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Generative machine learning for robust free-space
communication
Sanjaya Lohani 1✉, Erin M. Knutson 1 & Ryan T. Glasser1✉

Free-space optical communications systems suffer from turbulent propagation of light

through the atmosphere, attenuation, and receiver detector noise. These effects degrade the

quality of the received state, increase cross-talk, and decrease symbol classification accuracy.

We develop a state-of-the-art generative neural network (GNN) and convolutional neural

network (CNN) system in combination, and demonstrate its efficacy in simulated and

experimental communications settings. Experimentally, the GNN system corrects for dis-

tortion and reduces detector noise, resulting in nearly identical-to-desired mode profiles at

the receiver, requiring no feedback or adaptive optics. Classification accuracy is significantly

improved when these generated modes are demodulated using a CNN that is pre-trained

with undistorted modes. Using the GNN and CNN system exclusively pre-trained with

simulated optical profiles, we show a reduction in cross-talk between experimentally-

detected noisy/distorted modes at the receiver. This scalable scheme may provide a concrete

and effective demodulation technique for establishing long-range classical and quantum

communication links.
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The field of free-space optical (FSO) communications provides
an exciting route forward in wireless information transfer by
making use of various multiplexing schemes, including fre-

quency and wavelength division multiplexing, and more recently
spatial multiplexing1–6. A common method to implement the latter
involves making use of orbital angular momentum (OAM), which
is a degree of freedom that is in principle unbounded, thus per-
mitting for the application of large alphabets in optical commu-
nication schemes. For example, by generating and transmitting
various superpositions of OAM states, which result in different
“petal pattern” images in the spatial domain, the alphabet size of the
communications system may be significantly increased. An integral
aspect of any communication protocol, however, is the ability to
effectively demodulate the signal at the receiver, which in this case
corresponds to determining which OAM superposition was sent
and received. In real-world schemes, FSO communication systems
comprise of propagation of the beams through random turbulence,
attenuation, and non-negligible amount of dark noise at the recei-
ver. As a consequence, the distorted, noisy received signals (images)
can result in a lower accuracy, significantly deteriorating their
practical implementation7,8.

State-of-the-art generative models have recently been applied
to molecular design, radiotherapy, geophysics, speech recogni-
tion, and tomography9–14. Generative neural networks (GNNs)
involve creating a new state at their output, given a noisy or
unknown state as the input. One example of the generative
learning approach is making use of an autoencoder in a variety of
reconstructing scenarios15–17. In addition, supervised learning
and artificial neural networks as classifiers have been successfully
implemented in the context of FSO communications18–26.
However, in order to train the network as a classifier, all pre-
ceding communication set-ups involving only supervised learning
schemes require a huge amount of pre-labeled distorted optical
profiles at the receiver, which is computationally less efficient and
requires more time to generate and process the data. Additionally,
in the presence of random distortions, attenuation, and detector
noise, it may not be always feasible to tag the optical profiles for
supervised learning. This restricts the classification efficiency of
the set-up with respect to randomly varying turbulent effects and
attenuation in realistic FSO systems.

In this article, we expand significantly upon these works and
develop a communication scheme using a generative machine
learning approach and demonstrate its robustness and ability to
significantly mitigate the effects of turbulence, attenuation, and
noise on the accuracy in both simulated and experimental com-
munication settings. This receiver-end system is shown to be
effective for a wide range of turbulence and detector noise
strengths and requires no feedback to the transmitter of the
communication link or any adaptive optics components. Our
scheme with the developed generative network first creates new,
significantly less distorted optical profiles at the receiver that are
later demodulated using a convolutional neural network (CNN)
classifier. Note that CNN is solely trained with only undistorted
optical modes with added dark noise to simulate a realistic, non-
ideal quantum efficiency detector, alone. Additionally, we calcu-
late the cross-talk between the noisy, distorted modes at the
receiver and show a significant enhancement when the GNN
system is used. Furthermore, our network architecture is portable,
cost-effective, and can be pre-trained before performing the
communications, which circumvents the general technical issues
that are present in adaptive optics.

