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Filtering spins by scattering from a lattice of point
magnets
Areg Ghazaryan 1✉, Mikhail Lemeshko1✉ & Artem G. Volosniev1✉

Nature creates electrons with two values of the spin projection quantum number. In certain

applications, it is important to filter electrons with one spin projection from the rest. Such

filtering is not trivial, since spin-dependent interactions are often weak, and cannot lead to

any substantial effect. Here we propose an efficient spin filter based upon scattering from a

two-dimensional crystal, which is made of aligned point magnets. The polarization of the

outgoing electron flux is controlled by the crystal, and reaches maximum at specific values of

the parameters. In our scheme, polarization increase is accompanied by higher reflectivity of

the crystal. High transmission is feasible in scattering from a quantum cavity made of two

crystals. Our findings can be used for studies of low-energy spin-dependent scattering from

two-dimensional ordered structures made of magnetic atoms or aligned chiral molecules.
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The quest for spin filters started directly after the discovery
of spin. It turns out that for electrons (in contrast to
atoms), this problem is not trivial, since the Lorentz force

and the uncertainty principle render it difficult, if not impossible,
to achieve spin polarizarion using magnetic fields alone1–3. The
quest continues even after a century of research and numerous
proposals4–11. The applications of polarizers are quite diverse and
span atomic, molecular, nuclear, and condensed-matter phy-
sics12–16. They are used to study magnetization dynamics17,18 and
in spin and angle resolved photoemission spectroscopy of topo-
logical materials19, to give just a few examples.

At the present time, not only inorganic but also organic systems
are being considered as possible spintronic devices20. Recent
experiments show that electrons become spin polarized when pas-
sing through a molecular monolayer of chiral molecules (such as
DNA, oligopeptides, helicene, etc.)21–28. This property of chiral
molecules is now called chiral-induced spin selectivity (CISS), and its
existence can lead to novel spin filters29,30. The magnitude of
polarization in CISS is quite high, yet the intensity of the outgoing
flux is relatively low. Despite the seeming simplicity of the CISS
experiments, the observed effect is an outstanding problem in the-
oretical physics. Several models that rely on scattering from a single
molecule have been suggested31–45. However, it is still not clear
whether the effect can be observed at a single-molecule level or CISS
requires electron scattering from multiple molecules. In particular,
strong dependence of the asymmetry function on the doping level46

suggests that multiple scattering might be important.
Our aim below is to investigate scattering from a two-

dimensional (2D) layer of spatially arranged point scatterers
(magnets), see Fig. 1a. In the vicinity of the specific values of the
parameters, the layer acts as a perfect mirror and can be used as a
spin filter for low-energy electrons: while one spin component is
perfectly reflected, the other one is transmitted. In addition, we
analyze scattering from two layers of magnets, which can form a
spin filter that enjoys both high transmission and polarization, see
Fig. 1b, c. Below, we discuss our results in more detail, and

demonstrate that they give insight into CISS as a collective-
scattering phenomenon.

Results
Single layer. Our spin filter works with electrons impinging
perpendicular to an infinite layer of magnets, see Fig. 1a, which
are modeled by contact potentials. The contact (also zero-range
or pointlike) potential is a mathematical approximation47–49 to
low-energy scattering. In our work, it amounts to replacing the
electron–magnet interaction potential by a spin-dependent
boundary condition at zero electron–magnet separation. If the
parameters of the layer are tuned to specific values, the transfer of
one spin component is impossible and the layer turns into a
perfect spin filter. Our scheme thus realizes a spin filter with high
polarization, which we discuss in detail below.

We start our theoretical description by considering scattering
from a single layer, which bears some similarity to a 1D spin filter
with a spin-dependent energy profile7. In order to illustrate the
concept, we place the scatterers in the nodes of a lattice, i.e., at
alm ¼ lbx̂ þ mbŷ þ 0ẑ, where l and m are integers and b is
the lattice constant. The parameter alm determines the position
where the “zero-range-potential” boundary condition should be
enforced. Although, we have assumed that alm form a square
lattice, we have checked that other geometries, e.g., a triangular
lattice, lead to conceptually similar results. Finally, we assume
that all scatterers have the same magnetization direction. This
direction can be chosen arbitrarily in our theoretical analysis.

