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Twin-field quantum key distribution (TF-QKD) and its variant protocols are highly attractive
due to the advantage of overcoming the rate-loss limit for secret key rates of point-to-point
QKD protocols. For variations of TF-QKD, the key point to ensure security is switching
randomly between a code mode and a test mode. Among all TF-QKD protocols, their code
modes are very different, e.g. modulating continuous phases, modulating only two opposite
phases, and sending or not sending signal pulses. Here we show that, by discretizing the
number of global phases in the code mode, we can give a unified view on the first two types
of TF-QKD protocols, and demonstrate that increasing the number of discrete phases
extends the achievable distance, and as a trade-off, lowers the secret key rate at short
distances due to the phase post-selection.
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uantum key distribution (QKD)»? provides two distant

parties (Alice and Bob) with a secure random bit string

against any eavesdropper (Eve) guaranteed by the law of
quantum mechanics. During the past three decades, QKD has
rapidly developed both in theory and experiment3-7, and it is on
the way to a wide range of implementation. Among all QKD
experiments before, without quantum repeaters, the maximum key
rates are bounded with respect to the channel transmittance 7,
defined as the probability for an effective detector click caused by a
transmitted photon. So, one of the crucial tasks for the theorists is to
find the maximum key rate achievable under ideal implementation
(based on perfect single-photon sources, pure-loss channels, perfect
detectors, perfect post-processing, and so on). With the aim of
finding an upper bound of secret key rate, the theorists have pro-
vided several answers®-10, The recent work has provided the fun-
damental limit called Pirandola-Laurenza-Ottaviani-Banchi
(PLOB) bound!9, which establishes that the secret key rate without
quantum repeaters must satisfy R < —log(1 — 7).

Remarkably, the twin-field (TF)-QKD protocol, proposed by
Lucamarini et al.!l, is capable of overcoming this PLOB bound
with some restrictions on Eve’s strategies, which is mainly
attributed to the single-photon interferometric measurement at
the third untrusted party Eve. In other words, a single photon that
came from either Alice or Bob interferes at Eve’s beam splitter
and clicks the detector, which means that generating a secret key
bears a unilateral transmission loss. Because of this dramatic
breakthrough, a variant of TF-QKD protocols have been pro-
posed consequentially!>"17 and some protocols have been
demonstrated experimentally'8-22. For variant TF-QKD proto-
cols, the key idea to ensure the security is switching probabil-
istically between a code mode and a test mode, where the former
is for key generation, and the latter is for parameter estimation!”.
Among all TF-QKD protocols, their code modes are very dif-
ferent, e.g., modulating continuous phases!12, modulating only
two opposite phases!4-16, and sending or not sending signal
pulses'3. The code modes of the first two kinds are similar in
some sense. Intuitively, they may be explained by a unified view.

Interestingly, by discretizing the global phases of Alice and
Bob’s emitted pulses in the code mode, we can give a unified view
on two kinds of TF-QKD protocols!>1214-16_ Specifically, Alice
and Bob encode classical bit 0, 1 into phases 0, 7 of a coherent
state, respectively, then randomize them by adding a phase
chosen randomly 0, /M, 21/M, ..., (M — 1)n/M. According to
whether or not to perform phase post-selection in the test mode,
we introduce two protocols. To prove their security, we establish a
universal framework against collective attacks, which can be
extended to robust against coherent attacks?> with the technique
in ref. 24, The security analysis indicates that increasing the
number of discrete phases can extend the achievable distance but
lower the secret key rate at short distances due to the phase post-
selection. Furthermore, simulation results show that a small
number of random phases (say M = 2) may be the best choice for
practical implementations.

Results

We first describe details of our proposed TF-QKD protocols that
have discrete phase randomization in the code mode, and the
schematic set-up is shown in Fig. 1.

Protocol I

Step 1. Alice and Bob randomly choose code mode or test
mode in each trial.

