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Optimized protocol for twin-field quantum
key distribution
Rong Wang1,2, Zhen-Qiang Yin1,2✉, Feng-Yu Lu1,2, Shuang Wang1,2, Wei Chen1,2, Chun-Mei Zhang3,

Wei Huang4, Bing-Jie Xu4, Guang-Can Guo1,2 & Zheng-Fu Han1,2

Twin-field quantum key distribution (TF-QKD) and its variant protocols are highly attractive

due to the advantage of overcoming the rate-loss limit for secret key rates of point-to-point

QKD protocols. For variations of TF-QKD, the key point to ensure security is switching

randomly between a code mode and a test mode. Among all TF-QKD protocols, their code

modes are very different, e.g. modulating continuous phases, modulating only two opposite

phases, and sending or not sending signal pulses. Here we show that, by discretizing the

number of global phases in the code mode, we can give a unified view on the first two types

of TF-QKD protocols, and demonstrate that increasing the number of discrete phases

extends the achievable distance, and as a trade-off, lowers the secret key rate at short

distances due to the phase post-selection.
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Quantum key distribution (QKD)1,2 provides two distant
parties (Alice and Bob) with a secure random bit string
against any eavesdropper (Eve) guaranteed by the law of

quantum mechanics. During the past three decades, QKD has
rapidly developed both in theory and experiment3–7, and it is on
the way to a wide range of implementation. Among all QKD
experiments before, without quantum repeaters, the maximum key
rates are bounded with respect to the channel transmittance η,
defined as the probability for an effective detector click caused by a
transmitted photon. So, one of the crucial tasks for the theorists is to
find the maximum key rate achievable under ideal implementation
(based on perfect single-photon sources, pure-loss channels, perfect
detectors, perfect post-processing, and so on). With the aim of
finding an upper bound of secret key rate, the theorists have pro-
vided several answers8–10. The recent work has provided the fun-
damental limit called Pirandola–Laurenza–Ottaviani–Banchi
(PLOB) bound10, which establishes that the secret key rate without
quantum repeaters must satisfy R ≤−log(1− η).

Remarkably, the twin-field (TF)-QKD protocol, proposed by
Lucamarini et al.11, is capable of overcoming this PLOB bound
with some restrictions on Eve’s strategies, which is mainly
attributed to the single-photon interferometric measurement at
the third untrusted party Eve. In other words, a single photon that
came from either Alice or Bob interferes at Eve’s beam splitter
and clicks the detector, which means that generating a secret key
bears a unilateral transmission loss. Because of this dramatic
breakthrough, a variant of TF-QKD protocols have been pro-
posed consequentially12–17 and some protocols have been
demonstrated experimentally18–22. For variant TF-QKD proto-
cols, the key idea to ensure the security is switching probabil-
istically between a code mode and a test mode, where the former
is for key generation, and the latter is for parameter estimation17.
Among all TF-QKD protocols, their code modes are very dif-
ferent, e.g., modulating continuous phases11,12, modulating only
two opposite phases14–16, and sending or not sending signal
pulses13. The code modes of the first two kinds are similar in
some sense. Intuitively, they may be explained by a unified view.

Interestingly, by discretizing the global phases of Alice and
Bob’s emitted pulses in the code mode, we can give a unified view
on two kinds of TF-QKD protocols11,12,14–16. Specifically, Alice
and Bob encode classical bit 0, 1 into phases 0, π of a coherent
state, respectively, then randomize them by adding a phase
chosen randomly 0, π/M, 2π/M, …, (M− 1)π/M. According to
whether or not to perform phase post-selection in the test mode,
we introduce two protocols. To prove their security, we establish a
universal framework against collective attacks, which can be
extended to robust against coherent attacks23 with the technique
in ref. 24. The security analysis indicates that increasing the
number of discrete phases can extend the achievable distance but
lower the secret key rate at short distances due to the phase post-
selection. Furthermore, simulation results show that a small
number of random phases (say M= 2) may be the best choice for
practical implementations.

Results
We first describe details of our proposed TF-QKD protocols that
have discrete phase randomization in the code mode, and the
schematic set-up is shown in Fig. 1.

