
ARTICLE

Quantum annealing using vacuum states as
effective excited states of driven systems
Hayato Goto 1✉ & Taro Kanao 1

Quantum annealing, which is particularly useful for combinatorial optimization, becomes

more powerful by using excited states, in addition to ground states. However, such excited-

state quantum annealing is prone to errors due to dissipation. Here we propose excited-state

quantum annealing started with the most stable state, i.e., vacuum states. This counter-

intuitive approach becomes possible by using effective energy eigenstates of driven quantum

systems. To demonstrate this concept, we use a network of Kerr-nonlinear parametric

oscillators, where we can start excited-state quantum annealing with the vacuum state of the

network by appropriately setting initial detuning frequencies for the oscillators. By numerical

simulations of four oscillators, we show that the present approach can solve some hard

instances whose optimal solutions cannot be obtained by standard ground-state quantum

annealing because of energy-gap closing. In this approach, a nonadiabatic transition at an

energy-gap closing point is rather utilized. We also show that this approach is robust against

errors due to dissipation, as expected, compared to quantum annealing started with physical

excited (i.e., nonvacuum) states. These results open new possibilities for quantum compu-

tation and driven quantum systems.
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Quantum annealing (QA)1–3, sometimes also called adia-
batic quantum computation (AQC)4–6, is an alternative
approach to quantum computation. QA is particularly

useful for combinatorial optimization problems, where we have to
minimize (or maximize) discrete-variable functions called objec-
tive (or cost) functions7. The Ising problem (search for ground
states of Ising spin models)8,9 is a typical example of combina-
torial optimization problems. There are various situations
requiring to solve combinatorial optimization problems which can
be mapped to the Ising problem10–12, and hence QA machines
designed for the Ising problem (Ising machines)13–15 are expected
to be useful for practical applications. (Another promising appli-
cations of QA machines are quantum simulations16,17. But here
we focus on combinatorial optimization).

The idea of adiabatic QA (i.e., AQC) is simple. We start with
the ground state of an initial Hamiltonian, where we know the
ground state because the initial Hamiltonian is simple enough.
Changing the Hamiltonian slowly to the one corresponding to the
objective function for a given problem, we finally obtain the
ground state of the final Hamiltonian assuming that the quantum
adiabatic theorem18 holds. The final ground state gives us the
solution of the given problem. There is, however, an obvious
issue. If the energy gap between the ground and first excited states
almost closes during the adiabatic QA, the adiabatic theorem does
not hold, and consequently we cannot find the ground state
(optimal solution). Thus, the energy gap closing is a fatal issue for
adiabatic QA.

An approach to this crucial issue is to use excited states during
QA. For instance, we can achieve quantum speedups for certain
kinds of problems19,20 by using excited states via nonadiabatic
transitions at energy-gap closing points during QA. It is also
known that stoquastic AQC6,21, to which we can apply a classical
simulation method2, becomes as powerful as universal quantum
computation by using excited states6,22. That is, the use of excited
states makes QA more powerful. The positive use of excited states
in QA, where the initial state is intentionally set to an excited
state, not the ground state, has been proposed23. However, this
direction of research has not been pursued yet. This may be
because this approach is accompanied by the problem that the
initial state is prone to errors due to dissipation. (Another
example of using excited states in QA is thermal QA14, where
excited states are populated randomly by thermal noises. In
contrast, in the above method23, an excited state is fully popu-
lated, which can be regarded as a thermal state at a negative
temperature, like population inversion in lasers. In this sense, the
thermal QA is quite different from the above method23).

In this paper, we propose an approach to QA using excited
states, which is referred to as excited-state QA in order to dif-
ferentiate it from standard QA using ground states (ground-state
QA). Our approach is based on the use of driven quantum sys-
tems. As a driven system, in this work we use a network of Kerr-
nonlinear parametric oscillators (KPOs). The concept of the KPO
and quantum computations with KPOs, both adiabatic QA
(AQC) and gate-based universal quantum computation, were
proposed by Goto24,25, which were inspired by a more classical
approach using optical parametric oscillators26–29. These propo-
sals have been followed by interesting related works, such as
superconducting-circuit implementations30–38, on-demand gen-
eration of Schrödinger cat states39, and theoretical studies as new
driven quantum systems40–48. Also, Zhang and Dykman49 pro-
posed an approach to preparing quasienergy excited states of a
KPO via quantum adiabatic evolution started with its vacuum
state. This inspired us with the essential idea for our approach.