The parameters {alm} define a periodic structure, and, there-
fore, the electron wave function must be an eigenstate of a
translation operator that shifts the wave function by alm, i.e.,
Ψ r þ almð Þ ¼ eikialmΨ rð Þ, where ki is the momentum of an
incoming electron. The corresponding scattering state reads as:

Ψ rð Þ ¼ eikz þ A
X

lm

eik r� almj j

r � almj j ; ð1Þ

Fig. 1 Spin filter implementation in scattering from point magnets. a Unpolarized electrons scatter from a single layer of point magnets. The magnets
form a square lattice with a lattice constant b. Close to the specific values of the parameters only “spin up” electrons are transmitted. b Unpolarized
electrons scatter from two layers of point magnets. This setup can enjoy both high polarization and transmission. Note that the electrons and magnets in
(a, b) are depicted as finite-radius spheres for illustrative purposes—in our theoretical model the magnets are pointlike, i.e., they are spheres with a
vanishing radius. Our model is accurate for low-energy scattering47,48. c The transmission, T, and polarization, P, coefficients for scattering depicted in (b);
T ¼ T" þ T#

2 , where Ts is the transmission coefficient for a given projection of the spin. The parameters of the magnets are a0= 0, a1= 0.02b. The distance
between the layers, L, is ~88b.
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where the incoming flux is given by the plane wave, and the
outgoing flux is described by spherical waves propagating away
from the point scatterers. We have assumed that kijjẑ (∣ki∣= k),
which implies that kialm= 0. The last term in Eq. (1) is defined as
the limit: lim R!1AR

PR
lm, R is a dimensionless cut-off parameter,

see the discussion below. The constant AR is determined from the
zero-range-potential boundary conditions48:

Ψ r ! almð Þ ¼ slm
1

r � almj j �
1
αs

� �
; ð2Þ

where slm is the normalization constant, αs is a spin-dependent
scattering length that fully determines a zero-range potential.
Note that our zero-range model describes low-energy scattering
from potentials that decay faster than 1/r3 at large interparticle
distances, provided that b is larger than the range associated with
the potential. In particular, our model is appropriate for
electron–atom interactions (~1/r4 as r→∞). We assume that
α↑= a0+ a1 and α↓= a0− a1, where ↑(↓) denotes a spin
projection of incoming electrons on the desired quantization
axis; a0 (a1) describes the spin-independent (spin-dependent)
part of the potential. The quantization axis is chosen by the
magnetization direction of the magnets, which, without loss of
generality, in this work is given by the y-axis in Fig. 1a. Imposing
the boundary condition, we obtain AR:

AR ¼ �αs 1 þ αs
XR
lm

alm ≠ 0

eik almj j

almj j þ ikαs

0
B@

1
CA

�1

; ð3Þ

where R is used to define an upper limit of the sum. Equations (1)
and (3) fully determine all properties of scattering.

To gain analytical insight, we explore the zero-energy
limit (k→ 0). The layer of magnets appears to be homogeneous
for a distant observer (∣z∣ ≫ b), allowing us to focus on r ¼ zẑ.
To write the wave function, we estimate the sums in Eqs. (1) and

(3) for large values of R using the integral test:
PR

lm
1

r� almj j �
2π
b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2b2 þ z2

p
� jzj

� �
and

PR
lm;alm ≠ 0

1
almj j � 2π

b R � Δ0ð Þ,
where Δ0 ≥ 0 is a constant, which depends only on the geometry
of the system; it can easily be determined numerically, Δ0 ≈ 0.635.
Both sums diverge linearly with R as R→∞, leading to a well-
defined limit: Ψ rð Þ ¼ 1 þ 2παs

b2
jzj � 2παs

b Δ0, which is identical to
the 1D wave function that describes zero-energy scattering from
the Dirac delta potential50, gsδ(z): Ψ1DðzÞ ¼ s gs