Protocol I
Step 1. Alice and Bob randomly choose code mode or test

mode in each trial.
Step 2. If a code mode is selected, Alice (Bob) randomly gen-

erates a key bit ka (kb) and a random number x (y) and then
prepares the coherent state αeiðkaþ

x
MÞπ

�� �
(jαeiðkbþ y

MÞπi), where
x, y∈ {0, 1, 2, …, M− 1}. If a test mode is selected, Alice (Bob)

generates a random phase ϕa∈ [0, 2π) (ϕb∈ [0, 2π)) and emits
coherent state βae

iϕa
�� �

( βbe
iϕb

�� �
), where βa (βb) is randomly

chosen from a pre-decided set.
Step 3. Alice and Bob send their quantum states to the

untrusted receiver Eve. For each trial, only three outcomes are
acceptable, which are “Only detector L clicks”, “Only detector R
clicks”, and “No detectors click”, and Eve announces one of these
outcomes. Note that the outcome “Both detectors L and R click”
is considered as “No detectors click”.

Step 4. Alice and Bob repeat the above steps many times. For
the successful detection outcomes (only detector L or R clicks),
Alice and Bob publicly announce which trials are the code modes
and which trials are the test modes. For each successful trial in the
code mode, Alice and Bob announce their x and y, and keep ka, kb
as their raw key if x= y. Moreover, Bob should flip his key kb if
Eve announces “Only detector R clicks”.

Step 5. For each trial that both Alice and Bob select test mode,
Alice and Bob announce βa with random phase ϕa and βb
with random phase ϕb, and only keep the trial that βa= βb and
∣ϕa− ϕb∣= 0 or π.

Step 6. Alice and Bob perform information reconciliation and
privacy amplification to extract the final secure keys.

For the simplicity in experiments, we can remove post-selection
in the test mode, and the simplified protocol runs as follows.

Protocol II
Step 1. Same as Protocol I.
Step 2. Same as Protocol I.
Step 3. Alice and Bob send their quantum states to the

untrusted receiver Eve. For each trial, only three outcomes are
acceptable, which are “Only detector L clicks”, “Only detector R
clicks”, and “No detectors click”. Note that, the outcome “Both
detectors L and R click” is considered as “No detectors click” in
the code mode and is considered as only detector L or R clicks
with equal probability in the test mode. Consequentially, Eve
announces one of these outcomes.

Step 4. Alice and Bob repeat the above steps many times. For
the successful detection outcomes (only detector L or R clicks),
Alice and Bob publicly announce which trials are the code modes
and which trials are the test modes. For each successful trial in the
code mode, Alice and Bob announce their x and y, and keep ka, kb
as their raw key if x= y. Moreover, Bob should flip his key kb if
Eve announces “Only detector R clicks”.

Fig. 1 Schematic set-up of our twin-field quantum key distribution
protocols. In each trial, Alice and Bob randomly choose code mode and test
mode and send their quantum states to the untrusted receiver Eve. If a code
mode is selected, Alice (Bob) prepares coherent state chosen from
fjαeikaðbÞπi; jαeiðkaðbÞþ 1

MÞπi; ¼ ; jαeiðkaðbÞþM�1
M Þπig. If a test mode is selected, Alice

(Bob) prepares coherent state chosen from f β0eiϕ0
�� �

; β1e
iϕ1

�� �
; ¼ ; βke

iϕk
�� �g.

After interference at beam splitter (BS) and detector click on Eve’s side, she
announces the outcome. More detailed explanation can be found in
protocol descriptions.
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Step 5. For each trial that both Alice and Bob select the test
mode, the yield Yl,k, probability of Eve announcing the successful
outcome provided Alice emits l-photon state and Bob emits k-
photon state, can be estimated.

Step 6. Same as Protocol I.
Our security proof is based on Devetak–Winter’s bound25,

concretely, bounding the information leakage IAE. Thus the secret
key rate is given by

R≥
1
M

Qð1� fHðeÞ � IAEÞ; ð1Þ

where Q is the counting rate, 1/M is the shifting factor, e is the
error rate, and f is the error correction efficiency. By applying
infinite decoy states26–29 in the test mode, we can simulate the
performance of our two protocols with different M. The simu-
lation parameters are given in Table 1. For Protocol I, we present
the numerical simulations of secret key rate in Fig. 2 and the
maximal channel loss in Table 2. If we remove the sifting effi-
ciency, the limitary channel loss with M→∞ is 81.5 dB as shown
in Table 2. According to Fig. 2 and Table 2, it is sufficient to apply
TF-QKD with M= 2, which almost reaches the theoretical limit
channel loss. Analogously, for Protocol II, we get simulation
results comparable to those of Protocol I, and we show the secret
key rate in Fig. 3 and the theoretical limit channel loss in Table 3.
When removing the sifting factor, the maximal channel loss of
Protocol II with M→∞ is 75.8 dB. In addition, one may refer to
“Methods” section and Fig. 4 for the cases with finite decoy states.