In our approach, excited-state QA is started with the most
stable state, i.e., the vacuum state of a KPO network. This

counterintuitive approach is possible, because QA with a KPO
network uses effective energy eigenstates of the driven system,
and we can set the vacuum state to an effective excited state of the
network by appropriately setting detuning frequencies for KPOs.
Our numerical simulations of four KPOs show that by this
approach we can solve some hard instances accompanied by
energy-gap closing, where a nonadiabatic transition at an energy-
gap closing point is rather utilized. Our simulations also show
that this approach is robust against errors due to dissipation.
Thus new possibilities are opened for quantum computation and
driven quantum systems.

Results and discussion
Ground-state QA with KPOs. Before presenting our proposed
approach to excited-state QA, here we describe standard ground-
state QA using a KPO network and show simulation results in
order to clarify the energy-gap closing problem mentioned above.

The N-spin Ising problem with coupling coefficients {Ji,j} and
local fields {hi} is to find a spin configuration minimizing the
(dimensionless) Ising energy defined as

EIsing ¼ � 1
2

XN
i¼1

XN
j¼1

Ji;jsisj �
XN
i¼1

hisi; ð1Þ

where si is the ith spin taking 1 or −1, and the coupling
coefficients satisfy Ji,j= Jj,i and Ji,i= 0.

The standard ground-state QA with a KPO network is as
follows. To solve the Ising problem, we use a KPO network
defined by the following Hamiltonian24,26,42:

HðtÞ ¼ _
XN
i¼1

K
2
ay2i a

2
i þ Δi ðtÞayi ai �

pðtÞ
2

a2i þ ay2i
� �� �

þ _ξðtÞ �
XN
i¼1

XN
j¼1

Ji;ja
y
i aj � AðtÞ

XN
i¼1

hi ai þ ayi
� �" #

;

ð2Þ

where ℏ is the reduced Planck constant, ai and ayi are the
annihilation and creation operators, respectively, for the ith KPO,
K is the Kerr coefficient, Δi(t) is the detuning frequency for the ith
KPO, p(t) is the parametric pump amplitude, and ξ(t) and A(t)
are control parameters (ξ has the dimension of frequency and A is
dimensionless). In this work, we assume time-dependent Δi and ξ,
unlike the literature24,26,42, for convenience of the extension to
excited-state QA. We also assume that all the parameters are
positive (if not mentioned). When K is negative, as in
superconducting-circuit implementations, we set p, Δi, and ξ to
be negative. Then, we obtain the same results26.

The KPO defined above has recently been realized experimen-
tally using superconducting circuits34,36. Although multiple
coupled KPOs have not been realized yet, we can, in principle,
realize a tunable coupling between superconducting KPOs, e.g.,
using four-wave mixing at a Josephson junction50,51. Thus the
KPO network model given by Eq. (2) is experimentally feasible.

Note that the Hamiltonian in Eq. (2) is an effective one in a
frame rotating at half the pump frequency and in the rotating-
wave approximation24,26. Consequently, this approach uses an
effective ground state of a KPO network for ground-state QA.
This is contrast to standard QA using physical ground states13–15.

We increase p(t) from zero to a sufficiently large value pf
(larger than K), decrease Δi(t) from Δð0Þ

i to zero, increase ξ(t)
from zero to a small value ξf (smaller than K), and set A(t) as
AðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðtÞ=Kp
. Then, the initial and final Hamiltonians, H0
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and Hf, become

H0 ¼ _
XN
i¼1

K
2
ay2i a

2
i þ Δð0Þ

i ayi ai

� �
; ð3Þ

Hf ¼ _
K
2

XN
i¼1

ay2i � α2f

� �
a2i � α2f
	 


þ _ξf �
XN
i¼1

XN
j¼1

Ji;ja
y
i aj � αf

XN
i¼1

hi ai þ ayi
� �" #

;

