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A minimal model for structure, dynamics, and
tension of monolayered cell colonies
Debarati Sarkar1, Gerhard Gompper 1 & Jens Elgeti1✉

The motion of cells in tissues is an ubiquitous phenomenon. In particular, in monolayered cell

colonies in vitro, pronounced collective behavior with swirl-like motion has been observed

deep within a cell colony, while at the same time, the colony remains cohesive, with not a

single cell escaping at the edge. Thus, the colony displays liquid-like properties inside, in

coexistence with a cell-free “vacuum” outside. We propose an active Brownian particle model

with attraction, in which the interaction potential has a broad minimum to give particles

enough wiggling space to be collectively in the fluid state. We demonstrate that for moderate

propulsion, this model can generate the fluid-vacuum coexistence described above. In

addition, the combination of the fluid nature of the colony with cohesion leads to preferred

orientation of the cell polarity, pointing outward, at the edge, which in turn gives rise to a

tensile stress in the colony—as observed experimentally for epithelial sheets. For stronger

propulsion, collective detachment of cell clusters is predicted. Further addition of an align-

ment preference of cell polarity and velocity direction results in enhanced coordinated, swirl-

like motion, increased tensile stress and cell-cluster detachment.
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Many fundamental biological processes, like embryogen-
esis, wound healing or cancer/tumor invasion require
cells to move collectively within tissues1–3. The physics

underlying these processes ranges from understanding actin
polymerization and tread-milling for force generation4,5 and
single cell migration6,7, to the collective behavior of many
migrating cells8–12. Here, we focus on an observation from
monolayers of migrating Madin–Darby canine kidney (MDCK)
cells on surfaces, a prototypical model system for collective cell
migration. Experimental observations reveal large-scale collective
motion, like swirls, within the bulk of young monolayers13,14,
thus the display of fluid-like properties, before jamming occurs as
the epithelial sheet matures15–18. Interestingly, as an initial colony
expands, no cells detach from the boundary—even though the
bulk of the tissue remains clearly fluid-like9. Cohesion is strong
enough that fingers of many cells can protrude at the propagating
tissue front without cell detachment. Even stronger-pulling “lea-
der cells” do not detach19–22. Cells are thus in a ’liquid-vacuum’
coexistence regime. Even more surprising, pioneering experi-
ments have revealed that these expanding colonies are under
tensile stress23,24. This raises the question how this liquid-vacuum
coexistence, in combination with strong collective motion and
tensile stress, can be captured and understood from a minimal
physical model.

An active Brownian particle (ABP) model25–29 for cells with
standard attractive Lennard—Jones (LJ) interactions has been
proposed to study cell colonies30,31. However, only solid-vacuum
(no fluidity of the condensed phase), or liquid-gas (finite cell
density in the dilute phase) coexistence has been obtained. The
coexistence of liquids with a very-low-density gas phase is of
course well known in many equilibrium systems. In the biological
context, for example, lipid-bilayer membranes are liquid in nat-
ure, but the critical-micelle concentration is very low, so that
lipids essentially never detach from the membrane. In the mod-
eling and simulation of lipid membranes, a similar problem of
attractive interactions and fluidity exists as for cell monolayers—
too strong attraction leads to solidification. In coarse-grained
simulations of lipid bilayers, this problem was overcome by an
interaction potential with an extended range compared with the
standard Lennard-Jones potential, which provides strong adhe-
sion while still giving enough wiggle room for the molecules that
the membrane to remains the fluid phase32. In the spirit of
minimal modeling, we propose an active Brownian particle (ABP)
model for the cells, combined with a similar longer-range inter-
action potential as employed successfully for the membrane
lipids. We demonstrate that the LJ potential with a wider
attractive basin indeed opens up a region in phase space that
displays liquid-vacuum coexistence. The size of the liquid-
vacuum region expands as the basin width of LJ potential
increases. The fluidity of the condensed phase implies the
emergence of several interesting behaviors, like a tensile stress
within the colony due to a preferred orientation of the boundary
cells to the outside, as well as the detachment of cell cluster above
a size threshold. When a coupling of cell polarity to the instan-
taneous direction of motion— which is significantly affected by
the interactions with the neighboring cells—is introduced, the
formation of swirls and collective cell detachment is strongly
enhanced.