Step 2. If a code mode is selected, Alice (Bob) randomly gen-
erates a key bit k, (k;) and a random number x (y) and then
prepares the coherent state |ae*:ti)™) (|aeke+)7)), where
x, y€{0, 1, 2, ..., M — 1}. If a test mode is selected, Alice (Bob)

@Eve <)

Code |aetkar)
mode: |aei(ka+1/M)ﬂ>

Code |aei*o™)
mode: |aei(kb+1/M)ﬂ)

|aei(ka+2/M)rr> |aei(kb+Z/M)1z)
|aei(k;1+(M-1>/M)n) |aei(k:b+(M—1)/M)n>
Test  |B, ei®o) Test  |B, ei%o)
mode: |ﬁ1 eid’l) mode: |ﬂ1 e"‘f’l)
B, ¢) 162 et
|y ) |8 e*x)

Fig. 1 Schematic set-up of our twin-field quantum key distribution
protocols. In each trial, Alice and Bob randomly choose code mode and test
mode and send their quantum states to the untrusted receiver Eve. If a code
mode is selected, Alice (Bob) prepares coherent state chosen from
{Jagkaomy | |aeikan Ty | |aeikan 7)) If a test mode is selected, Alice
(Bob) prepares coherent state chosen from {‘ﬁoei¢°>~, |/31e"¢w>, . |/3ke"¢k>}.
After interference at beam splitter (BS) and detector click on Eve's side, she
announces the outcome. More detailed explanation can be found in

protocol descriptions.

generates a random phase ¢, € [0, 2m) (¢, € [0, 27)) and emits
coherent state ’ ﬁaei¢n> (| ﬁbei¢b>), where B, () is randomly
chosen from a pre-decided set.

Step 3. Alice and Bob send their quantum states to the
untrusted receiver Eve. For each trial, only three outcomes are
acceptable, which are “Only detector L clicks”, “Only detector R
clicks”, and “No detectors click”, and Eve announces one of these
outcomes. Note that the outcome “Both detectors L and R click”
is considered as “No detectors click”.

Step 4. Alice and Bob repeat the above steps many times. For
the successful detection outcomes (only detector L or R clicks),
Alice and Bob publicly announce which trials are the code modes
and which trials are the test modes. For each successful trial in the
code mode, Alice and Bob announce their x and y, and keep k,, k;,
as their raw key if x = y. Moreover, Bob should flip his key k;, if
Eve announces “Only detector R clicks”.

Step 5. For each trial that both Alice and Bob select test mode,
Alice and Bob announce f3, with random phase ¢, and f,
with random phase ¢;, and only keep the trial that 8, =8, and
I — 941 = 0 or .

Step 6. Alice and Bob perform information reconciliation and
privacy amplification to extract the final secure keys.

For the simplicity in experiments, we can remove post-selection
in the test mode, and the simplified protocol runs as follows.

Protocol II

Step 1. Same as Protocol L.

Step 2. Same as Protocol I.

Step 3. Alice and Bob send their quantum states to the
untrusted receiver Eve. For each trial, only three outcomes are
acceptable, which are “Only detector L clicks”, “Only detector R
clicks”, and “No detectors click”. Note that, the outcome “Both
detectors L and R click” is considered as “No detectors click” in
the code mode and is considered as only detector L or R clicks
with equal probability in the test mode. Consequentially, Eve
announces one of these outcomes.

Step 4. Alice and Bob repeat the above steps many times. For
the successful detection outcomes (only detector L or R clicks),
Alice and Bob publicly announce which trials are the code modes
and which trials are the test modes. For each successful trial in the
code mode, Alice and Bob announce their x and y, and keep k,, k;,
as their raw key if x = y. Moreover, Bob should flip his key k, if
Eve announces “Only detector R clicks”.

2 COMMUNICATIONS PHYSICS | (2020)3:149 | https://doi.org/10.1038/s42005-020-00415-0 | www.nature.com/commsphys


www.nature.com/commsphys

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-020-00415-0

ARTICLE

Table 1 Parameters.

