case of qudits with q > 2, also studied in13.
To that end we simulate a qutrit chain (q= 3, i.e. spin-1
particles) where the local diagonal basis is spanned by
fZk;Z

2
k ¼ Z�1

k ;Z3
k ¼ 1g, and we take the initial state stabilized

by generators gj= Xj. Taking a Clifford circuit with the n.–n. gate
being UD=H2 CNOT21CNOT12CNOT12 H1, which gives rise
to diffusive conservative dynamics of both diagonal matrices,
Uy

D1jZkUD ¼ Zj1k, U
y
DZj1kUD ¼ 1jZk, and Uy

D1jZ
2
kUD ¼ Z2

j 1k,

Uy
DZ

2
j 1kUD ¼ 1jZ

2
k, we observe the expected diffusive S2 �

ffiffi
t

p
(Fig. 4). For further qutrit numerics see “Methods”, including
circuits with non-Clifford gates.

To get a generic case in which not all diagonal operators are
conserved we use local dimension q= 4 visualized as a qubit
ladder (n= 2L) with the local space corresponding to one rung.
We apply L steps per unit of time, each step consisting of: the gate
UZZ ¼ i expð�i π2 σ

z
1τ

z
2Þ applied to a random rung (σα are Pauli

matrices on the upper and τα on the lower leg), and either
magnetization-preserving UXY on a random bond in the upper
leg, or a non-conserving UG ¼ CNOT12 H1 expði π4 τz2Þ on a
random bond of the lower leg. Magnetization is conserved only in
the upper leg and one therefore expects generic behavior with

S2 ~ t. This is indeed observed in Fig. 4. We can also see that for
times less than ≈ 102 slower growth is observed in which diffusive
dynamics competes with increasingly dominating non-diffusive
dynamics of other operators, and therefore, once again, one needs
large systems with L≳ 100 in order to see the true linear
asymptotic growth. We contrast this linear growth with a special
case: if we instead of UG apply UXY also on the lower leg, such
that magnetization on both legs is conserved, one again gets a
non-generic S2 �

ffiffi
t

p
(orange dashed curve in Fig. 4). We remark

that this latter case of using UXY on both legs corresponds to a
Trotterized dynamics of the Hubbard chain (using Jordan-
Wigner transformation the upper leg represents spin-up
fermions, the lower spin-down, UXY is hopping, while UZZ is
the on-site interaction). In “Methods” we show further ladder
examples.

Discussion
We have presented a theory of the Rényi entropy growth in
lattice systems that conserve the total magnetization due to U(1)
symmetry. We show that in general qubit systems the entangle-
ment grows linearly in time until, at an area-law value of S2, a
crossover to slower square-root growth happens. In 1D qubit
systems the diffusive

ffiffi
t

p
growth is generic because the crossover

happens already at small values of entanglement S2 ~ 1, while in
higher dimensions the regime of such growth is in the thermo-
dynamic limit pushed to infinitely large values of S2 (at any finite
value of S2 the growth is linear). For lattice systems with more
than 2 local levels (spin-s particles with s ≥ 1) and a single con-
served charge, non-diffusive degrees dominate and one expects

Fig. 2 Entanglement growth in diffusive Clifford circuits in different dimensions. a In 1D (solid curves are for the middle-13 bipartition), 2D in b, and 3D in
c (solid blue, red and green curves are for the half-cut bipartition).
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Fig. 3 Entanglement profile for a bipartite cut after the first k sites.
a Shows profiles at different times, and b fluctuations, all in diffusive 1D
Clifford circuit with L= 500. In a we also show standard deviation (gray
shading) and one realization at two selected times.

Fig. 4 Entanglement growth for 1D qudit systems with q≥ 3. Solid curves
(blue, green, red) are for the ladder (q= 4) with diffusive dynamics only on
the upper leg, while the dashed orange curve (labeled “full L= 4000”) is
for the ladder with U(1) conservation on both legs. Solid olive curve is for
the qutrit (q= 3) chain with diffusive dynamics of all diagonal operators.
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the linear growth. An exception is a situation where the dynamics
of all diagonal operators is diffusive. Two-level systems in 1D are
special because a single diffusive charge exhausts all non-trivial
local projectors. Entanglement growth can therefore distinguish
both the spatial dimensionality as well as the size of the local
Hilbert space, with the influence of a diffusive charge diminishing
when either of the two increases.

