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Optimal number of faces for fast self-folding
kirigami
H. P. M. Melo1, C. S. Dias1,2 & N. A. M. Araújo1,2✉

There is an increasing body of research studying how to obtain 3D structures at the

microscale from the spontaneous folding of planar templates, using thermal fluctuations as

the driving force. Here, combining numerical simulations and analytical calculations, we show

that the total folding time of a regular pyramid is a non-monotonic function of the number of

faces (N), with a minimum for five faces. The motion of each face is consistent with a

Brownian process and folding occurs through a sequence of irreversible binding events

between faces. The first one is well-described by a first-passage process in 2D, with a

characteristic time that decays with N. By contrast, the subsequent binding events are first-

passage processes in 1D and the time of the last one grows logarithmically with N. It is the

interplay between these two different sets of events that explains the non-monotonic

behavior. Implications in the self-folding of more complex structures are discussed.
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Kirigami is the art of cutting 2D templates and folding them
into 3D structures. Nowadays, there is a growing interest
on extending this ancient idea to design materials that fold

spontaneously into targeted 3D structures. The driving mechan-
ism depends on the lengthscale. At the macroscale, folding is
driven by energy minimization (e.g., stress relaxation), and thus
the folding pathway is deterministic1–12. By contrast, at the
microscale, since folding occurs usually in suspension, the fluc-
tuations in the fluid–structure interaction dominate and folding
are stochastic13,14. This challenges the use of kirigami at the
microscale as, for example, in encapsulation, drug delivery, and
soft robotics15–18.

To design self-folding kirigami, one first needs to identify what
are the 2D templates (nets) that fold into the desired structure.
For shell-like structures of rigid panels connected by edges, these
nets are obtained by edge unfolding, i.e., by cutting edges and
opening the structure19. In principle, different nets can fold into
the same 3D structure. However, recent experiments and
numerical simulations show that the stochastic nature of folding
might lead to misfolding and so, the probability for a given net to
fold into the desired structure (yield) depends strongly on the
topology of the net and experimental conditions13,14,20,21. Thus,
the focus has been on identifying what are the optimal nets that
maximize the yield13,21. But, what about the folding time? For
practical applications, it is not only critical to reduce misfolding
but also to guarantee that folding occurs in due time. Here, we
address this question.

To focus on the folding time, we consider as a prototype the
spontaneous folding of a pyramid with N lateral faces, where
misfolding is not possible. We show that the time for self-folding
has a non-monotonic dependence on the number of faces, with
an optimal number of faces for fast folding. To explain the non-
monotonic dependence, we describe the motion of faces as a set
of Brownian processes. We show that the first binding event is a
first-passage process in 2D with a characteristic time that
decreases with the number of faces. All the other binding events
are first-passage processes in 1D, and the time of the last one
grows with the number of faces. We show that it is the balance
between these two timescales that leads to a minimum in the total
folding time for an optimal value of the number of faces.

Results
Let us consider a regular pyramid with N lateral faces (see Fig. 1).
The 2D net is a N-pointed star, obtained by cutting the edges of
the lateral faces and unfolding them. To simulate the folding
dynamics, as explained in detail in the section “Methods” and
summarized in Fig. 1, we performed particle-based simulations.
At the microscale, the interactions are short ranged (contact like)
and the binding between two faces is irreversible13. Thus, each
face is described as a rigid body of three particles at the vertices.
The attractive interaction along the edges and vertices is modeled
by a strong inverted-Gaussian potential between particles. The
stochastic trajectories of the faces under thermal fluctuations are
obtained by solving the corresponding Langevin equations, where
the noise term is parameterize by a rotational diffusion coefficient
D0 of the lateral faces. To focus on folding time, we suppress
misfolding by considering that the pyramid can only fold in one
side, as in recent experiments22,23. In the simulations, we imposed
such a constraint by pinning the base of the pyramid to a sub-
strate (see section “Methods” for further details).

We performed independent simulations for different numbers
of lateral faces N, starting from a flat (2D) configuration and
running until the final pyramid is obtained. As shown in Fig. 2,
we find that the total folding time T is a non-monotonic function
of the number of faces N, with an optimal time for five faces. To

characterize the dynamics, we define θi as the angle between the
face i and the substrate (see scheme in Fig. 3a). Since the motion
is constrained by the substrate, θi 2 0; π½ �.

As an example, we consider now the folding of a pyramid of
three lateral faces (N= 3). The time dependence of the three
angles is shown in Fig. 3a. Due to thermal fluctuation, each face
jiggles around until the first two faces (A and B in the figure) meet
at time t1st and bind irreversibly, closing the edge between them.
The third face (C) also binds to the first two at a later time t2nd.
Thus, folding occurs through a sequence of irreversible binding
events. Below, we discuss the first and subsequent binding events
independently.