Results
Model. The general experimental set-up is shown schematically
in Fig. 1. A laser is incident on a spatial light modulator (SLM)

with a given phase mask, such that the resultant optical spatial
mode profile is in a desired superposition of OAM values ranging
from 0 (Gaussian) to ±10 (a petal pattern with 20 lobes). The
optical profile is then transmitted through turbulence via a sec-
ond SLM, resulting in a distorted profile, after which it travels
through a variable attenuator. Finally, detector dark noise is
unavoidably added at the receiver. This noisy, attenuated, dis-
torted image is then fed into the GNN. The GNN generates a new
mode profile that may either be used to directly calculate its mean
squared error (MSE) from the target or be fed into a CNN that
classifies which mode was sent and received (that is, which letter
of the communication alphabet). In this work, we produce data in
three manners: test and training images both completely simu-
lated (see “Numerical simulation of long distance turbulent
propagation” in “Methods”), test and training images both
experimentally generated (i.e., with a laser and two SLMs as
shown in Fig. 1), and a combination of the two (i.e., simulated
training images and experimentally generated test images).

As opposed to the traditional autoencoder27, convolutional
denoising autoencoders are able to reconstruct a clean, corrected
input from those that are partially distorted28. The idea behind
using such a network design is to learn a hidden representation
and extract the important features that are robust to noise or
distortion present in the inputs. The generative network described
here encodes and compresses the extracted crucial features from
the input data into a smaller size layer. This smaller dimensional
layer is a latent space. The encoded information in the latent
space is then forwarded to the decoder, which eventually
generates the corrected undistorted, clean modes as shown in
Fig. 2a. We have built an encoder with convolutional layers
(green blocks in Fig. 2a) with a kernel size of 5 × 5, with zero
padding, rectified linear unit (ReLU) activation, stride length of 2,
and 3 feature mappings followed by a max-pooling layer (red
block) with a pool size of 2 × 2 and fully connected layer (blue
circles). After this, the encoder finally stores the features into a
latent space using the ReLU activation. Likewise, the decoder is
built and starts with a fully connected layer (blue circles), which
then forward the information to a convolutional layer with the

Fig. 1 Experimental set-up. Diagram of the set-up for creating experimental
free-space optical communications images as described in the
“Experimental results” section. Light from a Ti:Sapp laser tuned to 795 nm
travels through an optical fiber and a λ/2 waveplate (WP) before it is
incident on the center of two spatial light modulators (SLMs). SLM 1
imparts a specific orbital angular momentum (OAM) superposition on its
first reflection order, and the zero-OAM zeroth order is blocked as shown.
The phase mask on SLM 2 simulates turbulence of a given C2

n . Finally, a
variable attenuator (VA) further reduces the signal-to-noise ratio of the
transmitted mode before it is detected on a charged coupled device (CCD)
camera. Each captured image is then fed into and corrected by our
generative neural network (GNN). Four examples of experimental images
are included at appropriate points in the diagram, with orbital angular
momentum value l= ±9, turbulence strength C2

n ¼ 65:6 ´ 10�11m�2=3, and
an attenuation ratio of −1.18 dB.
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same parameter settings as described above. Furthermore, in
order to regain the original size of the input, a deconvolutional
layer (magenta block) is applied, again with the same parameter
values. In the end, a convolutional block with a single feature
mapping generates a clean, corrected mode profile. Note that we
apply a dropout with a rate of 5% after each layer, except at the
fully connected layer at the end of the encoder and final
convolutional layer of the decoder. We apply the small dropout
rate to avoid overfitting, as well as the possible loss of features
extracted from the convolution. The size of the fully connected
layer is same as that of the latent space. As a classifier, we
implement a CNN to demodulate the generated, reconstructed
clean mode profiles. The same CNN is also implemented to
demodulate the uncorrected detector received profiles at the
receiver. This network comprises of a convolutional unit with a
kernel of size 5 × 5, zero padding, ReLU activation, stride length
of 2, and a single feature mapping followed by a max-pooling
with a 2 × 2 filter attached to a fully connected layer (28 × 28
neurons) and an output layer as shown in Fig. 2a. No dropout is
employed in this network.