Results and discussion
Active Brownian particles with attraction. Liquid-vacuum
coexistence requires strong inter-particle adhesion, so that cells
can not detach from the main colony. Concurrently, the adhesion
has to provide enough wiggling room that the cells remain locally
mobile inside the condensed phase and provide fluidity to the

colony. A long-range coordinated motion of cells, like fingering
or swirls, then already emerges to some extent from the self-
organized motion of cells which all vary their propulsion direc-
tion independently and diffusively. However, pronounced corre-
lations are found to require additional alignment interactions of
cell orientation and direction of motions. Here, the effect of
neighbors pushing (or pulling) a cell in a certain direction is
assumed to induce a reaction in the cell to reorient and align its
propulsion direction with its instantaneous velocity direction.

The ABP model, where each particle is a sphere (in 3D) or a
disc (in 2D) which undergoes rotational Brownian motion and
additionally experiences a body-fixed driving force of constant
magnitude, was developed to describe active motion on the
microscale17,33. This model displays a rich phase behavior, most
notably motility-induced phase separation25,26,28,34, where per-
sistence of motion and short-range repulsion induce cluster
formation. Addition of a Lennard–Jones attraction leads to the
formation of arrested clusters for small propulsion27,30,35. In
order to obtain liquid-like properties at strong adhesion, we
follow the spirit of ref. 32 and propose an interaction potential
with an extended basin of width �σ, so that

Vm ¼
4ϵ ðσ=rÞ12 � ðσ=rÞ6� �

; 0< r ≤ 21=6σ

�ϵ; 21=6σ < r ≤ ~r

4ϵ ðσ=ðr � �σÞÞ12 � ðσ=ðr � �σÞÞ6� �
; ~r < r ≤ rcut

8><
>:

Here, σ is the particle diameter, ~r ¼ ð21=6σ þ �σÞ, and ϵ is the
interaction strength. This modified interaction provides a short-
range repulsion or volume exclusion for the particles with
separation r < 21/6σ, a force-free regime for 21=6σ < r ≤ ~r, and a
long-range attraction for particle separation, ~r < r< rcut ¼ 2:5σ.

Our model can be interpreted from a biological perspective as
follows. Cell-cell attraction is mediated by the adhesion between
the rather deformable cell membranes with the attached actin
cortex. While this membrane adhesion is strong (indicating large
ϵ), the distance between the two cell centers can still vary over a
wide range (corresponding to our �σ). Only if cells come very close
to each other, the cell nuclei repel each other strongly (implying
the hard-core radius σ).

For activity, each ABP is subjected to a constant active force f0
along a body-fixed propulsion direction n̂i ¼ ðcos θi; sin θiÞ. The
orientation θ undergoes diffusive reorientation, and may
additionally experience alignment forces. Time evolution follows
a Langevin dynamics,

m€ri ¼ � γ_ri þ FiðriÞ þ f 0n̂i þ
ffiffiffiffiffiffi
2D

p
ηTi ;

_θi ¼
ffiffiffiffiffiffiffiffi
2Dr

p
ηRi :

ð1Þ

Here, Fi=−∇iV describes the interaction with other cells with
the total potential V as a sum of all pair interactions, and f0= v0γ
is the driving force which results in a self-propulsion velocity v0
for an isolated cell experiencing a drag force due to substrate
friction with drag coefficient γ, which is related to the thermal
translational diffusion coefficient D= kBT/γ by the Einstein
relation. Similarly, Dr is the rotational diffusion coefficient. The
noise forces η are assumed to be Gaussian white-noise variables
with 〈ηi(t)= 0〉 and hηiðtÞηjðt0Þi ¼ δijδðt � t0Þ. However, note
that this is an active system, and thus both diffusion processes can
in principle be independent active processes with different
amplitudes, and thus do not need to satisfy the Einstein relation
or fluctuation-dissipation theorem. In order to emphasize the
importance of rotational over translational diffusion, we choose
Drσ2/D= 3. The Langevin equation (with a finite particle mass) is
employed to enable Verlet integration36,37 instead of Euler
integration, which allows a much larger time step and therefore
enabeles faster computations. m and γ are chosen such that
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viscous drag dominates over inertia even at short timescales, and
the dynamics of the system is in the overdamped regime.