As shown in the Supplementary Fig. 1, the statistics of the three
time series θi(t) in Fig. 3 is consistent with a 1D Brownian process
with reflective boundaries at θi= 0 and θi= π. The short-ranged
(attractive) interaction between faces is only effective in a small
region of the angular space, θ*= 3π/4 ± Δ, with Δ ≈ π/180 as
estimated from the properties of the potential (see Supplementary

Fig. 1 Unfolding process and model.We consider pyramids (a) of one base
and N lateral faces (N= 5 in the figure). The 2D template of microscopic
panels (b) is obtained by cutting the edges between the lateral faces and
unfolding the faces. To simulate the folding dynamics, we developed a
coarse-grained numerical model where each face is described as a rigid
body of three particles (c) at the vertices. The base is described by N
particles at the vertices. The interaction between particles is considered
pairwise and attractive. The base is pinned to a flat substrate and the lateral
faces can only fold in one side.

Fig. 2 Non-monotonic dependence of the folding time on the number of
lateral faces. Folding time as a function of the number of lateral faces (N),
defined as the total time necessary for all faces to fold into a pyramid. Time
is in units of Brownian time, i.e., the average time for a noninteracting face
to diffuse over an angular region of size π. Results are obtained numerically
by averaging over 2 × 103 independent samples, starting from a flat
template, and the error bars are given by the standard error.
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Note 1). For the first binding event to occur, the angle of two
faces need to be at θ* at the same time and, once there, they get
trapped. Thus, if we map the motion of each pair of faces j and k
into a 2D Brownian process, with coordinates (θj, θk) and a trap at
(θ*, θ*), the binding between j and k occurs when the corre-
sponding 2D Brownian process hits the trap (see Fig. 3b). In the
general case of N lateral faces a binding event can result either
from an edge closing between two adjacent faces or binding
between the vertices of two nonadjacent faces. Thus, there are
N(N− 1)/2 possible pairs of faces that can bind and the time of
the first binding event is the fastest of N(N− 1)/2 first-passage
processes.

To estimate the average time TF of the first binding event for a
pyramid of N lateral faces, we define g(t) as the first-passage time
distribution of a 2D Brownian process. There are N(N− 1)/2
pairs of faces and so the same number of competing Brownian
processes. The first binding event is the fastest of all possible ones
and thus TF=min {t1, t2, t3…, tN(N−1)/2}, where ti are random
values following the distribution g(t). If we neglect any correla-
tions between the motion of the different faces, from the theory of
order statistics24, we estimate that:

TFðNÞ ¼ NðN � 1Þ
2

Z 1

0
tgðtÞ

Z 1

t
gðt0Þdt0

� �NðN�1Þ
2 �1

dt; ð1Þ

where the term with the square brackets corresponds to the
probability that, provided that a first-passage process occurs at
time t, all the remaining N(N− 1)/2− 1 occur at a later time. g(t)
depends on the geometry and initial conditions25–29. For a set of
N(N− 1)/2 Brownian processes26,30 starting at the origin (θi(0)
= 0):

TFðNÞ � 1=ln
NðN � 1Þ

2

� �
: ð2Þ

So, the time of the first binding event should decrease with the
number of possible pairs. Fig. 4a shows TF in units of Brownian
time (see figure caption), for different numbers of lateral faces,
obtained numerically by averaging over 2 × 103 samples. The
solid line is given by TF ¼ τF=ln NðN � 1Þ=2ð Þ þ τF0

, where τF
= 1.57 ± 0.02 and τF0

¼ �0:097 ± 0:006 are obtained by fitting
the simulation data. Clearly, the decrease in TF with the number
of faces is well described by Eq. (2).

The dynamics of the subsequent binding events is fundamen-
tally different. While for the first binding event, two faces need to
meet at a particular angular θ*, the remaining faces will bind one-
by-one as soon as they reach θ*. The folding is complete when all
faces reach this value. Thus, each of the subsequent (N− 2)
binding events is a 1D first-passage process (see Fig. 3c). We
define T as the total folding time and TL= T− TF as the time
from the first to the last binding event. Each free face i binds
when θi(TF+ t)= θ* (with t ≥ 0) for the first time. To estimate TL,
we assume that θi(TF) < θ* is for all i and that θi(TF+ t) is well
described by a 1D Brownian process, with one reflective boundary
at θi= 0 and a trap at θ*. TL is then the slowest of the (N− 2) 1D
first-passage processes. Thus:

TLðNÞ ¼ ðN � 2Þ
Z 1

0
tf ðtÞ 1�

Z 1

t
f ðt0Þdt0

� �ðN�2Þ�1

dt; ð3Þ

where f(t) is the 1D first-passage time distribution and the term
with square brackets is the probability that, provided that a first-
passage process occurs at time t, all the remaining ones were
faster. Assuming that θi(TF) is uniformly distributed in 0; θ�½ �, the
first-passage time distribution is f ðtÞ � e�t=τL , with
τL ¼ 4θ�2=D0π

2 31, where D0 is the diffusion coefficient of the
Brownian process. This gives:

TLðNÞ ¼ τL
XN�2

i¼1

1
i
; ð4Þ

and thus, TLðNÞ � τL ln ðN � 2Þ þ γ½ �, where γ is the
Euler–Mascheroni constant. Figure 4b depicts TL obtained
numerically for different N. The numerical data are consistent
with Eq. (4) (solid line).