When we compare Protocol I with Protocol II, the latter one
does not require post-selection in the test mode; as a trade-off, the
maximal channel loss will be lower. Here we consider the rela-
tionship with several varietal TF-QKD protocols12,14–16. When
M→∞, Protocol I is exactly the phase matching QKD12 if we
relax the post-selection condition ∣ϕa− ϕb∣= 0 or π and add a
corresponding sifting factor. When M= 1, Protocol II is the

Table 1 Parameters.

Parameters Values

Dark count rate d 8 × 10−8

Error correction efficiency f 1.15
Detector efficiency ηd 14.5%
Misalignment error emis 1.5%
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Fig. 2 Secret key rate R versus channel loss for Protocol I. The curves
represent the secure key rate of twin-field quantum key distribution
protocol for M= 1, M= 2, and M= 4 (M is the number of random phases)
and the Pirandola–Laurenza–Ottaviani–Banchi (PLOB) bound, respectively.
We do not show the case of M→∞ because the key rate tends to 0.

Table 2 The maximal channel loss for Protocol I with
different M.

M The maximal channel loss (dB)

1 72.3
2 80.8
4 81.3
∞ 81.5

PLOB bound
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Fig. 3 Secret key rate R versus channel loss for Protocol II. The curves
represent the secure key rate of twin-field quantum key distribution
protocol for M= 1, M= 2, and M= 4 (M is the number of random phases)
and the Pirandola–Laurenza–Ottaviani–Banchi (PLOB) bound, respectively.
We do not show the case of M→∞ because the key rate tends to 0.

Table 3 The maximal channel loss with Protocol II different
M.

M The maximal channel loss (dB)

1 67.0
2 75.3
4 75.8
∞ 75.8

PLOB bound
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Fig. 4 Secret key rate R versus channel loss for Protocol II with M= 2
(M is the number of random phases). The curves represent the secure key
rate in the case of infinite intensities, three intensities, and the
Pirandola–Laurenza–Ottaviani–Banchi (PLOB) bound, respectively.
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same as14–16 in the code mode, the difference is the way to
estimate the information leakage or the “phase error”. To some
extent, our proposed TF-QKD protocols with discrete phase
randomization in code mode cover the four varietal TF-QKD
protocols above.

Discussion
In summary, we have introduced a variant TF-QKD with discrete
phase randomization in the code mode and proven its security in
asymptotic scenarios. Our protocol can be viewed as a general-
ization of the four varietal TF-QKD protocols12,14–16 to some
extent. The security proof discloses that the transmission distance
becomes longer with M exponentially increasing; as a trade-off,
the secret key rate is lower at short distances. As a result, the
transmission distance reaches a limitation when M tends to
infinity. Numerical simulations show that it is sufficient to apply
TF-QKD with M= 2, for it almost reaches the limitary trans-
mission distance at the cost of about half of secret key rate,
compared with the case of M= 1, at short distance. Furthermore,
post-selection in the test mode is not convenient in experiment,
thus we remove it to make experiments simpler in a modified
protocol. We find that the removal of post-selection in the test
mode has very limited influence on the secret key rate and
achievable distance. Our findings expect that TF-QKD can be run
with optimal phase randomization actively, i.e., at short distance
one can simply bypass phase randomization, while a phase ran-
domization of 0 or π/2 is sufficient at the long distance case.

During the preparation of this paper, we found that Pri-
maatmaja et al.30 proposed an open question that if coding phases
in TF-QKD under different bases, which is quite similar to our
idea of phase discrete randomization, can improve secret key rate
significantly. Their open question is answered by our finding that
M= 2 is almost optimal in some sense.

Methods
Security proof. Here we present security proof Protocol I. First, we analyze the
composite states shared by Alice and Bob when they both select the test mode. In
the case of βa= βb= β and ϕa= ϕb= ϕ, the composite state of Alice and Bob can
be written as

ρAB ¼ 1
2π

Z 2π

0
dϕ βeiϕ
�� �

βeiϕ
�� �

βeiϕ
� �� βeiϕ� ��

¼
X1
n¼0

Pn n;þj i n;þh j;
ð2Þ

where the fock state is defined as

n;þj i ¼ 1ffiffiffiffiffiffiffiffiffi
2nn!

p ðay þ byÞn 00j iAB; ð3Þ

and the probability is given by

Pn ¼ e�2μ ð2μÞn
n!