2 jzj þ 1
� �

. This
observation allows us to map the 3D problem onto a 1D zero-
range model with

gs ¼ 4παs
bðb � 2παsΔ0Þ

: ð4Þ

Considering finite-energy scattering from the potential gsδ(z), we
determine the transmission and reflection coefficients as Ts ¼
4k2= g2s þ 4k2

� �
and Rs ¼ g2s = g2s þ 4k2

� �
, respectively. The

corresponding spin polarization is P ¼ T" �T#
T" þT#

. While Eq. (4) is

accurate only for k→ 0, similar mapping exists also for finite
values of k (See Supplementary Note 1). It is clear from Eq. (4),
that the transmission coefficient vanishes when bc= 2παsΔ0:
quantum interference turns the layer of scatterers into a perfect
mirror. Note that gs changes its sign at bc= 2παsΔ0 implying the
presence of a tightly bound state in the vicinity of bc= 2παsΔ0.
The state exists only in the proximity of z= 0, which is outside
the region of validity of the mapping onto 1D system. We have
checked that this state does not appear in full calculations.

Let us analyze the polarization, P, in the two limiting cases:
a0 = 0 and ∣a1∣ ≪ ∣a0∣. There can be no polarization in scattering

from a single zero-range potential with either a0= 0 or a1= 0.
Therefore, the limits address the importance of multiple
scatterings. For a0= 0, we derive P ¼ �16π3a31bΔ0½k2b2ðb2 �
4π2a21Δ

2
0Þ2 þ 4π2a21ðb2 þ 4π2a21Δ

2
0Þ��1. We can further simplify

this expression assuming low-energy scattering, kb2≪ a1, and
a1≪ b: P ≈−4πa1Δ0/b. In this limit P / ffiffiffi

n
p

, where n= 1/b2 is
the density of scatterers. This dependence is a manifestation of
coherent scattering, since for incoherent scattering one expects
observables to be proportional to n. We find that P→ 0 for
b→∞, recovering the fact that a single scatterer with a0= 0
cannot act as a spin polarizer. In the other limit, ∣a1∣ ≪ ∣a0∣, we
derive P � �8π2a0a1b½k2b2ðb � 2πa0Δ0Þ3 þ 4π2a20ðb � 2πa0
Δ0Þ��1. Taking again the limit of kb2≪ ∣a0∣ and ∣a0∣ ≪ b, we
obtain P ≈−2a1/a0− 4πa1Δ0/b, which has the same density
dependence as the previous case, although, a single scatterer can
now act as a weak spin polarizer—the corresponding polarization
is P ≈−2a1/a0. For electrons with kb2 ~ a0, there is a competition
between the two terms in the denominator of P, which makes
the dependence on n more complex. Finally, we note that the
polarization reaches its maximum value in the vicinity of the
specific lattice spacing, bc ≈ 2πa0Δ0; the transmission vanishes at
the same time. This regime holds promise for constructing a spin
filter, as we discuss below.

Having analyzed the zero-energy limit, we consider Equations
(1) and (3) for finite values of k. For low energies, we establish a
1D mapping similar to Eq. (4), see Supplementary Note 1. This
mapping does not yield any qualitatively new results in
comparison to Eq. (4), as we illustrate below for a set of
parameters. Figure 2a shows the dependence of transmission and
polarization on the dimensionless scattering length a1/b for
different values of electron momenta, assuming that a0= 0. As
was described above, for the specific ratio of a1/b the transmission
T↑ goes to zero and the layer of magnets acts as a perfect mirror

Fig. 2 Transmission, T, and polarization, P, coefficients for scattering of
electrons from a single 2D crystal. a Dependence of transmission (points
connected by solid curves) and the polarization (points connected by
dotted curves) on the dimensionless scattering length, a1/b, when a0= 0.
The transmission coefficient is defined as T ¼ T" þ T#

2 , where Ts is the
transmission coefficient for a given projection of the spin. b Dependence of
the polarization coefficient on a0/b when a1/a0= 0.1. c Dependence of the
polarization coefficient on a0/b when a1/a0= 0.3.
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for electrons with “spin up”, which maximizes the polarization
coefficient. While Eq. (4) implies that the position of zero
transmission does not depend on k, that is no longer the case for
the full solution. We do observe a minor change of the peak
position in Fig. 2a, as explained in detail in Supplementary
Note 1. For small momenta, the transmission T ¼ ðT" þ T#Þ=2
is vanishing everywhere in the region with noticeable polariza-
tion, however, the situation changes if kb is increased. At kb= 1.0
there is already a range of a1/b where both transmission and
polarization are substantial.