It would be interesting to generalize our results to other trans-
port types beyond diffusion, an obvious conjecture in 1D is that
asymptotically one will have Sr > 1 ~ t1/z, with z being a dynamical
transport exponent. An interesting question is the influence of
more complicated symmetries than U(1), as well as the presence of
multiple symmetries. Energy conservation (i.e., time-translation
symmetry) which comes automatically in autonomous Hamilto-
nian systems, and which was not discussed specifically, is an
important example. While diffusive energy transport likely plays a
similar role, it carries few technical complications, for instance, it is
a nontrivial problem to establish diffusion of energy in the first
place. A class of systems not touched upon are integrable systems
where one has an extensive set of local conserved quantities. Those
will typically be ballistic, however it needs not be so. The question
is, can such non-ballistic modes influence the entropy growth in
some generic fashion? In the present work we focus on S2, and
conjecture that all integer Sr > 1 behave similarly; there could
however be non-trivial time-scales connected with the index r. von
Neumann entropy S1 is special13, and one could more generally
study how the whole average eigenvalue spectrum converges to
that of a random state19.

A promising direction is also employing introduced nontrivial
Clifford circuits to further explore the many-body physics, and,
more generally, to understand their dynamical properties and in
which aspects are they different than those of the many-body
Hamiltonian systems.

Methods
Simulating Clifford circuits. Evolution of states under conjugation by Clifford
circuits is not done by updating each computational basis state—that would be
inefficient for highly entangled states—but rather by a stabilizer formalism35. A
state ψj i on n qubits is called a stabilizer state if it is a unique joint eigenstate with
eigenvalue 1 of n independent stabilizer generators gj from the GPG. For qubits one
can obtain it as a product of projectors, ψj i ψh j ¼ Πjð1þ gjÞ=2, for qutrits one has
ψj i ψh j ¼ Πjð1þ gj þ g2j Þ=3. Here lies the advantage of Clifford circuits. Instead of
updating the state ψj i one instead updates each generator gj, whose number is
always n and which will remain elements of the GPG33,35. Performing one gate, i.e.,
updating all stabilizers, takes Oðn2Þ operations. Entanglement and state overlaps
can also be calculated efficiently36,37.

Additional data for 1D and 2D Clifford systems. In the main text we used the XY
gate in qubit (q= 2) systems to demonstrate diffusive growth of S2. Such gate is
quadratic in fermionic operators. Here we show that using more complicated
Clifford gates (which in particular are not quadratic), similarly as has been done for
q > 2, leads to similar results. In Fig. 5 we show data for S2 for three different types
of Clifford circuits. One that uses only the XY gate (similar data as in Fig. 2 a),
one with a gate UXYP ¼ UXY exp½�i π4 ðσz1 þ σz2Þ�, and one with a gate UG ¼
CNOT12H1 expði π4 σz2Þ that does not conserve the magnetization.

In Fig. 6 we show data for the same 2D diffusive qubit Clifford circuit utilizing
UXY gate as in Fig. 2b, but for a half-cut bipartition. We can see that the agreement
with theoretical short-time as well as long-time prediction (Table 1) is good. The
short-time growth is S2 ≈ 0.5t, where 0:5 ¼ l

2L with l= L, whereas the asymptotic
growth goes into S2 �

ffiffiffiffiffiffiffi
2Lt

p
(no fitting parameters).

Additional data for non-Clifford qutrit systems (spin S= 1). In the main text we
demonstrated that the dynamics given by the Clifford qutrit gate UD, which conserves
both the non-trivial diagonal operators Z1+ Z2 and Z2

1 þ Z2
2, results in a diffusive

asymptotic growth of S2 (Fig. 4). Instead of the two "Clifford”-basis diagonal operators
Zj and Z

2
j we can also use the language of spin S= 1 particles: there the two non-trivial

diagonal operators are Szj ¼ diagð1; 0;�1Þ and ~Szj ¼ 3ðSzj Þ2 � 2 � 1j ¼ diagð1;�2; 1Þ.
The gate UD of course also conserves those two, Uy

DðSz1 þ Sz2ÞUD ¼ Sz1 þ Sz2,

Uy
Dð~S

z
1 þ ~S

z
2ÞUD ¼ ~S

z
1 þ ~S

z
2. Note that UD is up-to phases equal to the spin-1

SWAP gate USWAP ¼ expð�i π2 ½ðS1 � S2Þ2 þ ðS1 � S2Þ þ 2 � 1�Þ, UDU
y
SWAP ¼

diagð1; 1; 1; 1;ω;ω2; 1;ω2;ωÞ.
We are going to show additional data for a number of spin-1 quantum circuits

that are not of the Clifford type. We will always use a half-cut bipartition and the
same initial state as used for Clifford circuits, that is a uniform superposition of all
computational states, ψð0Þ � ð 1j i þ 0j i þ �1j iÞ�L . The shown S2 is the average
one over between 103 (small L) and 20 (for largest L= 21) circuit realizations. The
aim is to further shed light on the fact that we expect the asymptotic S2 �

ffiffi
t

p
growth only if all diagonal operators are conserved and diffusive. For q= 3 this
means that both Sz and ~S

z
should be conserved (alternatively, both Z and Z2).