ð4Þ

where αf ¼
ffiffiffiffiffiffiffiffiffiffi
pf=K

p
and a constant term, �_Kα4f =2, has been

dropped in Eq. (4).
From Eq. (3), we find that the initial effective ground state is

exactly the vacuum state. On the other hand, the first term of Hf,
which is dominant for small ξf, has degenerate effective ground
states expressed as tensor products of coherent states,
±αfj i � � � ±αfj i, with amplitudes of ±αf. (A coherent state αfj i is
defined as an eigenstate of an annihilation operator a:
a αfj i ¼ αf αfj i52,53). Thus, assuming a sufficiently small ξf
compared to K, the final effective ground state is approximately
given by s1αfj i � � � sNαfj i, where {si= ±1} minimizes the following
energy:

Ef ¼ 2_ξfα
2
f � 1

2

XN
i¼1

XN
j¼1

Ji;jsisj �
XN
i¼1

hisi

 !
: ð5Þ

This is proportional to the Ising energy in Eq. (1): Ef∝ EIsing.
Consequently, we can obtain the solution of the Ising problem

from the final state of the adiabatic evolution started with the
vacuum state, assuming that p(t) varies sufficiently slowly and the
quantum adiabatic theorem holds.

To evaluate the ground-state QA with a KPO network, we
solved 1000 random instances of the four-spin Ising problem,
where {Ji,j} and {hi} are randomly chosen from the interval (−1, 1)
with uniform distribution, and normalized by the maximum
value of their magnitudes. Note that even in such small-size
instances, energy gaps can be much smaller than their average
value, as mentioned below. (This is also the case for standard QA
based on the transverse-field Ising model1–3. See Supplementary
Fig. 1 in Supplementary Note 1). Hence, by using these instances,
we can mimic energy-gap closing situations and show the
usefulness of our proposed approach. (Another reason for using
small-size instances is the difficulty of simulating systems
involving many KPOs).

We numerically solved the Schrödinger equation with the
Hamiltonian in Eq. (2). In this work, we set the final pump
amplitude as pf= 4K and the initial detuning frequencies as

Δð0Þ
i ¼ K if not mentioned (see Supplementary Note 2 for the

details of simulations in this work). The results are shown by
histograms in Figs. 1a, b, where the failure probability is the
probability that we fail to obtain the optimal solution (ground
state) of the Ising problem and the residual energy is the
difference between the ground-state energy of the Ising problem
and the expectation value of the Ising energy obtained by the
ground-state QA. (The spin-configuration probabilities are
calculated by the method in ref. 24). It is found that most
instances are well solved by this ground-state QA.
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Fig. 1 Comparison between simulations of ground-state quantum annealing and our proposed approach based on excited-state quantum annealing.
Here 1000 random instances of the four-spin Ising problem are solved. The coupling coefficients Ji,j between the ith and jth spins and the local field hi on
the ith spin are randomly chosen from the interval (−1, 1) with uniform distribution, and normalized by the maximum value of their magnitudes. For all
1000 random instances solved by each method, we measure the failure probability, that is, the probability that we fail to obtain the optimal solution
(ground state) of the Ising problem, and the residual energy, i.e., the difference between the ground-state energy of the Ising problem and the expectation
value of the Ising energy obtained by quantum annealing (QA). a and b show the results obtained by the ground-state QA with a network of Kerr-nonlinear
parametric oscillators (KPOs). c and d show the results obtained by the proposed approach based on the excited-state QA with a KPO network.
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To magnify bad results, we plot these results in a two-
dimensional plane, as shown in Fig. 2a. It turns out that the
ground-state QA results in high failure probabilities or high
residual energies in some instances. To examine the reason, we
check the energy levels, i.e., the eigenvalues of the Hamiltonian
in Eq. (2), in one of the worst instances indicated by a vertical
arrow in Fig. 2a. This instance is the worst in the sense that the
residual energy for this instance is the highest among the ten
worst instances in terms of failure probability. (The hardness of
this instance may come from its energy landscape shown in
Fig. 3h, where there is a local minimum far from its global
minimum). Figure 3a shows the energy levels in this instance
(see “Methods” for calculation of the energies). We find that the
energy gap between the effective ground and first excited states
almost closes at the point indicated by a vertical arrow. Thus, the
reason for the bad results in this instance is attributed to this

energy-gap closing. That is, the system is in the effective ground
state before the energy-gap closing point. At this point, however,
a nonadiabatic transition to the effective first excited state occurs.
Consequently, we cannot obtain the effective ground state at the
end. This time evolution is depicted by dotted arrows in Fig. 3a.
This argument is confirmed by the time evolutions of the
populations of the effective ground and first excited states shown
in Fig. 3b.

