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Ultrasonic nodal chains in topological granular
metamaterials
Aurélien Merkel 1,2* & Johan Christensen 1*

Three-dimensional (3D) Weyl and Dirac semimetals garner considerable attention in con-

densed matter physics due to the exploration of entirely new topological phases and related

unconventional surface states. Nodal line and ring semimetals, on the other hand, can

facilitate 3D band crossings characterized by nontrivial links such as coupled chains and

knots that are protected by the underlying crystal symmetry. Experimental complexities and

detrimental effects of the spin-orbit interaction, among others, pose great challenges for the

advancement that can be overcome with other systems such as bosonic lattices. Here we

demonstrate that a 3D mechanical metamaterial made of granular beads hosts multiple

intersecting nodal rings in the ultrasonic regime. By unveiling these yet unseen classical

topological phases, we discuss the resilience of the associated novel surface states that

appear entirely unaffected to the type of crystal termination, making them a promising

platform in ultrasonic devices for non-destructive testing and material characterization.
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Topological phases of matter in insulators and super-
conductors have recently been extended to semimetals,
thus broadening the family of exotic topological states1,2.

This active frontier in condensed matter physics recently explored
topologically protected degeneracies in Dirac and Weyl semi-
metals that are identified by topologically robust band-touching
manifolds. These unconventional fermionic semimetals are
characterized by nontrivial band touching in the form of zero-
dimensional discrete points, one-dimensional nodal rings and
lines, or two-dimensional nodal surfaces. Peculiar topologically
protected k-space geometrical manifolds appear in various
interlaced nodal chains and links whose nontrivial linking carry a
toroidal Berry phase of π, provided the loops enclose the afore-
mentioned nodal shapes3,4.

The nontrivial Berry flux is responsible for the formation of
topologically nontrivial surface states that emerge from the
intersecting points of nodal shapes. For example, bulk Weyl
points give rise to surface Fermi arcs, whereas nodal rings host
flat drumhead surface states that are relevant for topologically
robust transport. Various materials have been predicted to sustain
Dirac or Weyl fermions and contemporary experiments report on
the observation of anisotropic or negative magnetoresistance in
three-dimensional semimetals5–9.

As opposed to nodal points and lines, nodal rings can generate
exotic intersecting formations in the form of chains, knots and
Hopf links that opens new horizons for unprecedented topolo-
gical properties, unusual surface states and novel physics in
general. A vast amount of theory has been devoted to this frontier
in Heusler compounds, alkaline earth metals and electrides7,10–15,
whereupon experimental verifications of nodal rings have already
been observed in non-centrosymmetric superconducting com-
pounds and zirconium-based structures16–19.

Bosonic settings such as photonic, phononic, and sonic crystals
are widely studied with the aim to tailor classical wave proper-
ties20. Accordingly, given the complexity of electronic systems to
unveil Weyl and Dirac semimetal physics as well as those peculiar
intersecting nodal rings, man-made bosonic system have become
increasingly popular to explore in the waves based context, the
existence of Dirac-like plasmons21, optical Weyl points and Fermi
arcs22,23, hourglass nodal lines24, metallic mesh nodal chains25,
and phononic nodal rings26.

In this work, we present an excerpt of the catalogue of nodal-
chain semimetals for classical mechanical waves in man-made
granular metamaterials. By solving the equations of motion for
these artificial discrete media, we are able to engineer exotic
mechanical intersecting nodal rings whose surface states at the
truncated lattice interfaces display a remarkable durability.

Results
Interlaced nodal chains in granular metamaterial. The elastic
behavior of granular media drastically differs from conventional
elastic waves in solids. At frequencies below the first spheroidal
resonance of individual beads, the structure is modeled by rigid
masses of finite size connected by stiffnesses originating from the
contact laws between the beads, thus forming a discrete crystal-
line lattice. Specifically here, we consider a face centered cubic
(FCC) arrangement as illustrated in Fig. 1a. In the general case in
the linear approximation, the contact between two grains is
described by one shear stiffness KS, one torsion stiffness GT, and
one bending stiffness GB accounting for the sliding, twisting, and
rolling resistances at the level of the contact, respectively, in
addition to the usual normal stiffness KN as sketched in Fig. 1a.
As a consequence, the rotational degrees of freedom of each
individual particle play an important role in the dynamics of
granular media. The linear equations of motion for one bead α,

with its infinitesimal displacement uα and angular rotation wβ

around its equilibrium position in a monodisperse granular
assembly, read for translation

mb
∂2uα

∂t2
¼

X
β

Fβα; ð1Þ

and for rotation

Ib
∂2wα

∂t2
¼

X
β

Mβα þ 1
2

X
β

ðRβ � RαÞ ´ Fβα; ð2Þ

where the summation of forces Fβα and torquesMβα take place over
all the beads β at the position Rβ in contact with the bead α of mass
mb, moment of inertia Ib, and at the position Rα27,28 (see Methods
section). The FCC structure is formed by spheres of radius
rb ¼ 5 mm made of stainless steel with Young's modulus
E ¼ 200 GPa, Poisson’s ratio ν ¼ 0:3 and density ρb ¼ 7:7 � 103 kg
m�3. The lattice constant of the FCC structure is a ¼ ð2 ffiffiffi