Numerical results. Here we describe results from the numerical
simulations. Examples of the simulated distorted, noisy images
and GNN-generated corrections are shown in Fig. 2b–d, for
varying degrees of signal-to-noise ratios (SNRs), communication
link distances (Z), and turbulence strengths (C2

n), respectively.
This process is repeated many times for all spatial modes (with
random turbulences and noises added), and the accuracy of the
system is calculated and compared to the accuracy when the
GNN detection system is not used. Note that accuracy measures
the ratio of number of correctly classified unknown OAM profiles
to the total number of received modes at the receiver. In the first
place, we optimize the latent space dimension and evaluate an
accuracy for various SNRs of the detected OAM profiles. In order
to generate training sets, we simulate 99 random turbulent phase
screens with a strength of C2

n of 5 × 10−14m−2/3 and transmission
distance of 500 m. Note that the 99 simulated phase screens are all

different from one another with respect to their phase distribu-
tions, such that two different turbulent phase screens produce
different scintillation effects on OAM mode propagation even if
they have the same turbulence strength. As a result, we have 99
different distorted optical profiles for each superposition OAM
mode ranging from ℓ= 0 to ±10 for a total of 1089 images. The
resolution of the images is fixed to 128 × 128 pixels for all of the
simulations performed in this paper. Additionally, in order to
simulate a transmitter with a fixed transmission intensity, we
normalize the total intensity before we propagate the OAM
modes into the turbulence. We append random additive Gaussian
noise to the distorted, detected optical profiles at the receiver.
Then the SNR of the final noisy, distorted optical profiles is
measured as discussed in ref. 24. Note that we train the GNN
separately for separate SNR image sets (and that the SNR is
decreased by increasing the amount of added detector noise, as
the transmitter intensity is held constant). Next, in order to train
the networks, the set of images is divided into separate training
and test sets. As a result, 50 images for each value of ℓ for a total
of 550 images are used in training the network, whereas 49
images, again, for each value of ℓ for a total of 539 images are
used for testing the networks. Consequently, we optimize the
GNN with these training sets with a learning hyper-parameter
(rate) set at 0.008. Then unknown test sets are fed to the opti-
mized GNN that generates nearly ideal corrected optical profiles
as the output, some examples of which for C2

n ¼
7 ´ 10�14 m�2=3 are shown in Fig. 2b. The left, middle, and right
columns in Fig. 2b represent the noisy received modes (R) and
reconstructed (C) profiles with a GNN when the average SNR of
images are 0.11 dB (σ= 20), −3.87 dB (σ= 50), and −5.91 dB
(σ= 80), respectively. Next, in order to calculate the accuracy, the
noisy test optical images (without corrections) and reconstructed/
generated images from the GNN are forwarded to a pre-trained
CNN and the corresponding accuracies are measured. Note that
the pre-trained GNN–CNN networks reconstruct and then clas-
sify an optical profile on the order of milliseconds. The accuracy
of the test set images with and without the GNN at various SNR
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Fig. 2 Network architecture and reconstruction of various orbital angular momentum (OAM) modes. a Architecture of the neural networks consisting of
a generative neural network (GNN) and a convolutional neural network (CNN). b–d Example images of various simulated optical modes that are distorted
and noisy at the receiver (R) and the generated, corrected modes (C). Decreasing the signal-to-noise ratio, SNR (left: −0.11 dB, middle: −3.87 dB, right:
−5.91 dB), is shown in b, increasing the communication link distance (Z) (left: 400m, middle: 600m, right: 800m) is shown in c, and increasing the
turbulence strength C2

n (left: C2
n ¼ 5 ´ 10�14 m�2=3, middle: C2

n ¼ 7 ´ 10�14 m�2=3, right: C2
n ¼ 1 ´ 10�13 m�2=3) is shown in d. The superposition of

OAM degree is increased in each row, from 0 (Gaussian) up to a value of ±9.
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levels of 3.11 to −5.91 dB with respect to different latent sizes of
the GNN is shown in Fig. 3a. We find an improvement in
accuracy from 0.87 to 0.93 for the image sets with SNR= 3.11 dB
even at a small latent size of 4 × 4. As expected, we obtain better
reconstructions and more improved accuracies as we increase the
latent size up to 32 × 32, after which it begins to saturate. The
reconstructed images shown in Fig. 2b are from the GNN with a
32 × 32 latent size. Finally, we achieve an improvement in accu-
racy from 0.87 to 0.97 at a latent size of 24 × 24, from 0.84 to 0.95
at a latent size of 24 × 24, from 0.77 to 0.92 at a latent size of 24 ×
24, and from 0.68 to 0.86 at a latent size of 72 × 72 for the image
sets with SNR= 3.11, 0.11, −3.87, and −5.91 dB, respectively.