; ð4Þ

where μ= ∣β∣2 is the light intensity. In the case of βa= βb= β and ϕa= ϕb+ π(mod
2π)= ϕ, the composite state of Alice and Bob can be written as

ρAB ¼ 1
2π

Z 2π

0
dϕ βeiϕ
�� � �βeiϕ

�� �
βeiϕ
� �� �βeiϕ

� ��
¼
X1
n¼0

Pn n;�j i n;�h j;
ð5Þ

where the fock state is defined as

n;�j i ¼ 1ffiffiffiffiffiffiffiffiffi
2nn!

p ðay � byÞn 00j iAB; ð6Þ

with probability Pn.
In what follows, we concentrate on bounding Eve’s Holevo information. Eve’s

general collective attack can be given by

UEve n; ±j iAB ej iE ¼
ffiffiffiffiffiffiffiffiffiffi
YL
n; ±

q
γLn; ±

��� E
Lj i þ

ffiffiffiffiffiffiffiffiffiffi
YR
n;±

q
γRn;±

��� E
Rj i þ

ffiffiffiffiffiffiffiffiffiffi
YN
n; ±

q
γNn; ±

��� E
Nj i; ð7Þ

where state ej iE is Eve’s ancilla. Then Eve is supposed to announce one of legal
outcomes “Only detector L clicks”, “Only detector R clicks”, and “No detectors

click” determined by her measurement results “ Lj i”, “ Rj i”, and “ Nj i”, respectively.
In the case of βa= βb and ϕa= ϕb, jγLn;þi, jγRn;þi, and jγNn;þi are some arbitrary
quantum states referring to Eve’s measurement results “ Lj i”, “ Rj i”, and “ Nj i”,
respectively. YL

n;þ , Y
R
n;þ , and YN

n;þ satisfying YL
n;þ þ YR

n;þ þ YN
n;þ ¼ 1 are the yields

referring to Eve’s measurement results “ Lj i”, “ Rj i”, and “ Nj i”, respectively.
Similarly, in the case of βa= βb and ∣ϕa− ϕb∣= π, jγLn;�i, jγRn;�i, and kγNn;�i are
some arbitrary quantum states referring to Eve’s measurement results “ Lj i”, “ Rj i”,
and “ Nj i”, respectively. YL

n;� , Y
R
n;� , and YN

n;� satisfying YL
n;� þ YR

n;� þ YN
n;� ¼ 1 are

the yields referring to Eve’s measurement results “ Lj i”, “ Rj i”, and “ Nj i”,
respectively.

Without loss of generality, we first consider the secret key rate when her
measurement result is “ Lj i”. When Alice and Bob both select the code mode, the
initial prepared state αeiðkaþ

x
MÞπ

�� �
and jαeiðkbþ y

MÞπi, with matched-basis trials x= y,
can be given by

αei
x
Mπ

�� �
αei

x
Mπ

�� � ¼X1
n¼0

ffiffiffiffiffi
Pn

p
ei

nxπ
M n;þj i; ka ¼ kb ¼ 0

�αei
x
Mπ

�� � �αei
x
Mπ

�� � ¼X1
n¼0

ffiffiffiffiffi
Pn

p
ei

nðMþxÞπ
M n;þj i; ka ¼ kb ¼ 1

αei
x
Mπ

�� � �αei
x
Mπ

�� � ¼X1
n¼0

ffiffiffiffiffi
Pn

p
ei

nxπ
M n;�j i; ka ¼ 0; kb ¼ 1

�αei
x
Mπ

�� �
αei

x
Mπ

�� � ¼X1
n¼0

ffiffiffiffiffi
Pn

p
ei

nðMþxÞπ
M n;�j i; ka ¼ 1; kb ¼ 0:

ð8Þ

For the sake of simplicity, we define unnormalized states

ψL=R
j; ±

��� E
¼
X1
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2MnþjY

L=R
2Mnþj;±

q
γL=R2Mnþj; ±

��� E
; ð9Þ

where j∈ {0, 1, 2, …, 2M− 1}. We also define other unnormalized states

ψL=R
ex; ±

��� E
¼
XM�1

j¼0

ei
2jxπ
M ψL=R

2j;±

��� E

ψL=R
ox;±

��� E
¼
XM�1

j¼0

ei
ð2jþ1Þxπ

M ψL=R
2jþ1;±

��� E
;