The cohesive nature of modeled cell colonies depends on the
competition between adhesion and self-propulsion. A key
parameter is the potential width �σ, which controls the fluid-like
consistency of the colony. Further details about model parameters
can be found in the “Methods” section. In the simulation results
described below, all quantities are reported in dimensionless units
based on thermal energy kBT, particle diameter σ, and rotational
diffusion time τr= 1/Dr. We characterize the system by three
dimensionless numbers, the Péclet number, Pe= v0σ2/D= 3v0τr/
σ which quantifies the activity of the system, the adhesion
strength U= ϵ/(kBT), and the potential width �σ=σ which
determines the wiggle room of the cells.

In order to introduce local velocity-orientation alignment, we
assume alignment between propulsion direction and velocity for
each cell individually38–40. In our simple stochastic model,
Eq. (1), the orientation dynamics in this case is determined by

_θi ¼
ffiffiffiffiffiffiffiffi
2Dr

p
ηRi � keDr

∂

∂θ
ðni:viÞ ð2Þ

Here, ke is the strength of particle alignment. The alignment
force can be interpreted as arising from a pseudo potential
Va=−(ke/2)(v ⋅ n), acting only on the orientation n, but not on v.
Unless noted otherwise, results concern systems withouth
velocity-alignment interactions (i.e., ke= 0).

Liquid-vacuum coexistence. We begin our analysis by exploring
the available phase space spanned by activity Pe and adhesive
strength U. The system is initialized with a circular cell colony
with N= 7851 particles and a diameter 100σ (packing fraction
ϕ= 0.79) in a square simulation box of linear size 150σ. The
resulting phase behavior as a function of Pe and U is displayed in
Fig. 1. Here, snapshots of particle conformation after long
simulation time (t= 3300τr), together with particle mobility,

measured by the mean squared displacement

d2m ¼ ðriðt þ t0Þ � riðtÞÞ2 ð3Þ
averaged over several reorientation times t0 ¼ 12τr , are employed
to characterize the phases. Figure 1a shows that a line Pe≃U
separates a homogeneous gas phase at Pe >U from a two-phase
coexistence regime for Pe <U. For low activity (Pe≪U), the
condensed phase is solid, where particles do not show any sig-
nificant movement, i.e., d2m � 0. As activity increases and
approaches Pe≃U, cells become mobile (d2m > 1). A simple esti-
mate for a pair of particles, which equates the propulsion force
with the maximum of the attraction force, reveals that the
detachment occurs at Pe= 2.4U; for larger Pe the adhesive force
is no longer strong enough to keep particles together. Note that
thermal fluctuations are usually rather small in this study
(because U≫ 1). Finally, for large Pe≳ 100≫U, attraction
becomes negligible compared to propulsion, and the system
behaves like ABPs without attractive interactions. In this case, the
hard-core repulsion dominates, and cells jam due to collisions at
high particle density and strong propulsion forces. This corre-
sponds to motility-induced phase separation generally observed
in repulsive ABP systems25,26,28,34.

For Pe≲U, cells are unable to detach from the colony, and the
colony coexists with a cell vacuum outside. If Pe≪U and U≳ 8,
the system is clearly kinetically arrested, but as activity increases,
the “wiggle room” of the potential allows particles to break the
neighbor cage and move, resulting in liquid–vacuum (L–V)
coexistence (see Supplementary Movie 1). This state of a single
cohesive colony is not induced by the initial conditions of a single
circular patch, but also emerges from an initial random
distribution of particles due to particle aggregation and cluster
coarsening (see Supplementary Movie 2). To quantitatively
characterize and clearly distinguish mobile cohesive colonies
from the kinetically-arrested colonies, we employ the “mean
squared particle separation” (MSPS). We choose random pairs of

Fig. 1 Visual phase diagram. a Phase diagram illustrated by snapshots at the end of simulation. Here we plot the mobility profile as a function of attractive
interaction U and activity Pe. We start the simulation with initial circular patch. The color code defines the magnitude of mobility. Blue means immobile and
red means highly mobile colony. (�σ=σ ¼ 0:3; overall packing fraction is 0.274). See Supplementary Movies 1 and 2 for the formation and dynamics of the
cohesive colony at liquid vacuum coexistence for U= 40, Pe= 30. b Close-up of the transition region from L–V coexistence to the “many clusters” regime
at U= 40. Above Pe≥ 30, the system is in the regime of a liquid colony with detached clusters, with a smooth crossover to many small clusters for Pe≥
36.
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cells m and n inside the colony at time tp, which are initially at
contact with a center-center distance less than 1.1 σ, and measure
the squared separation of this pair over time. We average over Np

such pairs at different initial times tp:

MSPS ðtÞ ¼ 1
Np

X
Np

ðrmðtp þ tÞ � rnðtp þ tÞÞ2: ð4Þ

A characteristic feature of the arrested dynamics in a solid
phase is that particles do not exchange neighbors, so that the
MSPS plateaus at MSPS < (1.2σ)2. In a fluid phase, particles
exchange neighbors at a constant rate, and MSPS increases
linearly with time (see also Supplementary Note 1 and
Supplementary Fig. 2). Thus the MSPS is good indicator of
fluid-like behavior. Here, we choose MSPS > (1.2σ)2 at time t=
12τr as a definition of fluid-like behavior. To quantify cohesive-
ness, we turn to a cluster analysis, where particles are identified to
be in the same cluster if their distance is less than the cutoff
distance rcut. The condensed phase-vacuum coexistence is then
signaled by cluster number Ncl= 1. Figure 2a displays MSPS (t=
12τr) and Ncl as a function of Pe/U. For Pe≲ 0.55U, the system
remains cohesive and solid. As activity increases, MSPS increases
as well, but the colony remains cohesive, clearly identifying the
liquid-vacuum (L–V) coexistence region. Further increasing
activity (Pe≳ 0.75U) leads to the occasional detachment of small
clusters (above a threshold size) from the parent colony (see
discussion below). Interestingly, occasional cluster detachment is
not sufficient to disintegrate the parent colony, as detached
clusters can rejoin the parent colony, which thereby coexists with
a gas of small clusters. Increasing activity further leads to an
increasingly fractal structure of the main cluster, and a more
homogeneous density distribution of the whole system with many
irregular clusters (see Fig. 1b). We define somewhat arbitrarily the

transition to the “many-small clusters” regime, when the average
number of clusters exceeds a threshold, Ncl≥ 10.

Figure 2b, c display different cuts through the phase space, to
elucidate the region of stability of different regimes. The results in
Fig. 2b show that a minimum width �σ=σ ’ 0:15 of the potential
well is necessary to observe a liquid-vacuum coexisting phase.
Thus, the width �σ=σ plays a crucial role to achieve a cell colony
with fluid-like dynamics at strong adhesion. The importance of
Pe/U as the relevant variable to distinguish two-phase coexistence
from a one-phase gas-like region, is emphasized by Fig. 2c, which
demonstrates that the boundaries between the different regimes
occur at Pe/U≃ 0.55, 0.75, and 0.875, for U≳ 20. Note that all
these boundaries appear at Pe/U values, which are much smaller
than the unbinding threshold Pe/U≃ 2.4 of particle pairs.

For Péclet numbers Pe≳ 0.75U, small clusters are able to detach
from the parent colony. This process can be characterized by the
cluster-size distribution P(npc), see Fig. 2d. The peak of the
distribution for clusters in the size range from 10 to 100 indicates
that particles escape collectively. We do not observe the escape of
any single cell from the colony in this regime. This can be
understood from a simple argument, which considers a small semi-
circular patch of npc particles at the boundary of the colony (see
Supplementary Notes 2–3 and Supplementary Figs. 3–4). The patch
has an interface with the colony of length proportional to ffiffiffiffiffiffinpc