Next we find the accuracy improvement with respect to different
latent sizes over various communication link distances. The same
strength of turbulence as described in previous paragraphs is used
but again with different, random phase patterns. Here all optical
mode profiles are assumed to be detected with an average SNR=
−3.87 dB at the receiver. Noisy and reconstructed OAM profiles
from the pre-trained GNN for distances of 400, 600, and 800m are
shown in Fig. 2c. The improvement in accuracy with respect to
various latent sizes of the GNN at communication link distances
from 200 to 800m is shown in Fig. 3b. Here we find significant
improvements in the accuracies from 0.976 to 0.998 at a latent size
of 40 × 40, from 0.85 to 0.95 at a latent size of 88 × 88, from 0.72 to
0.88 at a latent size of 40 × 40, and from 0.67 to 0.85 at a latent size
of 24 × 24 for the communication link distances of 200, 400, 600,
and 800m, respectively.

Next, we turn to reconstructing severely distorted OAM profiles
due to various turbulence strengths in the channel. Turbulence

strengths are varied from strong (C2
n ¼ 1´ 10�13 m�2=3) to weak

(C2
n ¼ 9´ 10�15 m�2=3) levels with a fixed Z= 500m, for a total

of 7 different turbulence strength scenarios, with random phase
screens for each class and different noise strengths at the receiver.
Some examples of simulated received noisy OAM modes and
reconstructed corrected modes using the GNN with a latent size of
32 × 32 for C2

n ¼ 5 ´ 10�14 m�2=3, C2
n ¼ 7 ´ 10�14 m�2=3, and

C2
n ¼ 1 ´ 10�13 m�2=3 at a dark noise strength of σ= 50 are,

respectively, shown in left, middle, and right column of Fig. 2d.
Again with the pre-trained GNN with a latent size of 32 × 32, we
show a significant improvement in accuracies for various
turbulence strengths for noise strengths of σ= 10, σ= 20, σ=
50, and σ= 80 present at the receiver, as seen in Fig. 3c. Significant
increase in accuracies are achieved with the GNN, for example,
increasing the accuracy from 0.83 to 0.971 at a noise level of σ=
80 and turbulence strength of C2

n ¼ 3 ´ 10�14 m�2=3. Further-
more, for an intermediate turbulence strength of
C2
n ¼ 1 ´ 10�14 m�2=3, we find an uncorrected accuracy of

0.995 and 0.945, respectively, at σ= 50 and σ= 80, which are
dramatically enhanced to 1.0 with the GNN. Additionally, the
accuracy of 0.989 at σ= 80 for a weak turbulence of C2

n ¼
9 ´ 10�15 m�2=3 has also been corrected to an accuracy of 1.0 with
the GNN as shown in the lower inset of Fig. 3c.

Similarly, in order to have a latent size benchmark with respect
to different turbulent strengths, we vary the latent size of the
GNN and fix the noise strength at σ= 50. Again with the GNN
pre-trained for various latent sizes, the enhancements in accuracy
with respect to latent sizes are shown in Fig. 3d. We find an

Fig. 3 Results from the numerical simulations. Accuracy versus latent space size a at different levels of signal-to-noise ratio (SNR) with C2
n ¼

5 ´ 10�14 m�2=3 and communication link distance (Z) = 500m b at various communication link distance with C2
n ¼ 5 ´ 10�14 m�2=3, and SNR =−3.87

dB, for the received (noisy and distorted) and corrected (generated) mode profiles. c Accuracy versus C2
n with various detector noise levels σ at fixed Z=

500m. The corresponding accuracy at C2
n ¼ 9 ´ 10�15 m�2=3 and C2

n ¼ 1 ´ 10�14 m�2=3 are zoomed in and shown in inset. d Accuracy versus latent
space size at different turbulent strength C2

n with fixed σ= 50 and again Z= 500m. The inset shows the zoomed in accuracy at a latent size of 24 × 24 for
C2
n ¼ 1 ´ 10�14 m�2=3.
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improvement in accuracy from 0.995 to 1.0 for every latent size at
or above 16 × 16 for C2

n ¼ 1 ´ 10�14 m�2=3 (red curve). For
example, the accuracy at a latent size of 24 × 24 are zoomed in
and shown in the inset. Moreover, we show a significant accuracy
enhancement from 0.77 to 0.92 at a latent size of 24 × 24 (blue
curve) and from 0.57 to 0.74 at a latent size of 40 × 40 (green
curve), respectively, for an intermediate turbulence strength of
C2
n ¼ 5´ 10�14 m�2=3 and strong strength of C2

n ¼
1 ´ 10�13 m�2=3 in Fig. 3d. Note that, from the previous
benchmarks of simulated OAM profiles, we set the size of 32 ×
32 as the optimized latent space dimension of the GNN for the
results discussed in the following paragraphs.