ð10Þ

After Eve’s attack according to Eq. (7) and her announcing “ Lj i,” Alice and Bob
keep trials only if x= y. Thus the unnormalized state of Eve conditioned on Alice’s
classical bit can be given by

ρLAEx ¼
1
4
0j iA 0h j � P ψL

ex;þ
��� E

þ ψL
ox;þ

��� En o�
þ P ψL

ex;�
��� E

þ ψL
ox;�

��� En o�
þ 1
4
1j iA 1h j � P ψL

ex;þ
��� E

� ψL
ox;þ

��� En o
þ P ψL

ex;�
��� E

� ψL
ox;�

��� En o� �
;

ð11Þ
where Pf xj ig ¼ xj i xh j. The probability of Alice obtaining a shifted key (x= y) in a
code mode when Eve announces “ Lj i” is

QL
x ¼ 1

2
ψL
ex;þ

��� E��� ���2þ ψL
ox;þ

��� E��� ���2þ ψL
ex;�

��� E��� ���2þ ψL
ox;�

��� E��� ���2� 	
; ð12Þ

and correspondingly an error click occurs if ka⊕ kb= 1, thus the error rate of
shifted key (x= y) is given by

eLx ¼ j ψL
ex;�j ij2þj ψL

ox;�j ij2
j ψL

ex;þj ij2þj ψL
ox;þj ij2þj ψL

ex;�j ij2þj ψL
ox;�j ij2 ¼

j ψL
ex;�j ij2þj ψL

ox;�j ij2
2QL

x
; ð13Þ

Thanks to the strong subadditivity of von Neumann entropy (the detailed
derivation of how we apply the strong subadditivity is in the Appendix A of ref. 31),
Eve’s Holevo information with her announcing “ Lj i” is given by

ILAEx ≤ ð1� eLxÞH
ψL
ex;þ

��� E��� ���2
2ð1� eLxÞQL

x

0
B@

1
CAþ eLxH

ψL
ex;�

��� E��� ���2
2eLxQ

L
x

0
B@

1
CA

≤H
ψL
ex;þ

��� E��� ���2þ ψL
ex;�

��� E��� ���2
2QL

x

0
B@

1
CA;

ð14Þ

where HðxÞ ¼ �x log 2x � ð1� xÞlog 2ð1� xÞ is binary Shannon entropy and the
second inequality holds due to Jensen’s inequality. For each trial that x= y and Eve
announces “ Lj i”, the secret key rate is given by

RL
x ¼ QL

xð1� fHðeLxÞ � ILAExÞ; ð15Þ
where f is error correction efficiency. What we need to do next is to calculate the
average secret key rate for different x when Eve announces “ Lj i.” Without
considering the sifting factor, the average secret key rate when Eve announces “ Lj i”
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is given by

RL ¼ 1
M

XM�1

x¼0

RL
x ¼ 1

M

XM�1

x¼0

QL
xð1� fHðeLxÞ � ILAExÞ: ð16Þ

We use QL to denote the average gain and eL to denote the average error rate of
shifted key, which are written as

QL ¼ 1
M

XM�1

x¼0

QL
x

eL ¼
PM�1

x¼0 QL
xe

L
xPM�1

x¼0 QL
x

:

ð17Þ

Thanks to the concavity of binary Shannon entropy, we utilize Jensen’s
inequality to minimize RL. For the second term of Eq. (16) on the right, we have

1
M

XM�1

x¼0

QL
xHðeLxÞ≤QLH

1
M

PM�1
x¼0 QL

xe
L
x

QL

 !
¼ QLHðeLÞ: ð18Þ

The condition for equality of Eq. (18) is that eL0 ¼ eL1 ¼ ¼ ¼ eLM�1. Similarly,
for the third term of Eq. (16) on the right, we have

1
M

XM�1

x¼0

QL
xI

L
AEx ≤

1
M

XM�1

x¼0

QL
xH

ψL
ex;þ

��� E��� ���2þ ψL
ex;�

��� E��� ���2
2QL

x

0
B@

1
CA

≤QLH
1

2MQL

XM�1

x¼0

XM�1

j¼0

ei
2jxπ
M ψL

2Mþ2j;þ
��� E�����

�����
2 

þ
XM�1

j¼0

ei
2jxπ
M ψL

2Mþ2j;�
��� E�����

�����
2!