The results for kb= 1 are accurate as long as b≫ reff, where reff
is the effective range. Indeed, a zero-range potential works only for
small values of kreff47, otherwise electrons resolve the inner part of
the interaction potential. Figure 2 also shows the dependence of

polarization on a0/b for a1/a0= 0.1 (b) and a1/a0= 0.3 (c). The
value of kb does not have any important effect on the position of
the peak. Still, working with larger momenta is beneficial, since it
modifies transmission considerably (similar to Fig. 2a). The sign
change of the polarization coefficient presented in Fig. 2b, c
follows from Eq. (4). Assuming that both α↑ and α↓ are positive,
the mirror (point where T↑= 0) for spin-up electrons is at
b"c ¼ 2πα", and it is at b#c ¼ 2πα# for spin-down electrons. The
former (latter) mirror leads to negative (positive) polarization.
Somewhere, in between these two points polarization must vanish,
which leads to points with zero polarization in Fig. 2b, c. The
width of the region with high polarization in Fig. 2c is larger than
that in Fig. 2b. This width is controlled by the ratio a1/a0, as we
demonstrate in Fig. 3a, which presents the density plot of
polarization as a function of a0/b and a1/a0.

Two layers. Figure 2a shows the transmission–polarization
tradeoff present in our setup: larger values of P lead to smaller
values of T. To overcome this problem, we consider two aligned
identical 2D sheets, see Fig. 1b. The sheets form a resonating
cavity in the vicinity of the specific point, which can be used to
tune scattering properties. We demonstrate this in Fig. 1c, where
the peaks in transmission due to the internal levels of the cavity
are accompanied by the peaks of the polarization. The latter peaks
are connected to the ones present in scattering from a single layer,
although their position is no longer predicted by Eq. (4). Figure
1c confirms that one can engineer an efficient spin filter with high
transmission and polarization for a given initial wave packet with
a well-defined peak at a certain (low-energy) value of k.

Similar to the single-layer case, we cast the 3D problem onto
the 1D model with two delta-function potentials of the strength
(4), see Supplementary Note 2. This approximation is accurate as
long as L≫ b, where L is the distance between the potentials
(layers). Naturally, transmission and polarization depend on L.
The value used in Fig. 1c was chosen to maximize T and P for the
first peak. To demonstrate that a quantum cavity can increase
transmission for a general value of L, in this section we take L=
100b, which has no special meaning in our problem. Since for a
single layer the results were (almost) energy-independent, we
work below with the zero-energy mapping of Eq. (4), whose
accuracy for two layers is validated in Supplementary Note 2. The
transmission coefficient for scattering from two zero-range

potentials is Ts ¼ 4k2= g2s e
2ikL þ igs þ 2k

� �2h i			 			2. We do not

present the expression for polarization—it is cumbersome and
does not provide us with any further insight. Instead, we analyze
scattering for the parameters used in Fig. 2 to illustrate the single-
layer case. Figures 3b, 4a–c present the transmission and

Fig. 3 Polarization coefficient, P, for extended range of system parameters. The density plot of the polarization coefficient as a function of the
dimensionless scattering lengths a0/b and a1/a0 for (a) one, and (b) two 2D crystals. The separation between the crystals is L= 100b in (b); the
momentum of electrons is kb= 0.5 in both panels.