Values

Dark count rate d 8x10-8
Error correction efficiency f 115

Parameters

Detector efficiency 54 14.5%
Misalignment error es 1.5%
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Fig. 2 Secret key rate R versus channel loss for Protocol I. The curves
represent the secure key rate of twin-field quantum key distribution
protocol for M=1, M =2, and M =4 (M is the number of random phases)
and the Pirandola-Laurenza-Ottaviani-Banchi (PLOB) bound, respectively.
We do not show the case of M — oo because the key rate tends to O.

Step 5. For each trial that both Alice and Bob select the test
mode, the yield Y;y, probability of Eve announcing the successful
outcome provided Alice emits I-photon state and Bob emits k-
photon state, can be estimated.

Step 6. Same as Protocol I

Our security proof is based on Devetak-Winter’s bound?>,
concretely, bounding the information leakage I,g. Thus the secret
key rate is given by

R= Q1= fH(e) ~ Ie), (1

where Q is the counting rate, 1/M is the shifting factor, e is the
error rate, and f is the error correction efficiency. By applying
infinite decoy states?°-2? in the test mode, we can simulate the
performance of our two protocols with different M. The simu-
lation parameters are given in Table 1. For Protocol I, we present
the numerical simulations of secret key rate in Fig. 2 and the
maximal channel loss in Table 2. If we remove the sifting effi-
ciency, the limitary channel loss with M — oo is 81.5 dB as shown
in Table 2. According to Fig. 2 and Table 2, it is sufficient to apply
TF-QKD with M =2, which almost reaches the theoretical limit
channel loss. Analogously, for Protocol II, we get simulation
results comparable to those of Protocol I, and we show the secret
key rate in Fig. 3 and the theoretical limit channel loss in Table 3.
When removing the sifting factor, the maximal channel loss of
Protocol II with M — oo is 75.8 dB. In addition, one may refer to
“Methods” section and Fig. 4 for the cases with finite decoy states.

When we compare Protocol I with Protocol II, the latter one
does not require post-selection in the test mode; as a trade-off, the
maximal channel loss will be lower. Here we consider the rela-
tionship with several varietal TF-QKD protocols!214-16, When
M — oo, Protocol I is exactly the phase matching QKD!2 if we
relax the post-selection condition |¢, — ¢,| =0 or 7 and add a
corresponding sifting factor. When M =1, Protocol II is the

Table 2 The maximal channel loss for Protocol |1 with
different M.

M The maximal channel loss (dB)
1 723
2 80.8
4 813
oo 815
— PLOB bound
— M=1
M=2
1073} ,
2 M=4
>
2
B N
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»
™~
109} -
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Fig. 3 Secret key rate R versus channel loss for Protocol Il. The curves
represent the secure key rate of twin-field quantum key distribution
protocol for M=1, M =2, and M =4 (M is the number of random phases)
and the Pirandola-Laurenza-Ottaviani-Banchi (PLOB) bound, respectively.
We do not show the case of M — oo because the key rate tends to O.

Table 3 The maximal channel loss with Protocol Il different
M.

M The maximal channel loss (dB)
1 67.0
2 753
4 75.8
L 75.8
—— PLOB bound
— infinite intensities
L 103 — .
] three intensities
)
X
o
@ 107t .
(2]
107k, , , s E|
0 20 40 60

channel loss (dB)

Fig. 4 Secret key rate R versus channel loss for Protocol Il with M =2
(M is the number of random phases). The curves represent the secure key
rate in the case of infinite intensities, three intensities, and the
Pirandola-Laurenza-Ottaviani-Banchi (PLOB) bound, respectively.
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same as!4-10 in the code mode, the difference is the way to
estimate the information leakage or the “phase error”. To some
extent, our proposed TF-QKD protocols with discrete phase
randomization in code mode cover the four varietal TF-QKD
protocols above.