p . If all
particle orientations point in roughly the same direction (outwards),
then the patch can unbind when npc > n�pc ’ 12:7 U=Peð Þ2, i.e., for
sufficiently large patch size, a size which decreases rapidly with
increasing Pe. The probability for all particles in such a cluster to be
roughly aligned depends on the Péclet number, as particles move
toward the boundary with preferred outward orientation41.
However, the particle mobility in the fluid phase is very small due
to the dense packing of neighbors, so that the characteristic ballistic
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Fig. 2 Quantification of phase behavior. a “MSPS” (left axis) and Ncl (right axis) as a function of Pe/U, for fixed U= 40 with increasing activity. MSPS(t) is
calculated at time separation t= 12τr. The orange area indicates S−V coexistence, the blue area L−V coexistence, the green area L−V coexistence with small
detached cell clusters in the gas phase, and the red area a homogeneous phase of many small clusters. Results are for �σ=σ ¼ 0:3. b Phase diagram as a function
of the potential width �σ for fixed U= 40. Note that the potential width �σ needs to be sufficiently large, with �σ=σ ≥0:15, to allow liquid-vacuum coexistence
c Phase diagram various U as a function of rescaled Peclet number, Pe/U, for fixed �σ=σ ¼ 0:3. d Cluster-size distribution of detached clusters, of size npc, at
�σ=σ ¼ 0:3, U= 40, and Pe= 32. Inset: Same data in log–log representations, which also includes the parent colony along with the detached clusters.
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motion of ABPs for times less than τr is completely suppressed (see
Supplementary Fig. 1). Therefore, polar ordering is mainly seen at
the edge of the colony, see Fig. 3a. Cluster formation therefore arises
mainly from the increased mobility of pre-aligned particles at the
boudary (see Supplementary Movie 3).

Stress profile-tensile colonies. To gain a better understanding of
the properties of the liquid-like cohesive colony, we analyze
the polarization field of the active force and the stress profile.
Figure 3a shows that the averaged local polarization is zero inside
the colony, but points outwards at the boundary. This is in
contrast to what is typically found for motility-induced cluster-
ing25,28,42–44. The reason is that the attractive interactions keep
outward-oriented particles at the boundary of the colony—which
would otherwise move away—combined with the fluidity of the
colony which allows local particle sorting near the boundary,
similar to the behavior of isolated self-propelled particles in
confinement41,45. This mechanism is rationalized with a simple
dumbell of two ABPs as described in Supplementary Note 5.

The alignment of motility forces at the boundary should lead to
an increase of tensile stress. Note that we refer to the stress within
the cell layer; due to force balance, this stress is of course balanced
by an opposite and equal stress in the substrate. Indeed, in
experiments the deformation of the substrate is used to measure the
net forces on the cell layer. Via integration of these substrate forces,
the stress in the cell layer is then obtained. This procedure results in
equivalent stress profiles in our simulations (see Supplementary
Notes 4 and Supplementary Fig. 5). For the liquid colonies in
coexistence with the vacuum phase, we find significant tensile stress
in the center (see Fig. 3c). Because cells near the boundary on
average pull outwards, the tension builds up near the boundary, and
remains constant inside the colony where cells are randomly
oriented. The total stress in the colony has two contributions: the
interaction (virial) and the kinetic contribution. In addition, we
consider the swim stress44. In a dense liquid, at liquid-vacuum
coexistence, the inter-particle contributions dominantes, whereas
the swim stress is comparatively small (Fig. 3b). Figure 4 shows the
dependence of the total (virial+kinetic) central stress in the colony
on the activity. In the solid regime, the central stress is negative due
to the passive surface tension, resulting in a Laplace pressure
proportional to U. Increasing activity leads to more liquid-like
consistency, facilitating enhanced outward particle orientation at the
edge, and hence tensile stress. Interestingly, the stress is found to be
a linearly increasing function of Pe over the whole investigated
range, 0 < Pe ≤ 30, i.e., both in the solid and liquid regime of the
colony. This indicates that the enhanced particle sorting occurs

mainly near the edge, and an increased edge mobility exists already
in the solid phase near the S–L phase boundary. A tensile stress in
cell colonies has been observed similarly in experiments, where the
average stress within a spreading cell sheet increases as a function of
distance from the leading edge23. We also simulated a quasi-one-
dimensional (rectangular channel) geometry and obtained the total
stress in the colony by integration of the net substrate forces, as in
experiments. Consistently, it increases from zero outside to a finite
tensile stress in the center (see Supplementary Note 4 and
Supplementary Fig. 5).