Fig. 4 Transmission, T, and polarization, P, coefficients for scattering of
electrons from two 2D crystals. a Dependence of transmission (points
connected by solid curves) and the polarization (points connected by
dotted curves) on the dimensionless scattering length, a1/b, when a0= 0.
The transmission coefficient is defined as T ¼ T" þ T#

2 , where Ts is the
transmission coefficient for a given projection of the spin. b Dependence of
the polarization coefficient on a0/b when a1/a0= 0.1. c Dependence of the
polarization coefficient on a0/b when a1/a0= 0.3. The separation between
the crystals is given by L= 100b.
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polarization coefficients for scattering from two layers. Inter-
ference inside the cavity leads to additional peaks for both
transmission and polarization. These peaks can be used to
engineer regions where both polarization and transmission are
substantial as in Fig. 1c. Our conclusion is that two sheets of
quantum scatterers have enough tunability to allow for an
efficient spin filter. The fact that the inter-sheet separation can be
several orders of magnitude larger than the spacing between
quantum scatterers makes it feasible to engineer such a filter with
GaAs superlattices as we briefly outline below. In this subsection,
we have assumed that there is no attenuation of the electron
current, and that electrons move balistically in between the layers.
As will be shown below, these assumptions can be accurate for
current experimental techniques.

Discussion
To summarize, we have shown that quantum interference in scat-
tering from a 2D crystal can lead to spin filtering. In our model, a
layer of spatially arranged point scatterers (magnets) at a specific
point acts as a perfect mirror for one spin component, but still
transmits electrons with another spin component. Even though a
single-layer spin filter suffers from a reflection–polarization trade-
off, we have demonstrated that two parallel sheets of scatterers can
provide simultaneously high transmission and high polarization. It
makes sense to introduce some energy dependence, a potential, in
between the layers, either to reflect some material or as an addi-
tional tuning parameter for quantum simulations51,52. Spin filters
with desired transmission and reflection coefficients are then
obtained by global searching the space of all possible potentials and
values of L53. We leave this investigation to future studies, as we do
not expect a slow-varying potential to change qualitatively our
findings. A complex potential can account for attenuation
(absorption) of the electron current in between the layers54. This
effect should be small for a reasonably pure sample, and we do not
consider it here.

A possible experimental realization of the suggested spin filter is
to dope the outer layer of a GaAs superlattice with two layers of
magnetic adatoms. This should be possible without considerable
fine tuning, because current state-of-the-art polarizers for micro-
scopy applications are already based on negative electron affinity
GaAs superlattice photocathodes55–58. The observed spin polar-
ization in those setups can be larger than 80% and the corre-
sponding quantum efficiency is on the order of several percent.

To justify these claims, we consider a GaAs superlattice doped
with two layers of manganese (Mn) atoms. Mn atoms can be
considered as point magnets for our purposes, since there are
negligible spin-flip effects in low-energy e−+Mn scattering59.
To find a0 and a1 we use the existing theoretical calculations
on scattering cross sections60, and estimate a0 ¼ ð ffiffiffiffiffi

σ#
p þffiffiffiffiffi

σ"
p Þ=ð4 ffiffiffi

π
p Þ and a1 ¼ ð ffiffiffiffiffi

σ"
p � ffiffiffiffiffi

σ#
p Þ=ð4 ffiffiffi

π
p Þ, where σs is the

total elastic-scattering cross-section for zero-energy spin-s elec-
trons; the quantization direction here is given by the spins of the
electrons in the semi-filled shell of Mn atoms. For the sake of
discussion, we use the SPRPAE2 data, which leads to a0≃ 0.12
nm and a1≃ 0.07 nm. In order to get transmission enhancement
by two layers, electron propagation between the layers should be
ballistic. Therefore, we consider the separation of the layers L=
80 nm, which is comparable to the mean free path of the electrons
in GaAs/AlGaAs superlattices61 and considerably smaller com-
pared to pure GaAs samples62. We take the electron energy to be
20 meV for which case kreff≪ 1 (reff is estimated using the Van
der Waals length ~ 0.2 nm), allowing us to apply the theory
developed in this paper. Figure 5 shows that considerable polar-
ization and transmission is obtained for b ~ 1.5 nm. This value of
inter-Mn separation is not drastically different from 4 nm

observed in the experiment63. Therefore, we expect that effects
considered in the current paper are within reach with currently
available experimental techniques.