Discussion
In summary, we have introduced a variant TF-QKD with discrete
phase randomization in the code mode and proven its security in
asymptotic scenarios. Our protocol can be viewed as a general-
ization of the four varietal TF-QKD protocols!>14-16 to some
extent. The security proof discloses that the transmission distance
becomes longer with M exponentially increasing; as a trade-off,
the secret key rate is lower at short distances. As a result, the
transmission distance reaches a limitation when M tends to
infinity. Numerical simulations show that it is sufficient to apply
TF-QKD with M =2, for it almost reaches the limitary trans-
mission distance at the cost of about half of secret key rate,
compared with the case of M = 1, at short distance. Furthermore,
post-selection in the test mode is not convenient in experiment,
thus we remove it to make experiments simpler in a modified
protocol. We find that the removal of post-selection in the test
mode has very limited influence on the secret key rate and
achievable distance. Our findings expect that TF-QKD can be run
with optimal phase randomization actively, i.e., at short distance
one can simply bypass phase randomization, while a phase ran-
domization of 0 or 71/2 is sufficient at the long distance case.
During the preparation of this paper, we found that Pri-
maatmaja et al.>0 proposed an open question that if coding phases
in TF-QKD under different bases, which is quite similar to our
idea of phase discrete randomization, can improve secret key rate
significantly. Their open question is answered by our finding that
M =2 is almost optimal in some sense.

Methods

Security proof. Here we present security proof Protocol I. First, we analyze the
composite states shared by Alice and Bob when they both select the test mode. In
the case of B, = f, = and ¢, = ¢, = ¢, the composite state of Alice and Bob can
be written as

o =5 [ 1B ) (g (6

0 @)
=D _Pyln ) (mH,
n=0
where the fock state is defined as
1
n, +) = \/2'1_( [ 51)"100) 55 ®3)
and the probability is given by
P —e (2u) (4)
n o
where y = |B|? is the light intensity. In the case of 8, = , =  and ¢, = ¢}, + n(mod
2m) = ¢, the composite state of Alice and Bob can be written as
1o i i i i
P =35 [ d0lBe)] Bt (Bt (~pe)
0
o0 )
=3 pn-
n=0
where the fock state is defined as
1 i n
n, =) = (' —b7)"[00) 15, (6)

n

with probability P,,.
In what follows, we concentrate on bounding Eve’s Holevo information. Eve’s
general collective attack can be given by

o I YEL L IR + YO, (7)

where state |e) is Eve’s ancilla. Then Eve is supposed to announce one of legal

» o«

outcomes “Only detector L clicks”, “Only detector R clicks”, and “No detectors

Ukyeln, ) aple)y = Yﬁ.i

click” determined by her measurement results “|L)”, “|R)”, and “|N)”, respectively.
In the case of 8, =8, and ¢, = ¢y, \yﬁ7+), [yR ), and |yY ) are some arbitrary
quantum states referring to Eve’s measurement results “|L)”, “|R)”, and “|N)”,
respectively. Y5 ., Yr ,and Y satisfying Y5 + Y} + YN = 1 are the yields
referring to Eve’s measurement results “|L)”, “|R)”, and “|N)”, respectively.
Similarly, in the case of f, =By and |¢, — ¢pl =7, [y5_), [yX_), and ||y}_) are
some arbitrary quantum states referring to Eve’s measurement results “|L)”, “|R)”,
and “|N)”, respectively. Y- _, Y® _ and Y} _ satisfying Y% _ + YR + YN =1lare
the yields referring to Eve’s measurement results “|L)”, “\R}”, and “\N)”
respectively.