Coordinated motion–motion alignment. In experimental
observations, long-range velocity correlations are often visible in
the bulk of spreading epithelial sheets13,14. ABPs with adhesion
display significant velocity correlations even without explicit
alignment interactions (see Supplementary Fig. 7, and refs. 17,46).
However, as ABPs display independent orientational diffusion, it
is evident that realistic long-range correlations require some type
of velocity alignment. We employ a local velocity-orientation
alignment mechanism, in which cell propulsion direction (=cell
polarity) relaxes toward the instantaneous cell velocity, resulting
from the forces induced by its neighbors38–40, as introduced in
Eq. (2). Without alignment, correlations arise from a small group
of cells pointing in the same direction by chance, and thus

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  10  20  30  40  50  60  70  80  90

a)

<
p>

r/σ

U=15, Pe=10
U=40, Pe=30

-1

 0

 1

 2

 3

 4

 5

 10  20  30  40  50  60  70  80  90

b)

St
re

ss

r/σ

Virial
Swim

KE
Virial+KE

 0

 1

 2

 3

 10  20  30  40  50  60  70  80  90

c)

St
re

ss

r/σ

U=15, Pe=10
U=40, Pe=30

Fig. 3 Stress profile. a Averaged polarization vector of the circular patch for �σ ¼ 0:3σ at L−V coexisting state for two different activity. b Different
components of the stress profile at �σ ¼ 0:3σ and U= 40, Pe= 30. “Virial” stress arising from cell–cell interactions (purple line), “active” stress due to
propulsion, also called swim-stress (yellow line), “kinetic” (ideal gas') stress (light-blue line), and the total stress (virial+ kinetic, red line) c The total
stress profile for different adhesive strength in L−V coexisting states at U= 15, 40. The stress is generated in the boundary region of the colony; outside of
the colony, the stress vanishes.

-4

-2

 0

 2

 0  5  10  15  20  25  30

St
re

ss

Pe

U=40, -σ=0.3σ

Fig. 4 Activity increases tension. Total central stress calculated in the area
starting from the center to a radius 30σ as a function of activity, Pe, for
U= 40 and �σ ¼ 0:3σ . The transition from S–V to L–V coexistence occurs at
Pe= 23 (compare Fig. 2c), which essentially coincides with Peclet number
where central stress changes sign.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-020-00515-x ARTICLE

COMMUNICATIONS PHYSICS |            (2021) 4:36 | https://doi.org/10.1038/s42005-020-00515-x | www.nature.com/commsphys 5

www.nature.com/commsphys
www.nature.com/commsphys


moving collectively more easily and furthermore dragging other
cells along. The alignment interaction stabilizes and enhances this
effect. In presence of velocity alignment, the velocity field shows

an enhanced coordinated motion with prominent swirls in the
bulk of the colony and fingering at the edge (see Fig. 5a).

We quantify the spatial correlations by the velocity–velocity
correlation function

CvvðrÞ ¼
P

iδvðriÞ � δvðri þ rÞP
iδvðriÞ � δvðriÞ

� �
; ð5Þ

as a function of distance r, where the brackets denote an average
over all directions and time. Here, velocities are measured relative to
the average velocity �v, of the whole colony, i.e., δvðrÞ ¼ vðrÞ � �v, to
avoid finite-size effects. The correlations decay exponentially with a
characteristic length scale, ξvv (see Supplementary Note 6 and
Supplementary Fig. 8). Figure 5b displays the correlation length ξvv
as a function of alignment strength ke for various adhesive
interactions. For fixed adhesion and activity, increasing alignment
strength ke facilitates a transition from the solid to the liquid state of
the colony. Furthermore, the alignment coupling leads to stronger
correlations, as indicated by the monotonic increase of ξvv with kev0,
and thus to swirls and fingers. Eventually, fingering is so strong that
clusters detach, and the colony is no longer cohesive (see
Supplementary Movie 5). Close to the transition, detached clusters
are even larger than without alignment (see Fig. 5c). Indeed, in the
case shown in Fig. 5c, the smallest observed cluster contains 16
particles.

Nevertheless, correlation lengths up to ξvv= 10σ can be
achieved in a cohesive colony, quite comparable to the 5 to 10
times cell size obtainable in experiments13,17. Also, the tensile
stress at the colony center increases (see inset of Fig. 5b) and
becomes positive at sufficiently large kev0. The critical alignment
strength kev0, where the colony is liquefied and the tensile stress
becomes positive, increases with attraction strength U.