The dependence on the number of lateral faces N of TF and TL

is significantly different. While TF decreases with N, and TL

grows. The total folding time T is the sum of the two. Thus, for
low values of N, the total folding time is dominated by the time of
the first binding event, whereas for large N is the last binding that
sets the overall timescale. It is the interplay between these two
timescales that explains the minimum observed in Fig. 2.

So far, we considered always the same closing angle θ* and
diffusion coefficient D0. Since the motion of the faces is diffusive,
we assume that all timescales scale with τ ¼ θ�2=2D0, which is the
average time for a noninteracting 1D Brownian process to diffuse

Fig. 3 Self-folding of a pyramid of N= 3 lateral faces. a Time dependence of the angle θi of each face i= A, B, C with the flat substrate (see scheme).
Since the base of the pyramid is pinned and the faces can only move in one side, θi 2 0; π½ �. Results are for one sample, starting from a flat template (θi(0)
= 0). The statistics of θi is consistent with a Brownian process with reflective walls at θi= 0 and θi= π and folding occurs through a sequence of binding
events between faces. For the first binding event, two faces need to be at θ*= 3π/4 ±Δ (region in blue) at the same time, where Δ≈ π/180. In the
example, this occurs for faces A and B at time t1st. b If we assume no interaction between A and B outside the blue region, the first binding event can be
mapped into a 2D Brownian process, with coordinates θA and θB and a trap in a region where both θi= θ*. t1st is then the first-passage time. The black line is
the time dependence of the 2D Brownian process and the gray line its projection in the two-parameter (θA, θB) space. c After the first binding event, the
third face C, performs a 1D Brownian motion until it hits θ*. In the example, this occurs at t2nd. Time is rescaled by Brownian time.
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in an angular region of size θ*. Figure 4c shows the folding time
obtained numerically for different values of θ*= {3π/4, 2π/3, 5π/6}
and D= {D0, D0/2, 2D0}. For large values of N, we observe a data
collapse suggesting that the scaling assumption is valid in this
limit. However, for small values of N we observe some deviations.
For TL, the expected scaling with τ is only valid if θi(TF) < θ* for all
i, which is a good approximation for large N. In this limit, the total
folding time is dominated by TL. The solid line is the sum of the
solid lines for TF and TL in Fig. 4a, b, respectively, and describes
quantitatively the dependence on the number of lateral faces.

Discussion
Under thermal fluctuation, a N-pointed star template of rigid
panels and flexible hinges folds into a 3D pyramid of N lateral
faces. Folding occurs through a sequence of binding events
between pair of faces, but the nature of the first and subsequent
binding events is significantly different. For the first binding
event, two jiggling faces need to meet at a particular angle,

whereas for the subsequent binding events, only one face needs to
reach that angle. We hypothesized that the first binding event can
be mapped into a first-passage event of a 2D Brownian
process27,28,32,33, obtaining an expression for the corresponding
time. This expression predicts that the time for the first binding
event decreases with N, what describes quantitatively the
numerical data. By contrast, to estimate the time for the sub-
sequent binding events, we mapped them into a set of first-
passage events in 1D and derived the time for the slowest of them
all. We predict that this time should rather grow logarithmically
with N− 2, which is also observed numerically. Since the total
folding time is the sum of the two times, a non-monotonic
dependence on N is found.

Several strategies have been developed to regulate the efficiency
and folding time of micrometer templates. For example, the
folding of templates coated with cells into 3D cell-laden micro-
structures is regulated by the concentration and culturing time of
cells22. For graphene-based hinges, folding can be tuned by
temperature and pH, which enables an external control over the
dynamics23. The results reported here show that further control is
enabled if one changes the geometry of the template. This is an
advantage since, in practice, it is easier to change the number of
faces rather than the mechanics of the hinges or the driving
forces.