Without loss of generality, we first consider the secret key rate when her
measurement result is “|L)”. When Alice and Bob both select the code mode, the
initial prepared state {ae (ko +7) ) and |ae’ (k+3)7), with matched-basis trials x = y,
can be given by

o) o) = 3 VB )8, =y =0
I

|—txe M |—txe i

(8)
|aeiﬁ”>|faeiﬁ”> = Z \/P—ne’%\m )k, =0k, =1
| —aei™ ) |aefi™) Z Ve |, =)k, = 1,k, = 0.
For the sake of simplicity, we define unnormalized states
‘W]L/»fR> Portnis Y. 2Mn+j + le-i/lenﬂ +> )
where j€{0, 1, 2, ..., 2M — 1}. We also define other unnormalized states
W)= St

(10)

/ A=l (2+1
L/R ARl
Vox, + > = § e

j=0

Véiy/f 1,+ > )

After Eve’s attack according to Eq. (7) and her announcing “|L),” Alice and Bob
keep trials only if x = y. Thus the unnormalized state of Eve conditioned on Alice’s
classical bit can be given by

vho)+ vk}
vh ) }) +3i0a0l @ (¢

phe =3 100401 (¢

+P{|vh )+

o]

vho) -

v,
(11)

where P{|x)} = |x)(x|. The probability of Alice obtaining a shifted key (x=y) ina
code mode when Eve announces “|L)” is
2
wlf)

@4

and correspondingly an error click occurs if k, @ k;, =1, thus the error rate of
shifted key (x=y) is given by

‘l/é‘x.+> -

e )[4

2
.

v

L vk )P+ vh )P vk )P+ vh )P
- 13
RS 720 YL YL P Y| P B ' (13)

Thanks to the strong subadditivity of von Neumann entropy (the detailed
derivation of how we apply the strong subadditivity is in the Appendix A of ref. 31),
Eve’s Holevo information with her announcing “|L)” is given by

[ [
Mo 20 =DM | e | M| e
\ wéx.+>\2+\ wéx,7>(2 "
<H 20

X

where H(x) = —x log,x — (1 — x)log, (1 — x) is binary Shannon entropy and the
second inequality holds due to Jensen’s inequality. For each trial that x = y and Eve
announces “|L)”, the secret key rate is given by

= Qu(1 —fH(ey) — Iy, (15)

where f is error correction efficiency. What we need to do next is to calculate the
average secret key rate for different x when Eve announces “|L).” Without
considering the sifting factor, the average secret key rate when Eve announces “|L)”
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is given by

(€0) = Iigy)-

=_ZRL %ZQﬁ(l— (16)

We use QL to denote the average gain and el to denote the average error rate of
shifted key, which are written as

1M—l
7—ZQ§

= S QL e
Yol &
Thanks to the concavity of binary Shannon entropy, we utilize Jensen’s
inequality to minimize RE. For the second term of Eq. (16) on the right, we have

1 M-1 L
fZQL Ly < QtH (MZX:QOL Q)Lcex> = Q*H(eM).

The condition for equality of Eq. (18) is that ek =l = ...
for the third term of Eq. (16) on the right, we have

(17)

(18)

= eﬁ,F |- Similarly,

2
ZQLIL <— MX: ’we*+>zgiwe">‘

x=0

<Q'H <2MQL g

Z

=0

2
ik

e
2>
2 2
M—1 [, .,
L im0 "W£M+2j,+>‘ +HW£M+2}'.—>‘
2QF

L
1/’zM+2j,+>
j=

2M+2] - >

=Q

\M~1
o Wiy ) 1| Viaeiy )P
Lo ey ;g, Vs ) . Consequently, we have

REz QM (1 fH(e") — Iig). (20)

Similarly, when Eve’s measurement result is “|R)”, the analysis of secret key rate

is almost the same with the ones when she announces “|L)”. Thus the secret key
rate when Eve announces “|R)” is given by

RR2Q¥(1—fH(e") — IRp),

L
Here we define I'y; = H

(1)
where I8, is given by
Mo 2 2
> im0 ’V§M+2j,—>‘ JF‘ ‘W}ziw+2j.+>’
2Q°
The trials when Eve’s measurement result is “|N)” will not contribute to the
secret key. Thus the total secret key rate is R = RL + RR. The total gain and the total
error rate of shifted key are given by
Q=Q+Q"
Qlet + QReR
Q .