Conclusions and outlook. We have presented a minimal model
for the fluidization of cell colonies, which consists of active
Brownian particles with adhesion. An attractive potential with
increased basin width yields non-equilibrium structures, phase
behavior and dynamics, which capture relevant features of bio-
logical cell colonies. The main observation is that for sufficient
basin width �σ, moderate adhesion, and propulsion, the system
exhibits liquid-vacuum coexistence, i.e., all particles agglomerate
into a single colony displaying liquid-like properties, while the
outside remains devoid of any particles. This is reminiscent of
in vitro experiments of MDCK colonies, where cells show strong
motion, while remaining perfectly cohesive, even when forced to
migrate in long narrow strips with strong tension buildup47.
Furthermore, the fluidity of the colony in our model results in
outward ordering of particle orientations at the edge, thus leading
to tension in the colony. This is consistent with the results of
traction force microscopy, which show that MDCK colonies are
typically under tension23. Our model demonstrates that no
alignment interaction or growth mechanism need to be evoked to
explain such tensile forces—the motility of the cells combined
with liquid properties of the colony suffice. As motility force
increases, particles start to detach from the parent colony, how-
ever not as single cells but collectively in small clusters of cells.

A quantitative comparison of our results with those of in-vitro
experiments requires of course to take into account many
additional contributions, like the formation of an actin cable at
the leading edge46,48. Interestingly, these models also employed a
wide attractive basin—however without exploring its role.

Finally, we have demonstrated how velocity–polarity alignment
can further enhance fluidity, tension, and fingering of the colony,
and collective cell detachment. Indeed, with velocity–polarity
alignment, simulations look very reminiscent of real MDCK

10σ

a)

 3

 6

 9

 12

 15

 18

 21

 0  0.5  1  1.5  2

b)

ξ v
v/

σ

ke v0

U=15, Pe=8
U=25, Pe=15
U=40, Pe=25

-1

 0

 1

 0  0.5  1  1.5  2

C
en

tr
al

 S
tr

es
s

ke v0

U=40, Pe=20
U=25, Pe=13

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

100 101 102 103

c)

P(
n p

c)

npc

L-V + cluster detachment (alignment)

10-2

10-1

100

100 101 102 103 104

P(
n p

c)

npc

Fig. 5 Dynamics of a cell colony with orientation-velocity alignment
interactions. a Velocity fluctuation field of the full cell colony for U= 40,
Pe= 25, and kev0= 1.25 at �σ ¼ 0:3σ, which displays prominent swirls in the
bulk and finger-like structures at the edge. See also Supplementary Fig. 7, and
Movies 4 and 5. b Characteristic correlation length ξvv, extracted from velocity
correlation, as a function of alignment strength ke, for different attractive inter-
actions U and activities Pe, as indicated, with �σ ¼ 0:3σ . The colony is in the
fluid state for kev0=0. Inset: Variation of total central stress as a function of
alignment strength ke, for adhesive strength U= 25, 40 (�σ ¼ 0:3σ). For both
data sets, the colony is in the solid state for ke=0, and transits to a liquid state
at kev0≃0.65 and kev0≃ 1.3 for U= 25 and U= 40, respectively. c Cluster
size distribution with velocity alignment (U= 40, Pe= 28, �σ=σ ¼ 0:3, and
kev0= 1.4, thus in the “Liquid-Vacuum + Detachement” regime).

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-020-00515-x

6 COMMUNICATIONS PHYSICS |            (2021) 4:36 | https://doi.org/10.1038/s42005-020-00515-x | www.nature.com/commsphys

www.nature.com/commsphys


colonies, displaying strong fingering at the edge, high tension and
long-ranged velocity correlations.

Our model also provides a tentative explanation for another
biological phenomenon. When metastatic cells detach from a
tumor, they typically detach collectively, as small groups of five
cells or large aggregates49–51, into the stroma and migrate to
reach blood or lymph vessels. At the edge of the liquid-vapor
region of our model, particles show exactly this type of behavior;
the colony is no longer perfectly cohesive, but clusters of cells
begin to detach.

In the future, we will look into mixtures of motile and immotile
cells—and also in three dimensions, where it was shown that the
motile cells sort to the periphery52.

An interesting next question is how these results will be
affected by cell growth. Of course, if growth is slow, the dynamics
will be independent of growth and the phenomenology will be
unchanged. However, when time scales of growth and motion
become comparable, novel phenomena may arise.