¼ QLH

PM�1
j¼0 ψL

2Mþ2j;þ
��� E��� ���2þ ψL

2Mþ2j;�
��� E��� ���2

2QL

0
B@

1
CA:

ð19Þ

Here we define ILAE ¼ H

PM�1

j¼0
j ψL

2Mþ2j;þj ij2 þ j ψL
2Mþ2j;�j ij2

2QL

� 	
. Consequently, we have

RL ≥QLð1� fHðeLÞ � ILAEÞ: ð20Þ
Similarly, when Eve’s measurement result is “ Rj i”, the analysis of secret key rate

is almost the same with the ones when she announces “ Lj i”. Thus the secret key
rate when Eve announces “ Rj i” is given by

RR ≥QRð1� fHðeRÞ � IRAEÞ; ð21Þ
where IRAE is given by

IRAE ¼ H

PM�1
j¼0 ψR

2Mþ2j;�
��� E��� ���2þ ψR

2Mþ2j;þ
��� E��� ���2

2QR

0
B@

1
CA: ð22Þ

The trials when Eve’s measurement result is “ Nj i” will not contribute to the
secret key. Thus the total secret key rate is R= RL+ RR. The total gain and the total
error rate of shifted key are given by

Q ¼ QL þ QR

e ¼ QLeL þ QReR

Q
:

ð23Þ

In order to find the lower bound of the total secret key rate R, we apply the
Jensen’s inequality to the estimation items in Eqs. (15) and (21), and we can get

QLHðeLÞ þ QRHðeRÞ≤QH QLeL þ QReR

Q

� 	
¼ QHðeÞ; ð24Þ

where the equality holds when eL= eR= e and

QLILAE þ QRIRAE ≤Q H
1
2Q

XM�1

j¼0

ψL
2Mþ2j;þ

��� E��� ���2þ ψR
2Mþ2j;�

��� E��� ���2
 "

þ ψL
2Mþ2j;�

��� E��� ���2þ ψR
2Mþ2j;þ

��� E��� ���2	
;
ð25Þ

where we define

IAE ¼H
1
2Q

XM�1

j¼0

ψL
2Mþ2j;þ

��� E��� ���2þ ψR
2Mþ2j;�

��� E��� ���2
 

þ ψL
2Mþ2j;�

��� E��� ���2þ ψR
2Mþ2j;þ

��� E��� ���2	:
ð26Þ

Consequently, the total secret key rate formula can be expressed by

R≥
1
M

Qð1� fHðeÞ � IAEÞ; ð27Þ
where 1/M is the shifting factor. And the problem of finding the lower bound of the

total secret key rate can be converted into finding the upper bound of IAE,

IAE ≤H
1
2Q

XM�1

j¼0

ψL
2Mþ2j;þ

��� E��� ���2þ ψR
2Mþ2j;�

��� E��� ���2
 

þ ψL
2Mþ2j;�

��� E��� ���2þ ψR
2Mþ2j;þ

��� E��� ���2	
with constraints

0 ≤ ψL=R
2Mþj;±

��� E��� ���2 ≤ X1
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2MnþjY

L=R
2Mnþj;±

q�����
�����
2

XM�1

j¼0

ψL
2Mþ2j;þ

��� E��� ���2þ ψR
2Mþ2j;�

��� E��� ���2

þ ψL
2Mþ2j;�

��� E��� ���2þ ψR
2Mþ2j;þ

��� E��� ���2 ≤Q:

ð28Þ

Simulation. In this section, we simulate the performance of our TF-QKD proto-
cols, and the simulation method is very similar to Ma et al.12. Ideally, for Protocol I,

Alice and Bob can estimate YL=R
n; ± precisely by infinite decoy-state method.

We assume that the total efficiency of channels and detectors is η, dark counting
rate of single photon detectors is d per trial, the optical misalignment is emis, and
the mean photon number of each pulse emitted by Alice and Bob is μ. The
counting rate is given by

Q ¼ ð1� dÞð1� e�2ημÞ þ 2dð1� dÞe�2ημ

¼ ð1� dÞð1� e�2ημ þ 2de�2ημÞ; ð29Þ

and the error rate is

e ¼ ð1� dÞ½emis � ðemis � dÞe�2ημ�
Q

: ð30Þ

Applying infinite decoy states, YL=R
n; ± can be given by

YL
n;þ ¼ YR

n;� ¼ ð1� dÞ½1� emis � ð1� emis � dÞð1� ηÞn�
YL
n;� ¼ YR

n;þ ¼ ð1� dÞ½emis � ðemis � dÞð1� ηÞn�: ð31Þ

We define

YL
n;þ ¼ YR

n;� ¼ Yc
n

YL
n;� ¼ YR

n;þ ¼ Ye
n

Yn ¼ Yc
n þ Ye

n ¼ ð1� dÞ½1� ð1� 2dÞð1� ηÞn�

Xc
2Mþj ¼

ψL
2Mþj;þ

��� E��� ���2þ ψR
2Mþj;�

��� E��� ���2
2

Xe
2Mþj ¼

ψL
2Mþj;�

��� E��� ���2þ ψR
2Mþj;þ

��� E��� ���2
2

X2Mþj ¼ Xc
2Mþj þ Xe

2Mþj:

ð32Þ

Thanks to Cauchy inequality, we have

X1
n¼0

ffiffiffiffiffiffiffiffiffiffiffi
PnY

c
n

p !2

þ
X1
n¼0

ffiffiffiffiffiffiffiffiffiffiffi
PnY

e
n

p !2

¼
X1
n¼0

PnðYc
n þ Ye

nÞ þ
X1
n≠n0

ffiffiffiffiffiffiffiffiffiffiffi
PnPn0

p ð ffiffiffiffiffiffiffiffiffiffiffiffi
Yc
nY

c
n0

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
Ye
nY

e
n0

p Þ

≤
X1
n¼0

PnYn þ
X1
n≠n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PnPn0YnYn0

p

¼
X1
n¼0

ffiffiffiffiffiffiffiffiffiffiffi
PnYn

p !2

:

ð33Þ
Thus we can get an equivalent upper bound of IAE given by

IAE ≤H

PM�1
j¼0 X2Mþ2j

Q

 !

with constraints

0≤X2Mþ2j ≤
X1
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2Mnþ2jY2Mnþ2j

q !2

XM�1

j¼0

X2Mþ2j ≤
Q
2
:

ð34Þ

The security proof of Protocol II is almost the same as Protocol I. In Protocol II,
Eve’s general collective attack is given by

UEve l; kj iAB ej iE ¼
ffiffiffiffiffiffiffi
YL
l;k

q
γLl;k

��� E
Lj i þ

ffiffiffiffiffiffiffi
YR
l;k

q
γRl;k

��� E
Rj i þ

ffiffiffiffiffiffiffi
YN
l;k

q
γNl;k

��� E
Nj i; ð35Þ

where l; kj iAB represents the photon-number base prepared by Alice and Bob, jγLl;ki,
jγRl;ki, and jγNl;ki are some arbitrary quantum states referring to Eve’s measurement
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results “ Lj i”, “ Rj i”, and “ Nj i”, respectively. Besides, YL
l;k , Y

R
l;k , and YN

l;k satisfying
YL
l;k þ YR

l;k þ YN
l;k ¼ 1 are the yields referring to Eve’s measurement results “ Lj i”,

“ Rj i”, and “ Nj i”, respectively. Compared to the expression of Eve’s general
collective attack in Protocol I, it can be argued that the general collective attack is
actually the same as Protocol I if we setffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PnY
L=R
n; ±

q
γL=Rn;±

��� E
¼

Xn
l¼0;lþk¼n

ð± 1Þl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pl;kY

L=R
l;k

q
γL=Rl;k

��� E
: ð36Þ

Consequently, applying the security proof method to Protocol II, we find that
the expression of the upper bound of IAE is same as the one of Protocol I. In
Protocol II, for removing phase post-selection, we estimate the yield Yl,k rather than
Yn to bound X2M+ 2j. Combining Eqs. (9) and (36), we obtain

1
2

ψL=R
2Mþ2j;þ

��� E��� ���2þ ψL=R
2Mþ2j;�

��� E��� ���2� 	
¼ 1

2

X1
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2Mnþ2jY

L=R
2Mnþ2j;þ
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γL=R2Mnþ2j;þ
��� E�����

�����
2 

þ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2Mnþ2jY

L=R
2Mnþ2j;�

q
γL=R2Mnþ2j;�
��� E�����

�����
2!