In order to find the lower bound of the total secret key rate R, we apply the
Jensen’s inequality to the estimation items in Egs. (15) and (21), and we can get

R.=H

(22)

(23)

H(¢") + Q"H(¢") < QH (W) = QH(e), (24)
where the equality holds when el = eR = e and
1 M=l ) )
Q'L + Q5 <Q {H (E ; ‘ ‘W§M+2j.+>‘ +‘ ‘V§M+2j,—>‘
= 25)
+‘ )W’Z‘M+Z],—>‘Z+HW§M+2)’,+>‘2>] ,
where we define
M-l
Ing =H<%2 2 2 >‘Z+V/£:M+Zj,>‘2 26)
+ HW’Z‘M+Zj,—>‘ +HW§M+2}Z+>‘ >
Consequently, the total secret key rate formula can be expressed by
R= Q1 = fH(0) - Iye), @)

where 1/M is the shifting factor. And the problem of finding the lower bound of the

total secret key rate can be converted into finding the upper bound of I,g,
1 M-l ) )
Iyg<H (E Z ’ ‘W§M+2j,+> ) +‘ ‘WIZQMJij‘— >‘
=

2 2
+‘ }W;MJij,— > ‘ +’ ‘W§M+2j.+ > ’ )
with constraints
(28)

L/R
0< H‘/’zi/\/Hj.t>

M-1

ZHWZM+Z]+>‘ +HWZM+2)—>’2

+ HW§M+21'=’>) +HV’§M+2J\+>‘ Q.

P2Mn+) 2Mn+1 +

Simulation. In this section, we simulate the performance of our TF-QKD proto-
cols, and the simulation method is very similar to Ma et al.!2. Ideally, for Protocol I,

Alice and Bob can estimate Y,I;/ x precisely by infinite decoy-state method.

We assume that the total efficiency of channels and detectors is #, dark counting
rate of single photon detectors is d per trial, the optical misalignment is ey;s, and
the mean photon number of each pulse emitted by Alice and Bob is y. The
counting rate is given by

Q=(1-d)(1—e ") +2d(1 —d)e " 29)
=(1—d)(1 — e ¥ 4 2de™ ™),
and the error rate is
— (1 — d) [emis - (emis - d>e—2w] . (3())
Q
Applying infinite decoy states, Y],j/ ¥ can be given by
Yﬁ,+ = Y]:.— = (1 - d)[l ~ €mis — (1 — €mis — d)(l - ’7)”] (31>
Vi =Yy = (1= e — (e — (1 —1)"]-
We define
Vi =Y, =Y,
Y, =Y. =Y,
Y, = Yo+ Y5 = (1= d)l - (1—2d)(1 — )]
2 2
L R
[ HWZM+}'.,+>‘ +H‘/’2M+j,—>‘ (32)
2M+j T 2
2 2
HIV%M+jﬁ>‘ +HW§MH,+>‘
Xy =
M = 2
Xomy = Xomej + Xoj-

Thanks to Cauchy inequality, we have

0 o0 o0
<Z\/in> <Z\/Panl> an (Y5 +7Y°) +Z,/pnpn,( YOYE, +\/Y2YY,)

n=0 n=0

n=0
o 2
n=0
(33)
Thus we can get an equivalent upper bound of I, given by
S Xonro
I..<H|Z== 279
(B
with constraints
(34)

- 2
0<Xopigj S Z v/ Pastnt2j Y ot
n=0
M-1
Q
Z Xomigj S =
=

The security proof of Protocol II is almost the same as Protocol I. In Protocol II,
Eve’s general collective attack is given by

Usell. haalede = /YE D) + YEIR) + V7)),

where |1, k) ,p represents the photon-number base prepared by Alice and Bob, |yf;),

(35)