Figure 4 shows the cumulative distribution of minimum
energy gaps during the ground-state QA normalized by their
average value for the 1000 instances. It is found that there are
instances with very small energy gaps, as mentioned above. This
suggests that the energy-gap closing problem arises not only in
the instance discussed above, but also in some other instances (see
Supplementary Fig. 1 in Supplementary Note 1 for a similar result
for standard QA based on the transverse-field Ising model).
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Fig. 2 Comparison among various approaches to quantum annealing in terms of worst instances. We display simulation results for the same 1000
instances as in Fig. 1 as a scatter plot of the residual energy vs the failure probability in order to better appreciate the improvement in performance provided
by our proposed approach based on excited-state quantum annealing (QA). a Results for ground-state QA with a network of Kerr-nonlinear parametric
oscillators (KPOs). b Results for the proposed approach based on excited-state QA with a KPO network. c Results for five times iteration of the ground-
state QA. d Results for ground-state QA with a five times longer computation time. e Results for ground-state QA with control of pump amplitudes to
reduce photon-number deviations. f Results obtained by selecting the best result from the results in b and e for each instance. Red vertical arrows in a and
b indicate the worst instances obtained by the ground-state QA and the proposed approach, respectively, which are discussed in detail in the main text
using Figs. 3 and 5. Overall, the proposed approach based on excited-state QA provides better performance even when compared with enhanced ground-
state QA computations.
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Fig. 3 Characterization of the worst instance of ground-state quantum annealing. The instance is indicated by a red vertical arrow in Fig. 1a. a Energy
level of the first (solid line) and second (dashed line) excited states from the ground level as a function of pump amplitude p in the ground-state quantum
annealing (QA) with a network of Kerr-nonlinear parametric oscillators (KPOs). (The reduced Planck constant and the Kerr coefficient are set as ℏ= 1 and
K= 1, respectively.) The vertical arrow indicates energy-gap closing. The dotted arrows depict time evolution of the state. b Time evolution of the
population of ground (dotted line) and first excited (solid line) states in a. c, d Results corresponding to a and b, respectively, when the same instance is
solved by the proposed excited-state QA. e, f Results corresponding to a and b, respectively, when the same instance is solved by QA started with a
physical excited (one-photon) state. g Success probability as a function of a field decay rate κ for each KPO. h Energy landscape of this instance. The value
of the horizontal axis is the Hamming distance between the optimal solution (global minimum) and each configuration. The Hamming distance between
two spin configurations, {si} and fs0ig, is defined by the number of spin pairs, ðsi; s0i Þ, satisfying si ≠ s

0
i .
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Excited-state QA with KPOs. Here we present our proposed
approach. To set the vacuum state to the effective first excited
state of a KPO network, we set one of the initial detuning fre-

quencies, e.g. Δð0Þ
1 , to a negative value. Then, one-photon and

two-photon energies for the KPO at the initial time are expressed,

respectively, as _Δð0Þ
1 and _ðK þ 2Δð0Þ

1 Þ. Thus, the vacuum state is

the effective first excited state when �K=2 < Δð0Þ
1 < 0.

In the hard instance discussed above, a negative initial

detuning, Δð0Þ
1 ¼ �K=4 (others are K), leads to the change of

the energy levels from Figs. 3a to c. From Fig. 3c, we expect to
obtain the effective ground state via a nonadiabatic transition
from the effective first excited state to the effective ground state at
an energy-gap closing point, as depicted by dotted arrows in
Fig. 3c. As shown in Fig 3d, the populations of the effective
ground and first excited states actually interchange at the energy-
gap closing point. Our simulation also shows that the failure
probability and the residual energy for this instance are improved
from 0.963 and 0.171 to 7.10 × 10−4 and 6.87 × 10−4, respectively,
by the excited-state QA started with the vacuum state.