Experimental results. With the network optimized, we now focus
on implementing the GNN in the experimental set-up as shown
in Fig. 1. Initially, we generate light in OAM superposition modes
from ±l= 0 to 10 on the first spatial light modulator (SLM 1),
then mimic propagation through turbulence via a random phase
mask on SLM 2 (see Fig. 1) that imparts a turbulence strength
from C2

n ¼ 8 ´ 10�11 to 80 × 10−11m−2/3. In order to generate
training and test sets, we randomly vary the phase mask on
SLM 2 and record the corresponding intensity pattern on a
charged coupled device (CCD) camera. For a given C2

n, we record
50 images for each superposition OAM value, for a total of 550
intensity images. We split these 550 images into 495 (45 from

each ±ℓ) for the training set and 55 (5 from each ±ℓ) for the
unknown testing set. Note that, to create a target pattern, we place
an empty (zero turbulence) phase mask on SLM 2 for all ±ℓ.
With the pre-trained GNN, we find an efficient reconstruction of
the noisy, distorted OAMmodes: typically an order-of-magnitude
reduction in the MSE, as shown in Fig. 4. Examples of uncor-
rected noisy/distorted images at the receiver (R) and the corre-
sponding corrected optical profiles (C) for the turbulence
strengths of C2

n ¼ 22:4 ´ 10�11 m�2=3 (left), C2
n ¼

51:2 ´ 10�11 m�2=3 (center), and C2
n ¼ 80 ´ 10�11 m�2=3 (right)

are shown in Fig. 4a. The superposition OAM value in each row
is ±ℓ= 2, 3, 6, and 9 from top to bottom, respectively. In order
to measure the detection success with (blue) and without (tan) the
GNN at the receiver, we calculate the MSE between the desired
and the corrected or received optical profiles. While there is an
expected trend of increasing MSE with increase in turbulence
strength, C2

n, the GNN continues to efficiently reconstruct the
noisy and distorted OAM modes for all values of C2

n as shown in
Fig. 4b.

Using the GNN, we demonstrate a significant reduction in
mean MSE from 330.2 to 34.2 and from 742.3 to 120.7 for the
weak turbulence strength of C2

n ¼ 8 ´ 10�11 m�2=3 and strong
turbulence of C2

n ¼ 80 ´ 10�11 m�2=3; respectively. In order to
gain insight into the dependence of our GNN’s performance on
OAM value, we show the received (tan) and corresponding

Fig. 4 Generative neural network (GNN) in the experimental set-up. Example images of various noisy experimental optical orbital angular momentum
(OAM) modes that are uncorrected at the receiver (R) and corrected with the GNN (C). a Various images with increasing turbulence strength (left:
C2
n ¼ 22:4 ´ 10�11 m�2=3, middle: C2

n ¼ 51:2 ´ 10�11 m�2=3, right: C2
n ¼ 80 ´ 10�11 m�2=3). c Various OAM modes (top–bottom) with increasing

attenuation ratio (left: −0.18 dB, center: −1.93 dB, right: −2.43 dB). b Mean square error (MSE) as turbulence strength is varied. The inset shows the
dependence of MSE on OAM value at a fixed turbulence strength of C2

n ¼ 51:2 ´ 10�11 m�2=3. d Dependence of MSE on attenuation ratio in dB. The top-
left inset shows the dependence of MSE on OAM value at a fixed attenuation ratio of −1.93 dB. The data between−1.18 and 0 dB are enlarged and included
in the right-bottom inset of d for better visibility. The whiskers on all the box plots represent MSE values from Q1− 1.5 (Q3−Q1) to Q3+ 1.5 (Q3−Q1),
where Q1 and Q3 represent the first quartile and third quartile of the MSE values. The diamond and notch, respectively, represent the average and median of
the MSE for 55 reconstructed unknown noisy-distorted OAM intensity images (5 per each ±ℓ from 0 to ±10) at the receiver. The error bars in the top-left
insets in b, d represent one standard deviation from the mean.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-020-00444-9 ARTICLE