We first check the evolution using a 2-site gate UI that is a concatenation of the
diffusive UD we already used in the main text and the isotropic gate, that is
UI = UISOUD, where U ISO ¼ expð�i πffiffi

2
p S1 � S2Þ. The gate UISO is not a Clifford gate,

and conserves Sz, Uy
ISOðSz1 þ Sz2ÞU ISO ¼ Sz1 þ Sz2, but not ~S

z
1 þ ~S

z
2. The gate UI

therefore conserves only Sz1 þ Sz2, the dynamics of which is diffusive due to the
spatial randomness (a gate is applied to a random n.n. bond). We therefore expect
the asymptotic growth of S2 to be linear for UI despite diffusive total magnetization.
The results are shown in Fig. 7a, b. We immediately have to remark that a
drawback of non-Clifford circuits is that only very small systems can be simulated,
and correspondingly the reachable times are far from the asymptotic ones.

For comparison we also show data for the Clifford circuit with UD and L= 2000
(the same data as in Fig. 4), as well as for L= 10 and L= 20. Because the initial
rates of the entropy production are different for UD and UI we multiply the times
for the UD data by 1.4 so that the curves overlap at short times. We can see that up-
to times t ≈ 6 the two evolutions result in the same growth of S2 (one could fit S2 ≈
0.59t0.76); for instance, for L= 10 qutrits it is hard to claim any difference between
UD and UI. After t ≈ 10 though deviations start to appear: the Clifford case UD that
conserves both diagonal operators starts to converge to slower S2 �

ffiffi
t

p
growth,

whereas UI that conserves only the total Sz starts to grow faster. This is furthermore
seen also in the dependence of the scaling exponent in S2 ~ tα on time. Due to
taking a numerical derivative the data for α is much more noisy (particularly for
L= 20 where the ensemble size is 100), however one can nevertheless see a
clear difference between the two cases (in-line with observation in Fig. 7 a). For the
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Fig. 5 Average S2 for 1D random Clifford qubit system, middle-13
bipartition, and gates UXY, UXYP, and UG. Data for magnetization
conserving UXY and UXYP almost overlap, both growing diffusively. All is for
L= 1002 and averaged over 100 realizations.

Fig. 6 Entanglement growth for 2D Clifford qubit system and the half-cut
bipartition. Initial linear growth transitions at t_1 into asymptotic diffusive
growth.
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non-Clifford circuit α increases with time, while for the Clifford case it decreases.
While from such short-time data it is impossible to make a definite claim about the
asymptotic growth, what we observe is compatible with the asymptotics S2 ~ t for
UI. If the Clifford case, where we can simulate large systems, is any indication of the
required sizes necessary to reach the asymptotics, we can say that likely about five
times larger systems would be required to really see the asymptotic linear growth
for UI (for the Clifford data in Fig. 4, we can see that one converges to S2 �

ffiffi
t

p
only at t ≈ 103 where S2 ≈ 102).

In Fig. 8 we show data for further non-Clifford random circuits. We show results
for UXX2 ¼ expð�i π

2
ffiffi
2

p ½Sx1Sx2 þ Sy1S
y
2�Þ that conserves only Sz1 þ Sz2, but not ~S

z
1 þ ~S

z
2.

Data in frame (a) is compatible with the linear asymptotic growth. If we on the
other hand change the gate to UXX ¼ expð�i πffiffi

2
p ½Sx1Sx2 þ Sy1S

y
2�Þ, which conserves

both Sz1 þ Sz2 and ~S
z
1 þ ~S

z
2, we see that the growth is much slower, like S2 ~ t0.7 at

short times. While it is hard to make any asymptotic claims about S2 �
ffiffi
t

p
based on

such numerics (exact numerics for larger systems gets hampered by memory
requirements; the Hilbert space size for L= 21 qutrits is about the same as
for ≈33 qubits), what is very distinct is that the exponent is very different in (a) and
(b) despite a very similar 2-site gate; the only difference between the two is the
conservation of ~S

z
1 þ ~S

z
2. Finally, as a third example we show the anisotropic XXZ-

like gate UXXZ ¼ expð�i π3 ½Sx1Sx2 þ Sy1S
y
2 þ 1:5Sz1S

z
2�Þ that again conserves only the

total magnetization, and therefore one has S2 ~ t visible already at short times.