2
p Þrb. We

assume that the contacts between the particles are formed by a solid
bridge with a radius rs ¼ rb=20 and a length hs ¼ rb=50. The dif-
ferent stiffnesses are KN ¼ πEr2s=hs ¼ 3:9 � 108 Nm�1,
KS ¼ KN=ð2þ 2νÞ ¼ 1:5´ 108 Nm�1, GT ¼ KSr

2
s=2 ¼ 4:7 Nm

rad�1 and GB ¼ KNr
2
s=4 ¼ 6:1 Nm rad�129. The Bloch bands

structure shown in Fig. 1b depict the propagation of a longitudinal
(L), rotational (R), two Transverse-Rotational (TR) and two
Rotational-Transverse (RT) modes30. The influence of the rotational
degrees of freedom has been experimentally confirmed in granular
assembly with both millimeter-sized spheres30 and micron-sized
spheres31 showing the wide range of frequencies and size scales
where this model remains valid. The RT and R modes are optical-
type modes and have no equivalent in continuum elastic solids.
Thanks to the existence of these two type of modes, the bulk bands
display accidental degeneracies as marked by squares, triangles,
diamonds and hexagons in Fig. 1b, c in the highlighted zone around
150 kHz. These degeneracies are accidental because of their depen-
dence on the values of the stiffnesses (see Supplementary Note 1 for
greater details). Owing to the symmetries of the lattice that prohibit a
gap opening, the band crossings are not discrete in the reciprocal
space but extend to nodal rings in the Brillouin zone, as shown in
Fig. 1c. The formation of the intersecting nodal rings stems from
three types of symmetries, namely the mirror reflection symmetry,
the time-reversal along with the space inversion symmetries and the
nonsymmorphic group with glide plane or screw axes
symmetry32,33. On account of the Oh point group symmetry of the
FCC lattice, the (001) plane, comprising either the kx , ky or kz ¼ 0
planes, is a mirror reflection plane and thus hosts here two over-
laying nodal rings with frequencies ranging from 148 to 152 kHz. In
the frequency range spanning from 147 to 157 kHz, two nodal rings
lie in and are protected by the (110) mirror plane, here shown as the
ky ¼ kz plane. The high-symmetry direction Γ–X joins the (110)
and (001) surfaces, therefore the aforementioned inner nodal chains
are interconnected in the form of outer nodal chains at the point
marked with an orange square as shown in Fig. 1c13. Similarly, the
high-symmetry direction Γ–Z also connects these two symmetry
planes, thus, these two nodal chains merge again at the point marked
with a triangle. The time-reversal symmetry is always preserved in
our case, and adding the space inversion symmetry, two concentric
nodal rings are protected across the (111) surface, however, slightly
off-plane33. Since the bands crossings that are marked with orange
diamonds and hexagons occur across the L–U and L–K directions
that extend onto the (110) plane, the four nodal rings intersect in an
interlaced combination of outer nodal chains and a Hopf link.
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Nontrivial surface states. We now investigate the existence of
topologically nontrivial surface states on the (001) plane by
means of numerical simulations in a finite FCC granular meta-
material slab, which remains periodic only in the x and y
directions but has stress-free boundary conditions at the upper
and lower crystal terminations. The numerical simulations are
carried out using a Discrete Particle Method with the code
MercuryDPM34–36 and the dispersion bands are found by
computing the two-dimensional Fourier transform in time and
space along one unique direction28,37 (see Methods section). In
order to unravel these geometrically nontrivial surface excita-
tions in the entire 3D space, we compute them along the usual
in-plane components of the wavevector but evaluate the band
diagram for various out-of-plane wavevector components kz .
Technically speaking, we implemented this by an emitting bead-
array whose phase difference accounts for different wave pro-
pagation momenta. The band diagram of the granular meta-
material slab, which is presented in Fig. 2 is characterized by red
circles, also seen in Fig. 1c, indicating the dispersion along the
rim of the nodal ring at ky ¼ 0. The gray shaded background of
the diagrams illustrate the projected bulk bands sustained by the
slab containing the stress-free surfaces along the z direction.
With seemingly little dispersion with varying out-of-plane
momentum kz , Fig. 2 illustrates the presence of a surface state
within the incomplete band gaps that are confined to the nodal
ring. Specifically, as rendered by the white dashed area, the bulk
band gap spans from 138 to 146 kHz in between which, an
entirely flat surface state resides (141 kHz). Further, this surface
excitation that transpires from the degenerate bulk states (red
circles) with a near zero group velocity, emerges from the non-
trivial Berry phase of the nodal rings. In addition, as expected, at
lower frequencies trivial surface states that are associated to the
stress-free boundary condition are also excited as shown in
Fig. 2.