[yR.), and |y}) are some arbitrary quantum states referring to Eve’s measurement
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results “|L)”, “|R)”, and “|N)”, respectively. Besides, Y7, Y}, and Y{‘fk satisfying
Y,L’k + YR, + Y]} = 1 are the yields referring to Eve’s measurement results “|L)”,
“|R)”, and “|N)”, respectively. Compared to the expression of Eve’s general
collective attack in Protocol I, it can be argued that the general collective attack is
actually the same as Protocol I if we set

n
L/R 1 L/R| L/R
Vn/+>— Z (£1) Pth/ ‘)’//Z >
1=0, /T k=n

P Y%

(36)
Consequently, applying the security proof method to Protocol II, we find that
the expression of the upper bound of I,y is same as the one of Protocol I. In

Protocol II, for removing phase post-selection, we estimate the yield Y; rather than
Y, to bound Xy 4 ;. Combining Egs. (9) and (36), we obtain

2 1
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where even and odd are the assembles referring to even number set and odd
number set, respectively. Similar to Eq. (33), by utilizing Cauchy inequality, we

<

n=0 [ keceven

(37)

have
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n=0 Lk 38)
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where Y = Y}, + Y& Due to the decoy-state method implemented, Y satisfies
the constraints

Q!‘ul‘-» (39)

— Lty
=Y Py
Lk

Thus we have obtained the upper bound of X, given as follows

oo I+k=2Mn+2j o@ I+k=2Mn-+2j 2
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=0  [keeven n= 0 Lkeodd

Briefly, the upper bound of Ig in Protocol II is given by,

M-1
I <H E}:o Koo
AE Q

with constraints

oo Hk=2Mn+2j

0= Xony9< (Z (41)
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2

For the sake of analyzing the upper bound of Iy with the increase of M, we
define the upper bound of Z}ig‘ Xuzo; as a function of positive integer M, which

is given by

M-1 0 2
= Z Z \/ PzMn+2jY2Mn+2j . (42)
j=0 n=0

=
As binary Shannon entropy H(x) increases when 0 < x < 1/2 and decreases when

1/2 <x <1, it is sufficient to consider the case of F(M) < Q/2. It can be proven that

F(1) = F(M) > F(NM) 2 F(c0), (43)

where N is a positive integer. In order to prove Eq. (43), we rewrite Eq. (42) as
follows

(44)

M-1 =) 2
= Z <ZA2Mn+2j> )
Jj=0 n=0

where we denote F(M) and /Py, Yorrnio; @8 G(M) and Aj gy o), respectively.
For Ajafa4 o) is absolutely a nonnegative term, we have

85
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where the inequality holds because of the nonnegative cross term
Z]¢) O30 oAzMnJer)(Zn 0 Asyin o). Similarly,

o0
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M-1N-1 [ oo 2
DD DIX STV
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- 2
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v

(46)

where we use subscript k instead of Nj + j'. The nonnegative cross term vanishes
when M — oo, then we have

00
=>4, (47)

n=0

Thus we have proven Eq. (43). Then we obtain that the upper bound of I,g
decreases with M exponentially increasing. In other words, the achievable distance

becomes longer as M exponentially increases. As a result, the achievable distance
comes to a limitation when M tends to infinity.

Finite-decoy method for Protocol Il with M = 2. As Protocol II does not require
phase post-selection in the test mode, it is more practical than Protocol I. For
Protocol I, it almost reaches the limitary transmission distance with M = 2 shown
in Table 3, thus it is interesting and necessary to consider applying finite-decoy
states in the test mode.
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When finite-decoy states are implemented, finding the upper bound of I, is
equivalent to the following optimized problem

Max :

M-1 < oo IHk=2Mn+2j

21X X

Jj=0 n=0 [keeven

2
\/ Pk Yl,k>

2
v/ Pk Yl,k)
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(22
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n=0 | kcodd
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where p,, yp € {1, Har s} As Fig. 4 shows, the performance is maintained using
only three intensity settings. That is, we only need three decoy intensities
{141, p2, p3}, and the signal intensity is chosen from one of them.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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