¼ 1
2

X1
n¼0

Xlþk¼2Mnþ2j

l¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pl;kY

L=R
l;k

q
γL=Rl;k

��� E�����
�����
2

0
@

þ
X1
n¼0

Xlþk¼2Mnþ2j

l¼0

ð�1Þl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pl;kY

L=R
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q
γL=Rl;k

��� E�����
�����
2
1
A

¼
X1
n¼0
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pl;kY

L=R
l;k

q
γL=Rl;k

��� E�����
�����
2

þ
X1
n¼0

Xlþk¼2Mnþ2j

l;k2odd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pl;kY

L=R
l;k

q
γL=Rl;k

��� E�����
�����
2

≤
X1
n¼0

Xlþk¼2Mnþ2j

l;k2even

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pl;kY

L=R
l;k

q !2
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X1
n¼0

Xlþk¼2Mnþ2j

l;k2odd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pl;kY

L=R
l;k

q !2

;

ð37Þ
where even and odd are the assembles referring to even number set and odd
number set, respectively. Similar to Eq. (33), by utilizing Cauchy inequality, we
have

X1
n¼0

Xlþk¼2Mnþ2j

l;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pl;kY

L
l;k

q� �2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pl;kY

R
l;k

q� �2

≤
X1
n¼0

Xlþk¼2Mnþ2j

l;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pl;kYl;k

q� �2
;

ð38Þ

where Yl;k ¼ YL
l;k þ YR

l;k . Due to the decoy-state method implemented, Yl,k satisfies
the constraints

Qμaμb ¼
X
l;k

Pμaμb
l;k Yl;k: ð39Þ

Thus we have obtained the upper bound of X2M+2j given as follows

X2Mþ2j ≤
X1
n¼0

Xlþk¼2Mnþ2j

l;k2even

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pl;kYl;k

q !2

þ
X1
n¼0

Xlþk¼2Mnþ2j

l;k2odd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pl;kYl;k

q !2

: ð40Þ

Briefly, the upper bound of IAE in Protocol II is given by,

IAE ≤H

PM�1
j¼0 X2Mþ2j

Q

 !

with constraints

0 ≤X2Mþ2j ≤
X1
n¼0

Xlþk¼2Mnþ2j

l;k2even

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pl;kYl;k

q !2

þ
X1
n¼0

Xlþk¼2Mnþ2j

l;k2odd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pl;kYl;k

q !2XM�1

j¼0

X2Mþ2j

≤
Q
2
:

ð41Þ

For the sake of analyzing the upper bound of IAE with the increase of M, we
define the upper bound of

PM�1
j¼0 X2Mþ2j as a function of positive integer M, which

is given by

FðMÞ ¼
XM�1

j¼0

X1
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2Mnþ2jY2Mnþ2j

q !2

: ð42Þ

As binary Shannon entropy H(x) increases when 0 ≤ x ≤ 1/2 and decreases when
1/2 ≤ x ≤ 1, it is sufficient to consider the case of F(M) ≤Q/2. It can be proven that

Fð1Þ≥ FðMÞ≥ FðNMÞ≥ Fð1Þ; ð43Þ

where N is a positive integer. In order to prove Eq. (43), we rewrite Eq. (42) as
follows

GðMÞ ¼
XM�1

j¼0

X1
n¼0

A2Mnþ2j

 !2

; ð44Þ

where we denote F(M) and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2Mnþ2jY2Mnþ2j

p
as G(M) and A2Mn+2j, respectively.

For A2Mn+2j is absolutely a nonnegative term, we have
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≥
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X1
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A2Mnþ2j

 !2
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ð45Þ

where the inequality holds because of the nonnegative cross termPM�1
j≠j0 ðP1

n¼0 A2Mnþ2jÞð
P1

n¼0 A2Mnþ2j0 Þ. Similarly,

GðMÞ ¼
XM�1
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1
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ð46Þ

where we use subscript k instead of Njþ j0 . The nonnegative cross term vanishes
when M→∞, then we have

Gð1Þ ¼
X1
n¼0

A2
2n: ð47Þ

Thus we have proven Eq. (43). Then we obtain that the upper bound of IAE
decreases with M exponentially increasing. In other words, the achievable distance
becomes longer as M exponentially increases. As a result, the achievable distance
comes to a limitation when M tends to infinity.

Finite-decoy method for Protocol II with M= 2. As Protocol II does not require
phase post-selection in the test mode, it is more practical than Protocol I. For
Protocol II, it almost reaches the limitary transmission distance with M= 2 shown
in Table 3, thus it is interesting and necessary to consider applying finite-decoy
states in the test mode.
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When finite-decoy states are implemented, finding the upper bound of IAE is
equivalent to the following optimized problem

Max :
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j¼0
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n¼0
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≤
Q
2
:

ð48Þ

where μa, μb∈ {μ1, μ2, μ3}. As Fig. 4 shows, the performance is maintained using
only three intensity settings. That is, we only need three decoy intensities
{μ1, μ2, μ3}, and the signal intensity is chosen from one of them.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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