Note that the excited-state QA does not always succeed. Our
proposal is to try the ground-state QA and the excited-state QA

with a negative Δð0Þ
i (i= 1, …, N) and to select the best result

among the (N+ 1) cases. By this approach, the results for the
1000 random instances are dramatically improved from Figs. 1a,
b and 2a to Figs. 1c, d, and 2b, respectively. In particular, the
failure probabilities for the ten worst instances are substantially
improved, as shown in Table 1. (The instance discussed above is
the tenth one in Table 1. All detailed results are provided by
Supplementary Figs. 2–10 in Supplementary Note 3). These
results demonstrate the usefulness of our proposed approach.

For comparison, we also evaluate two naive approaches using
ground-state QA with (N+ 1)-time larger computational costs. In
the first approach, we iterate ground-state QA (N+ 1) times. In
the second one, we perform ground-state QA once but with (N+
1) times longer computation time. The results by these approaches
for the 1000 instances are shown in Figs. 2c and d, respectively.
Unlike the proposed approach, the improvements by these naive
approaches are quite modest. In particular, high failure probabil-
ities are almost unimproved. This can be understood as follows.
For example, in the case of the worst instance in Table 1, we need
log 0:000857=log 0:999959 � 1:7 ´ 105 times of iteration on aver-
age to achieve the low failure probability obtained by the proposed

approach. On the other hand, the minimum energy gap in this
instance is about 5 × 10−5 times smaller than the average value of
the energy gaps, which suggests that we need 2 × 104 times longer
computation time to achieve average performance. These results
also indicate the advantage of the proposed approach. Note,
however, that the proposed approach is useful only when its
quantum advantage over classical approaches is over O(N).

The instance indicated by a vertical arrow in Fig. 2b has still
high failure probability. To examine this reason, we show the
energy levels and the time evolutions of populations in this
instance in Figs. 5a and b, respectively. In this case, the minimum
energy gap is fairly large, and consequently the final ground-state
population reaches 0.864. However, its failure probability is as
high as 0.864, which almost exactly corresponds to the ground-
state population. This implies that the mapping of the optimal
solution of the Ising problem to the ground state of the KPO
network may be wrong.

We noticed that final photon numbers in KPOs deviated from
our design value, α2f ¼ pf=K ¼ 4, as shown in Fig. 5c, and the
deviations lead to the wrong mapping through the change of the
ratios between the terms in Eq. (5). To resolve this mapping issue,
we modulate the pump amplitudes as pi(t)= p(t) × (4/ni) in order
to cancel the deviations, where p is the original pump amplitude,
pi is the new pump amplitude for the ith KPO, and ni is the final
average photon number for the ith KPO with the original pump
amplitude p. The final average photon numbers in this case are
shown in Fig. 5f, where the deviations are reduced as expected.
The energy levels and the time evolutions of populations in this
case are shown in Figs. 5d and e, respectively. We can successfully
obtain the ground state. Unlike the original pump amplitude, in
this case the Ising mapping is correct and the failure probability is
reduced from 0.864 to 1.81 × 10−4. Thus the control of individual
pump amplitudes to reduce photon-number deviations also
improves the performance of QA with a KPO network. (Some
methods for reduction of deviations have been proposed for a
KPO network54 and other systems55,56).

We applied this control to other instances and obtained the
result shown in Fig. 2e. This is not very different from the original
one in Fig. 2a. Selecting the best result from the results in Figs. 2b
and e for each instance, however, we obtain the good result shown
in Fig. 2f, where all bad results are improved. This suggests that
bad results in ground-state QA with a KPO network are due to
either energy-gap closing or wrong Ising mapping induced by
photon-number deviations.

Table 1 Comparison between failure probabilities of ground-
state quantum annealing and our proposed approach based
on excited-state quantum annealing in terms of the ten
worst instances.