Methods
Implementation and simulation parameters. For numerical implementation of
our model, we use the LAMMPS molecular simulation package53, with in-house
modifications to describe the angle potential and the propulsion forces, as
described above. The system consists of N= 7851 particles (cells) in a 2D square
simulation box of size Lx= Ly= 150σ with periodic boundary conditions, unless
noted otherwise. With velocity-orientation-alignment interaction, the simulation is
carried out in a box of size Lx= Ly= 250σ. For the extended LJ interaction
potential, we use the cut-off distance rcut= 2.5σ. For numerical efficiency, we chose
a finite mass m= 1 and drag coefficient γ= 100 such that the velocity relaxation
time m/γ is much smaller than all physical time scales. The equations of motion are
integrated with a velocity Verlet algorithm, with time step Δt= 0.001. Each
simulation is run for at least 11 × 107 time steps, with rotational diffusion coeffi-
cient Dr= 0.03 this corresponds to a total simulation time longer than 3000τr,
where τr is the rotational decorrelation time.

Polarization vector. We define the spatial-temporal average polarization p for the
quasi-circular cell colony by the projection of the orientation vector n̂ of the
particle on the radial direction from the center of mass of the colony, i.e.,

hpðr0; tÞi ¼
XN
i¼1

ðn̂i � r̂0iÞ δðr0 � jr0ijÞ=
XN
i¼1

δðr0 � jr0ijÞ ð6Þ

where r0i ¼ ri � rcm, and rcm is the center-of-mass position at a particular time
t. Here, δ(r) is a smeared-out δ-function of width σ. 〈p〉 is further averaged
over time.

Stress calculation. The stress in numerical simulations of particle-based systems
with short-range interactions in thermal equilibrium consists of two contributions:
The virial stress and the kinematic stress. The virial contribution is

ΔVΣ virial
αα ¼ � 1

2

XN
i¼1

XN
j¼1

hλijrij � Fiji; ð7Þ

where Fij represents the pair-wise interaction between particle i and j and rij= ri−
rj. λij denotes the fraction of the line connecting particle i and j inside of the volume
ΔV. Here Σαα are the diagonal stress-tensor components, without Einstein con-
vention. The kinetic contribution is given by

ΔVΣ kinetic
αα ¼ �

XN
i¼1

mh_r2i Λii ð8Þ

where _ri denotes the velocity of particle i, and Λi(r) is unity when particle i is
within ΔV and zero otherwise.

For non-equilibrium ABP systems, additional terms have been suggested. In
ABP systems with short-range repulsion, it has been shown that the pressure is a
state function, depending only on activity, particle density, and interaction
potential, but not on the interaction with confining walls44,54–56. In comparison to
passive systems, activity implies a new contribution to pressure, which is called the
swim pressure. The calculation of the local stress in an ABP system is a matter of
an ongoing debate, which mainly concerns the form of the active term. We follow
ref. 44, and define a swim stress by

ΔVΣ swim
αα ¼ � γ

γR

XN
i¼1

hv0ni � _riΛii ð9Þ

where γR is the damping factor which is related to the rotational diffusion
coefficient as γR= 2Dr. Notably, in the dense fluid state in coexistence with vacuum

we are focusing on in this work, the active-stress component is much smaller than
the expected free particle swim stress. This is in line with results for the pressure
contributions in repulsive ABP systems at coexistence between a high-density and a
low-density phase, where the swim pressure in the high-density phase is
negligible44.

In experiments, the stress is accessible via the traction forces exterted by the
cells on the substrate. The stress is then obtained from force balance
∂xΣxx ¼ �f tractionx . We indentify the traction forces of our cells as f traction= fan−
γv, i.e., we assume that cells exert their active propulsion force fan on the substrate,
and experience friction forces−γv which also arrise from interaction with the
substrate.

Supplementary Fig. 5 shows that these integrated traction forces agree very well
with Σ= Σvirial+ Σkinetic. We thus define the stress as Σ= Σvirial+ Σkinetic.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.

Code availability
For numerical implementation of our model, we use the LAMMPS molecular simulation
package53, with in-house modifications to describe the angle potential and the propulsion
forces, as described above. The small code modifications used for this study are available
from the corresponding authors upon reasonable request.
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