In order to shed light on the topological properties of the
surface waves discussed above, we compare three different crystal
terminations. In addition to the free boundary condition, we
consider the cases where the top layer is in contact with a plane
rigid wall and where the top layer is in contact with a layer of
fixed (immovable) particles placed in the continuity of the
crystalline structure. These three crystal terminations produce an
interface between the granular metamaterial and a medium into
which sound waves cannot leak. A single chain of excited particles
parallel to the y axis acts as the source, hence, all kind of states
can be easily excited parallel to the crystal termination for all
possible values of kz . In the numerical experiments, we probe the
mechanical response to the excitation in the nearest vicinity of the
termination. As one can see in Fig. 3 within the dashed blue
ellipses, the trivial surface states at lower frequencies are highly
sensitive to the specific boundary condition employed. Beyond
significant shifts and enforced dispersion, the trivial surface state
ceases to exist in the presence of a fixed crystal termination. On
the contrary, the surface state emerging from the nodal rings
remains intact and within the bulk band gap in every scenario as
highlighted by the black dotted ellipses, underlining its topolo-
gical origin and resilience against drastic interface perturbations.

The above-mentioned robustness against interface perturba-
tion of the topological surface states emanating the nodal rings is
visualized by computing the mechanical motions as shown in
Fig. 4. At the ante-penultimate layer we place a source array with
a predefined spatial phase profile, as rendered in Fig. 4a, to
momentum match (kx ¼ 1:9π=a, where a is the lattice constant)
the two distinct surface states computed in Fig. 3 at their
corresponding frequencies. In Fig. 4b, c we compute the spatial
mechanical field of the surface states confined along the stress-
free crystal termination. The topological nontrivial (trivial) state
at 141 kHz (72 kHz) displays a strong field confinement, it
appears however that the low frequency excitation displays a
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Fig. 1 Band structure of the face centered cubic (FCC) granular metamaterial. a Schematic of the structure comprising four different types of interactions
between the beads, namely the normal interaction with the stiffness KN, the interactions due to the sliding, rolling and twisting resistances at the level of
the contact with the siffnesses KS, GB, and GT, respectively. b Analytical band structure over the entire Brillouin zone shown in (d). On the same diagram
we numerically compute the dispersion relation for a periodic superlattice (see Methods section). c The nodal-chain structure in momentum space
evaluated in the ultrasonic frequency regime highlighted in (b). The orange squared, triangles, hexagons and diamonds mark the crossing points from the
band diagram in (b). The red circles show the positions of the nodal lines that are discussed in Fig. 2. d The first Brillouin zone of the FCC crystal.
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smaller penetration depth. Finally, we introduce a fixed termina-
tion above the top layer. Apart from an unremarkable frequency
shift, the mode shape of the confined topological nontrivial
surface state at 145 kHz persists virtually unaffected when
comparing Fig. 4b, d. With a fixed termination, as computed in
Fig. 3, the trivial state ceases to exist, hence at 72 kHz the field
remains solely localized around the excitation source as illustrated
in Fig. 4e. Additional time resolved computations, which are
placed in the Supplementary Movies, display how the source is
able to couple to the topological nontrivial states irrespective of
the crystal termination. The lifetime of these excitations can be
clearly witnessed when the source is switched off. In stark
contrast, only source oscillations can be seen in the transient
analysis at 72 kHz when a fixed termination is added, confirming
the absence of mode propagation.

Discussion
In conclusion, three-dimensional man-made FCC granular
metamaterials have been found to host complex structures of

nodal rings interlaced in the form of inner and outer chains. The
symmetry protected nodal features give rise to remarkably robust
surface states that appear entirely unaffected by the type of crystal
termination. Hence, our results provide a convincing platform to
implement topological nontrivial nodal rings and chains physics
for mechanical waves, potentially useful for robust ultrasonic
sensing and transduction.