COMMUNICATIONS PHYSICS |           (2020) 3:177 | https://doi.org/10.1038/s42005-020-00444-9 | www.nature.com/commsphys 5

www.nature.com/commsphys
www.nature.com/commsphys


corrected (blue) MSE values for each ±ℓ from 0 to ±10 with a
fixed C2

n of 51.2 × 10−11m−2/3 in the inset of Fig. 4b. We
reiterate here that the test intensity images (or unknown random
turbulence phase masks) are not contained in the training set.

To further mimic the detrimental effect of loss in FSO
communications, we fix the turbulence strength at C2

n ¼
51:2 ´ 10�11 m�2=3 and vary the attenuation ratio from −2.52
to 0 dB. Note that we randomly vary the turbulent phase masks
on SLM 2 while keeping the strength parameter C2

n constant. As
described in the previous paragraph, we record 50 images for
each ±ℓ from 0 to ±10 for a total of 550, which is then split
between the training and testing sets. With the GNN pre-trained,
we successfully reconstruct the unknown noisy, distorted, and
attenuated intensity OAM profiles at the receiver. Some examples
of noisy-distorted as well as attenuated OAM modes (R) and the
corresponding corrected modes (C) for the attenuation ratios of
−0.18 dB (left), −1.93 dB (center), and −2.43 dB (right) are
shown in Fig. 4c. The superposition OAM value in each row is
±ℓ= 1, 5, 7, and 10 from top to bottom, respectively. We find
that the GNN successfully reconstructs the lost spatial features of
the OAM profiles, even in the presence of strong attenuation. The
MSEs between the noisy-attenuated and reconstructed OAM
profiles at the receiver with respect to various attenuation ratios
are shown in Fig. 4d. Here we show a significant reduction in
average MSE, from 1.22 × 104 to 2.5 × 102 and from 9.64 × 102 to
52.8 for attenuation ratios −2.52 and −1.18 dB, respectively.
Additionally, we calculate MSE for various OAM values at the
attenuation of −1.93 dB, which are shown in left-top inset of
Fig. 4d. As expected, the GNN gives an increasing trend of MSE
with increasing OAM value. Again, the GNN significantly reduces
the MSE in a consistent manner.

Lastly, we train the GNN with only simulated OAM images
(see “Methods”) and reconstruct the experimentally distorted and
attenuated OAM profiles. Then the reconstructed modes are
classified with our CNN, which is again solely pre-trained with
the simulated target patterns with Gaussian noise of strength σ=
1. In order to illustrate the success of the GNN in correcting
individual OAM profiles and limiting cross-talk with nearby
OAM values, we select an experimental test set with moderately
strong turbulence C2

n ¼ 51:2 ´ 10�11 m�2=3 and an attenuation
ratio of −1.93 dB. Here the test set contains 50 distorted
experimental optical images for each OAM value of ±ℓ ranging
from 0 to ±10, for a total of 550. With the optimized GNN
trained only with numerically simulated images, we reconstruct
50 unknown experimental images for each OAM mode and
predict the corresponding mode value using the CNN. The mode
values predicted by the CNN without (a) and with (b) the GNN
versus the target OAM value are shown in the cross-talk plot of

Fig. 5. We find the majority of the uncorrected optical profiles
with OAM mode values ℓ= ±1, ±3, ±4, ±10 are incorrectly
demodulated at the receiver as shown in Fig. 5a. However, with
GNN reconstruction, the incorrect predictions have been
significantly reduced from 18 to 3, from 33 to 9, from 48 to 8,
and from 26 to 8 out of 50 test images for each OAM mode value
of ℓ= ±1, ±3, ±4, and ±10, respectively, as shown in Fig. 5b.