Our findings are connected to light scattering from an array of
point dipoles64,65 (although the latter has an additional compli-
cation due to the polarization of light). In particular, cooperative
resonances in light scattering allow for a regime where a sheet
acts a perfect mirror66,67, which is similar to what we find in our
model. Our work adds another degree of freedom (spin) to this
discussion, and acknowledges spin-filtering capabilities of a layer
of point scatterers.

Our ideas do not employ fundamental properties of electrons,
and can be used to implement spin filters in other systems as well.
Our proposal could be tested with cold atoms—a tunable test-
ground for studying quantum transport phenomena68. Layers of
atoms created with optical lattices69 could simulate point mag-
nets. Another type of atoms would then be used to simulate
electrons, in particular, electron’s spin would be modeled by a
hyperfine state of the atom. For example, one could use 87Rb to
simulate electrons, and an optical lattice loaded with 40K atoms to
simulate the 2D crystal70. Our work explores the regime kthb≃
0–1, where the thermal de Broglie wave-vector reads kth ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πmð87RbÞkBT
p

=_ (kB is the Boltzmann constant). Assuming
that b ~ 1 μm, this regime maps onto temperatures from zero to a
few nK, which is within reach of current experimental setups71.
Note however that for cold-atom setups our model is accurate
also for much higher values of kthb, since the effective range of
atom–atom interactions is much smaller than μm. Realization of
our proposal with cold atoms would extend the existing one-
dimensional family of cold-atom spin filters51,72,73 to the three-
dimensional world.

In addition, our results pave the way for investigations of
collective scattering from nonatomic 2D crystals that do not allow
for spin-flip (↑↔ ↓) transitions at low energies, e.g., systems with
a spin gap. The CISS effect is a noteworthy phenomenon to study
in this regard. In the CISS effect molecules are non-magnetic and
possess helical symmetry, which induces chiral effects74. These
properties are not included in our model. However, our zero-
range model fully incorporates all relevant low-energy informa-
tion about ↑→ ↑ and ↓→ ↓ scattering processes, and therefore
can be used to estimate the contribution of collective scattering
to the CISS effect. Zero-range models can describe only the

Fig. 5 Transmission, T, and polarization, P, coefficients for scattering of
electrons from two 2D crystals formed by Mn atoms on a GaAs sample.
The coefficients are presented as functions of the inter-Mn separation,
b. The transmission coefficient is defined as T ¼ T" þ T#

2 , where Ts is the
transmission coefficient for a given projection of the spin. The parameters
that determine properties of the magnets are a0= 0.12 nm, and a1= 0.07
nm. The separation between the layers is given by L= 80 nm. The
momentum of the electrons is k≈ 0.19 nm−1 (corresponding to the energy
20meV).
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low-energy part of typical electron energies in the CISS experi-
ments, which operate with 0–2 eV electrons21,75. This places
many CISS-related effects beyond our reach. Still, our results can
provide an important reference point for future more elaborate
theories which will investigate the high-energy regime of CISS.

The CISS experiments can be modeled by a single layer of
scatterers with a0 ≠ 0 and a1 ≠ 0. Here the parameter a0 should be
about the molecular diameter, i.e., 1–2 nm76,77, and the parameter
a1 should be small (∣a1∣ ≪ ∣a0∣) since the spin–orbit coupling is
weak for organic molecules. Two important corollaries follow
from the analysis of this CISS model. First, the polarization
depends weakly on the density of scatterers (it scales as

ffiffiffi
n

p
),

which shows that collective interference is important for CISS at
low energies. This aligns nicely with the fact that the CISS effect is
strong for a wide range of intermolecular separations b ~ 1–20
nm76. Second, multiple scattering for arbitrary values of a0, a1,
and b does not dramatically enhance polarization in comparison
to scattering from a single molecule. Therefore, the observed
magnitude of the CISS effect can be explained by our model only
if the system operates close to the specific parameter regime. This
fine tuning is likely since one expects that ∣a0∣ ≃ b. The polar-
ization reversal observed in: (i) molecules embedded in the
membrane24, and (ii) experiments with a variable temperature78

can be a consequence of that. Indeed, both embedding and
temperature denaturation of molecules modify scattering, and
hence, the a0/b ratio, which determines the sign of the polariza-
tion coefficient (see Fig. 2b).

Data availability
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