Instance Ground-state QA Proposed approach

SF2 0.999959 0.000857
SF3 0.999868 0.000823
SF4 0.999306 0.008013
SF5 0.997613 0.000606
SF6 0.997391 0.002041
SF7 0.996419 0.010281
SF8 0.99505 0.000859
SF9 0.989733 0.000678
SF10 0.967518 0.000842
Fig. 3 0.963459 0.000710

The ten instances, which are characterized in Supplementary Figs. 2–10 and Fig. 3, give the
highest failure probabilities of the ground-state quantum annealing (QA) among the 1000
instances in Fig. 1. SF supplementary figure.
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Fig. 4 Cumulative distribution of minimum energy gaps during ground-
state quantum annealing (QA) with a network of Kerr-nonlinear
parametric oscillators (KPOs). Values are shown for the same 1000
instances as those in Fig. 1. The minimum energy gaps are normalized by
their average value. The vertical axis plots the number of instances whose
minimum energy gaps are smaller than the value of the horizontal axis.
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Robustness against dissipation. In the proposed excited-state
QA, we do not need additional quantum operations, namely,
actual excitation to physical excited states. We can start with
vacuum states, as in the standard ground-state QA with a KPO
network. This is an advantage of our proposed approach.

Another advantage of this approach is the robustness of the
initial state against errors due to dissipation. To demonstrate it, we
evaluated the ground-state and excited-state QAs in the presence
of dissipation. For comparison, we also evaluated excited-state QA
started with a physical excited state, where one of the initial
detuning frequencies is set to K/4 and the KPO is initially set in its
one-photon state (see Supplementary Note 2 for the details of these
simulations). In the absence of dissipation, this excited-state QA
can successfully solve the hard instance in Fig. 3 by utilizing a
nonadiabatic transition from the effective first excited state to the
effective ground state, as shown in Figs. 3e, f. Figure 3g shows the

results in the presence of dissipation. (Success probability is one
minus failure probability). Here we assume a field decay rate κ
smaller than 0.01K. Such κ is experimentally feasible. (The recently
implemented KPO has K/(2π)= 6.6MHz and a photon lifetime of
15.5 μs36, which means that κ/K ≈ 8 × 10−4). Our proposed
excited-state QA started with vacuum states is more robust against
dissipation than the excited-state QA started with a one-photon
state. Interestingly, the performance of the ground-state QA is a
little improved by dissipation. This is due to excitation by quantum
heating42, as in thermal QA14.

Figure 6 shows the comparison between the results for our
proposed excited QA started with the vacuum state and the
excited-state QA started with a one-photon state in the presence of
dissipation in the ten instances in Table 1. In all the hard instances,
our proposed approach is more robust against dissipation than the
excited-state QA started with a one-photon state.
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Conclusion
We have proposed an approach to excited-state QA, which is
started with the most stable state, namely, vacuum states. This is
based on the use of effective energy eigenstates of driven quantum
systems. As such a driven system, we have used a KPO network,
which enables to set the vacuum state to an effective excited state
by appropriately setting detuning frequencies for KPOs. Hard
instances whose optimal solutions cannot be obtained by ground-
state QA because of energy-gap closing can be solved by the
excited-state QA, where a nonadiabatic transition from the
effective first excited state to the effective ground state at an
energy-gap closing point is exploited. Since the excited-state QA
is started with vacuum states, this QA is robust against errors due
to dissipation, which has been confirmed by numerical simula-
tions. Thus, the proposed approach enhances the power of QA
with a KPO network and, in particular, offers a new way for
tackling the energy-gap closing problem by harnessing a property
of driven quantum systems.

In this work, we have used only four KPOs in simulations.
Thus it is left for an interesting future work to check whether the
proposed approach also has the advantage for more KPOs.

Methods
Numerical calculation of energies. The size of the Hamiltonian matrix in Eq. (2)
(154 × 154 in this work) is too large to directly diagonalize. So instead, we calculated
the eigenvalues of the Hamiltonian, namely, the energies as follows.

We first numerically obtain the eigenvectors for each KPO by diagonalizing
each term in the first term of H(t) in Eq. (2). Taking Ne eigenvectors from low
energies as a basis, we obtain a N4

e ´N
4
e matrix representation of H(t). Finally, we

diagonalize this matrix and obtain the energies. To reduce the computational
costs, we set Ne= 6 in the present calculations. This approach based on the low-
energy approximation is valid when ξ is small compared to K, as in the
present case.

Data availability
The data that support the findings of this study are present in the paper and/or
Supplementary Information. Additional data are available from the corresponding
author upon reasonable request.

Code availability
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