Spontaneous folding at the microscale is an intricate process
that might depend on the physical properties of the structure,
fluid–structure interactions and thermostat temperature13,14,21.
Our numerical simulations show that the motion of each face is
well described by a Brownian process. By mapping folding into a
set of competing Brownian processes and binding events, we
predict accurately the relevant timescales. As in recent
experiments22,23, we considered a regular pyramid, a structure
where all panels are equivalent, to focus on the dependence on the
number of faces. For non-regular pyramids the folding can still be
described as a series of binding events of first-passage process in
2D and 1D. However, in general, the closing angles might be
different and the time distribution for the first and last folding
needs to account for such differences. Also, the faces might differ
in shape and size. Such differences are straightforward to include,
as they translate into different diffusion coefficients of the cor-
responding Brownian processes. For more elaborated templates,
where complete folding requires a sequence of hierarchical
binding events, we also need to consider the possible kinetic
pathways of folding.

Methods
To simulate the dynamics of folding, as represented schematically in Fig. 1, we
developed a coarse-grained model of a regular pyramid where each lateral (trian-
gular) face is described as a rigid body of three particles located at the vertices. The
base of the pyramid is also a rigid body of N particles. All particles have mass m.

The base of the pyramid is pinned to a substrate, i.e., the position of its N
particles is constant, and the faces of the pyramid can only move in one side of the
substrate. To resolve the trajectories of the faces, we integrate their Langevin
equations of motion, using a velocity Verlet scheme implemented in the Large-
scale Atomic/Molecular Massively Parallel Simulator34. Specifically, we integrate:

M _viðtÞ ¼ �∇ri
U �M

τt
viðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MkBT

τt

s
ξitðtÞ ð5Þ

for the translational degrees of freedom, and

I _ωiðtÞ ¼ �∇θi
U � I

τr
ωiðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2IkBT
τr

s
ξirðtÞ ð6Þ

for the rotational ones, where, vi and ωi are the translational and angular velocities
of face i. M= 3m is the total mass of each face and I is the moment of inertia to
rotate around the edge with the base. τt and τr are the translational and rotational
damping times (we consider τr= τt). ξ

i
tðtÞ and ξirðtÞ are stochastic terms that fulfill

the fluctuation-dissipation theorem, and U is the net potential from the interaction
with all other faces (and base).

Fig. 4 Dependence on the number of lateral faces. a Time of first binding
event (TF) as a function of N(N− 1)/2, where N is the number of lateral
faces, for D=D0. The first binding event occurs when two faces have θ=
θ*= 3π/4 ±Δ, where Δ≈ π/180 is the size of the interaction region in the
angular space, estimated from the properties of the potential. TF decreases
with N. The solid line is given by TF ¼ τF=ln ðNðN� 1Þ=2Þ þ τF0, where τF=
1.57 ± 0.02 and τF0 ¼ �0:097±0:006 are fitting parameters obtained by
the least square fit of the simulation data. This expression corresponds to a
first-passage time of a 2D Brownian process. b Last binding event time as a
function of N− 2, for D=D0. After the first binding event, N− 2 faces
remain that fold sequentially. TL is given by the slowest of (N− 2) 1D first-
passage events. The solid line is given by TL ¼ τL

PN�2
i¼1

1
i, with τL= 0.474 in

units of Brownian time. c Data collapse for the folding time, in units of
Brownian time, rescaled by the square of the folding angle ðθ�Þ2, as a function
of the number of faces N for different values of θ*= {3π/4, 2π/3, 5π/6} and
D= {D0, D0/2, 2D0}. D0 is the angular diffusion coefficient of reference.
Results are averages over 2 × 103 independent samples and the error bars
are the standard error.
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There are two relevant parameters for the dynamics: the rotational diffusion
coefficient of the faces D0= kBTτr/I and the closing angle of the pyramid θ* (see
Fig. 3). To keep them constant for all N, we fixed the height L of the lateral faces
and the mass of the vertices such that θ* and I is always the same (except for Fig. 4,
where we change both the rotational diffusion coefficient and θ*).

For the particle–particle interaction (vertices), to describe the binding between
faces, we consider an inverted-Gaussian potential given by:

Ublue=blueðrbÞ ¼ �ϵ exp � rb=σð Þ2� �
; ð7Þ

where rb is the distance between vertices, ϵ= 20kBT is the interaction strength that
sets the energy scale and σ the width of the Gaussian. The σ is set such that the
strength of the interaction is kBT for rb= L/60, corresponding to an angle between
faces of ≈π/180. Without loss of generality, we set kBT= 1 in the simulations.

To constrain the motion of the faces to one side of the substrate, we consider a
repulsive interaction between all particles and the substrate (located at a distance of
L/10 below the base of the pyramid), described by the repulsive part of a
Lennard–Jones potential, with a pre-factor of 4kBT, and that is 0 at a distance of L/50.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The particle-based simulations were performed using the open-source software: Large-
scale Atomic/Molecular Massively Parallel Simulator (LAMMPS).
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