Discussion
In this work, we have developed a GNN and CNN system that
efficiently improves received signals in a FSO communication
scheme that have been severely deteriorated due to the effects of
turbulence, attenuation, and detector noise. We demonstrate the
scheme’s ability to significantly improve the accuracy at a receiver
and correct for varying levels of distortion, both experimentally and
via simulations. We also show such accuracy improvements as the
FSO link distance and dark noise at the receiver are varied. By
training the GNN solely with simulated images, the system is able to
decrease the cross-talk between experimental OAMmode profiles at
the receiver. Moreover, by using our GNN, we have significantly
improved the classification accuracy of the CNN, which is solely
trained with undistorted modes with dark noise at the receiver,
allowing for a nontrivial reduction in the training set size as com-
pared to previous CNNs used in FSO communications systems,
which require training on an unbounded number of distorted mode
profiles. The current system also bypasses the need for active and
adaptive optics at the receiver of a FSO communications platform.
Furthermore, the addition of this unsupervised learning scheme
may be implemented to build an autonomous technique and
extended to demodulate more complex optical profiles, which are
difficult to label and classify with current supervised techniques.
The flexibility and generality of the developed neural networks will
allow for the straightforward integration into current FSO com-
munication systems, with the ability to be directly applied to
quantum communication systems as well29–36.

Methods
Turbulence simulation. We use a Kolmogorov phase with the Von Karman
spectrum effects model37 to simulate the turbulence in the atmosphere, which is
given by Eq. (1),

ΦðκÞ ¼ 0:023r�5=3
0 ðκ2 þ κ20Þ�11=6

expð�κ2=κ2mÞ; ð1Þ

where r0= ð0:423k2C2
nZÞ

�3=5
is the Fried parameter for a propagation distance Z,

and k= 2π/λ is the wave-vector for a given wavelength λ of light. Here κ is the
spatial frequency, κm= 5.92/l0, and κ0= 2π/L0, with inner (l0) and outer (L0) scales
of turbulence. Finally, we generate random phase screens using the inverse Fourier
transformation as given in Eq. (2),

Φðx; yÞ ¼ < F�1 CNN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΦNN ðκÞ

p� �n o
; ð2Þ

where ℜ means taking only the real part, F�1 is the inverse Fourier

Fig. 5 Demodulating various orbital angular momentum (OAM) profiles. Cross-talk between experimentally transmitted and demodulated OAM profiles
at the receiver for turbulence strength of C2

n ¼ 51:2 ´ 10�11 m�2=3, and an attenuation ratio of −1.93 dB a before applying generative neural network
(GNN) and b after making correction with GNN. The networks GNN and convolutional neural network (CNN) are exclusively pre-trained with simulated
OAM profiles.
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transformation, CNN is a complex random normal number with zero mean and
unit variance, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΦNN ðκÞ

p
is the square root of the phase distributions given by

Eq. (1) over the sampling grid of size N ×N.

Numerical simulation of long-distance turbulent propagation. The turbulent
environment is simulated by placing a turbulent phase screen (SLM 2) generated by
Eq. (2) a meter away from the SLM 1 plane. Then we propagate the Gaussian beam,
G(x, y, w0), through all the phase screens (SLM 1 and SLM 2) and have the
intensity profile, Itr , with additive dark noise, N(0, σ), at the receiver, Z ≥ 200 m
away from the SLM 2 plane, using Eq. (3),

Itr ¼ F�1 H2 ´F F�1 H1 ´F
�
Gðx; y;w0Þ exp

�
iΘð‘;�‘Þ��n o

expðiΦðx; yÞÞ
� �n o			 			2 þ Nð0; σÞ

ð3Þ
where Θð‘1 ;‘2Þ represents the OAM phase mask on SLM 1 and H1 and H2 are
transfer functions from SLM 1 to SLM 2 plane and from SLM 2 plane to receiver
and CCD, respectively. In order to generate the turbulence discussed here, we use
w0= 4 cm, N= 128, λ= 1550 nm, l0= 1 mm, L0= 200 m, and C2

n varies from 9 ×
10−15m−2/3 to 1 × 10−13m−2/3.