Data for ladder systems (q= 4). Here we show further data supporting the claim
that for ladders the growth of S2 is generically linear in time. We simulate Clifford
ladders with a large number of rungs L = 10000 using different 2-site gates. On
legs, upper or lower, we apply either the already seen
UXY ¼ expð�i π4 ðσxj σxk þ σyj σ

y
kÞÞ, or UG ¼ CNOT12 H1 expði π4 σz2Þ. On the rungs we

use either UZZ ¼ i expð�i π2 σ
z
1τ

z
2Þ, or USxy ¼ expð�i π4 σ

z
1Þ expð�i π4 τ

y
2Þ expð�i π4 τ

z
2Þ.

The protocol is always the same: at each step we apply one of the leg gates on a
random bond on either the upper or the lower leg, and a rung gate on an inde-
pendent random rung. The type of the gate applied on rungs as well as on the
upper and lower leg is held fixed, so that one can get 8 different protocols out of the
4 mentioned gates.

The gate UXY conserves the total magnetization on the respective leg on which it
acts, while UG does not. Namely, Uy

G1jσ
z
kUG ¼ σxj σ

z
k , and Uy

Gσ
z
j1kUG ¼ σxj 1k , so

that one has Uy
Gðσzj þ σzkÞUG ¼ σxj ð1k þ σzkÞ. The rung gate UZZ does not break

conservation of σz1 þ σz2, nor of τ
z
1 þ τz2 because one has U

y
ZZσ

z
112UZZ ¼ σz112, and

Uy
ZZ11τ

z
2UZZ ¼ 11τ

z
2 (as well as Uy

ZZσ
x
112UZZ ¼ �σx112, U

y
ZZ11τ

x
2UZZ ¼ �11τ

x
2).

The gate UZZ though does introduces non-trivial phases ±1 in the dynamics
of Pauli x and y matrices. The gate USxy on the other hand preserves
conservation of magnetization only on the upper leg, Uy

Sxyσ
z
112USxy ¼ σz112,

Uy
Sxyσ

x
112USxy ¼ �σy112, while it breaks conservation on the lower leg,

Uy
Sxy11τ

z
2USxy ¼ 11τ

y
2, U

y
Sxy11τ

x
2USxy ¼ 11τ

z
2.

In Fig. 9 we show results of numerical simulation for different protocols. Taking
the (XY)− (ZZ)− (XY) protocol where the leg gates UXY as well as the rung gates
UZZ conserve magnetization on the upper and the lower leg, dynamics of all
diagonal operators is diffusive and one has S2 �

ffiffi
t

p
. The same data for L= 4000

has been already shown in Fig. 4. We can break conservation of magnetization on
the lower leg by using UG, which as we can see results in the asymptotic growth
S2≍ t (red curve in Fig. 9, the same data as in Fig. 4). We can however break the
conservation on the lower leg also by changing the rung gate to USxy. This is
illustrated by the protocol (XY)− (Sxy)− (XY), which again results in S2≍ t. Note
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Fig. 7 Comparing Clifford and non-Clifford circuits. a S2(t) for two spin-1
random circuits: a Clifford system with UD conserving both diagonal
operators and resulting in diffusive growth (dotted curves for L= 10, 20,
2000 sites; times are multiplied by 1.4), and a non-Clifford UI (full curves for
L= 10, 14, 18, 20) that conserves only one diagonal operator and is
conjectured to lead to the asymptotic linear growth. The logarithm in the
definition of S2 is here base-3. In b we plot a finite-time scaling exponent α
(from S2 ~ tα) for the same data (solid lines for UI, dashed for UD; line-style is
changed into a dotted curves for times when S2 starts to approach a finite-L
saturation value). Chain lines suggest convergence with L.
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that here the dynamics along the two legs is purely diffusive—the gate UXY is used
on both legs—it is only the non-trivial rung dynamics that breaks one U(1)
symmetry and causes the asymptotic linear growth of S2 (similar result would be
obtained also if at each step of the protocol the UXY gate would be applied
simultaneously to a pair of upper- and lower-leg bonds forming a local plaquette
with two rungs). Finally, using conservation breaking UG on the lower leg as well as
the rung USxy, one again has S2 ≍ t.

Data availability
Data is available upon reasonable request from the author.
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Fig. 9 Entanglement growth for different ladder systems (q= 4) and the
half-cut bipartition. Notation (A)− (B)− (C) denotes Clifford evolution
with the gate UA on the upper leg, UB on the rung, and UC on the lower leg.
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