Numerical simulation of laboratory turbulent propagation. In order to simulate var-
ious intensity patterns for OAM modes of ±ℓ= 0–10 to pre-train the GNN as
mentioned in the description of Fig. 5 in the text, we first randomly generate 100
turbulent phase mask, again, using Eq. (2) with N= 800, λ= 795 nm, l0= 1mm, L0
= 25m, and C2

n ¼ 36:8 ´ 10�11 m�2=3. Then we find the corresponding intensity
pattern at the receiver using Eq. (3) with w0= 0.45mm, 0.2m as the distance between
SLM 1 to SLM 2, and 0.6m as the distance between SLM 2 to CCD. After that, we add
Gaussian noise with mean 0 and standard deviation of 0.1 and normalize them to 8-
bit images. The 100 noisy-distorted images for each OAM mode, as a total of 1100, is
split into a training set with 90 images for each OAM, as a total of 990, and a testing
set with 10 images for each OAM, as a total of 110 images. Once the GNN is
optimized and stored, we feed unknown noisy, distorted, and attenuated experimental
OAM images into pre-trained GNN, which finally reconstructs them as its output.
Note that we perform the experiment at C2

n ¼ 51:2 ´ 10�11 m�2=3 with an
attenuation ratio of −1.93 dB scenario, whereas for numerical simulation we take
C2
n ¼ 36:8 ´ 10�11 m�2=3 with dark noise as mentioned above.

Generative convolutional denoising autoencoder. The distorted received optical
profiles, Itr , as given by Eq. (3) are fed to the encoder of the GNN, which com-
presses them into a latent space S as expressed in Eq. (4),

Encoder : S ¼ f θðItrÞ ¼ Max Itr ? w
k
1 þ bk1

� �� �
? wk

2 þ bk2

 �

´W þ B;

θ 2 fwk
1; bk1; wk

2; bk2; W; Bg;
ð4Þ

where θ represents a parameter space of wk
1, w

k
2 (weights) and bk1, b

k
2 (biases) of kth

feature mappings of the first and second convolutional layers, respectively, where
“Max” corresponds to a max-pooling operation. Also, W and B represent the
weight and bias of a fully connected layer, and for convenience “⋆” represents the
convolutional/transpose-convolutional operation. Note that we apply the ReLU
activation after each convolutional operation. The resulting latent space S is then
forwarded to the decoder that maps it to reconstructed pixels I of the input space as
given by Eq. (5):

Decoder : I ¼ gθ0 ðSÞ ¼ ðS ´W 0 þ B0Þ ? w0n
1 þ b0n1

� �
? w0n

2 þ b0n2

 �

? w0 þ b0;

θ0 2 fw0n
1 ; b0n1 ; w0n

2 ; b0n2 ; w0; b0; W 0; B0g;
ð5Þ

where primes represent the parameter space of the decoder corresponding to nth

feature mappings. Here each training optical profile Itr
ðiÞ is successively mapped

into a corresponding latent space S(i) and a generation I(i). After that, a square
reconstruction loss LðIðiÞ; IðiÞr Þ is evaluated, where IðiÞr is an undistorted optical
profile at the receiver. Finally, in order to optimize the parameters, we minimize the
average reconstruction loss given by Eq. (6) using adamoptimizer of tensorflow38:

θ ; θ0 ¼ argminθ;θ0
1
N

XN
i

L IðiÞ; IðiÞr
� �

¼ argminθ;θ0
1
N

XN
i

L gθ0 f θðItðiÞr Þ
� �

; IðiÞr
� �

: ð6Þ

CNN as a demodulator. In order to train a CNN to classify the generated modes,
we simulate optical modes at the receiver without any turbulence using Eq. (3) for
each OAM superposition value ranging from ℓ= 0 to ±10. We then manually add
random Gaussian noise with σ= 2 (σ= 1 for the result shown in Fig. 5). Here we
keep low noise in the training and testing sets of the CNN to estimate how closely
the generated modes by the GNN fit with the target mode. Finally, we simulate 150
noisy images for each value of OAM for a total of 16,500 images. The image set is
split into a training set with 130 images and a test set with 20 images, again, for
each OAM profile. Then the parameter space of the CNN is optimized by mini-
mizing a softmax cross-entropy loss using adamoptimizer. Note that pre-trained
CNN network has an unity accuracy with respect to the test images.

Attenuation ratio. We use the following relation in order to calculate the
attenuation ratio:

Attenuationratio ¼ 10log10
Total intensity with attenuation

Total intensity without attenuation

� 
dB: ð7Þ

Data availability
The data that support the findings of this study are available from the corresponding
authors on reasonable request.

Code availability
The code used in this study are available from the corresponding authors on reasonable
request.
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