Methods
Theoretical calculations. To obtain the force Fβα and torque Mβα applied by a
bead β on a bead α, we define a local coordinate system ðn; s; tÞ at the level of the
contact between the two beads. In Cartesian coordinates the unit vector n, normal
to the contact surface, is defined as

n ¼ ðRβ � RαÞ=jRβ � Rαj ¼ cos ϕx̂ þ sin ϕ cos θŷ þ sin ϕ sin θẑ; ð3Þ
where it is assumed that the static and dynamic overlap between the particles are
negligible compared to their diameter, ϕ ¼ arccosðn � x̂Þ, θ ¼ arccosðn � ŷ= sin ϕÞ if
ϕ≠ 0 or π and θ ¼ ϕ if ϕ ¼ 0 or π. The two unit vectors s and t, which are in the
contact plane, are then defined as

s ¼ ∂n=∂ϕ ¼ � sin ϕx̂ þ cos ϕ cos θŷ þ cos ϕ sin θẑ;

t ¼n ´ s ¼ �sin θŷ þ cos θẑ:
ð4Þ

The contact force is then written as27,28

Fβα
i ¼ KNninj þ KSðsisj þ titjÞ

h i

´ uβj � uαj þ
1
2
εjklðRβ

k � Rα
kÞðwβ

l þ wα
l Þ

� �
;

ð5Þ

where εjkl is the permutation symbol, and the contact torque is expressed as

Mβα
i ¼ GTninj þ GBðsisj þ titjÞ

h i
wβ
j � wα

j

� �
: ð6Þ

Our FCC structure is formed by spheres of radius rb ¼ 5 mm, which are
composed of stainless steel with a Young modulus E ¼ 200 GPa, Poisson’s ratio
ν ¼ 0:3 and density ρb ¼ 7:7 � 103 kg m�3. The lattice constant of the FCC
structure is a ¼ ð2 ffiffiffi

2
p Þrb. We assume that the contacts between the particles are

formed by a solid bridge with a radius rs ¼ rb=20 and a length hs ¼ rb=50. The
different stiffnesses are determined as29

KN ¼ πEr2s=hs ¼ 3:9 ´ 108 Nm�1;

KS ¼KN=ð2þ 2νÞ ¼ 1:5 ´ 108 Nm�1;

GT ¼KSr
2
s=2 ¼ 4:7 Nm rad�1; and

GB ¼KNr
2
s=4 ¼ 6:1 Nm rad�1:

ð7Þ

The two stiffnesses GT and GB contain a length scale i.e., GT ¼ KTr
2
b and

GB ¼ KBr
2
b. The crystalline structure is constructed using the three Bravais lattice

vectors

a1 ¼ ½a=2; 0; a=2�;
a2 ¼ ½a=2; a=2; 0�;
a3 ¼ ½0; a=2; a=2�:

ð8Þ

The position of the bead ðl;m; pÞ is defined as Rðl;m;pÞ ¼ la1 þma2 þ pa3, where l,
m and p are integer indices.
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Fig. 2 Topological surface states for the granular metamaterial on the
(001) interface. The gray shaded area depict the projected bulk bands. kk
is oriented along the Γ–X direction whereas k? is oriented along the X–Z
direction. The white dashed ellipses highlight the topological surface states.
The red circles mark the positions of the nodal lines as reported in Fig. 1c.
Out-of-plane wavevector component (a) kz ¼ 0, (b) kz ¼ π=ð2aÞ, (c)
kz ¼ π=a, (d) kz ¼ 6π=a, and (e) kz ¼ 2π=a.
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Fig. 3 Ultrasonic band diagram along the �Γ–�X direction of topological
surface states in a finite slab. We consider three different crystal
terminations: free, in contact with a wall, and fixed. The blue dashed (black
dotted) circle mark the spectral region of the topologically trivial
(nontrivial) surface states.
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Numerical simulations. The numerical simulations are carried out using a Dis-
crete Particle Method (or Discrete Element Method) with the code Mercur-
yDPM34–36, to calculate the time integration of the equations of motion in Eqs. (1)
and (2) using a Verlet velocity algorithm on an assembly of grains.

The crystal is constructed using the Bravais lattice vectors in Eq. (8) and the
different stiffnesses between the beads are the ones in Eq. (7). The cohesive
character induced by the solid bridges is emulated by adding an attractive force
between the beads. The friction coefficient is set to an arbitrarily large value to
avoid any slip event at the level of the contacts. Periodic boundary conditions are
applied along all directions in Fig. 1b and solely along the x and y directions in
Figs. 2–4.

The dispersion bands are found by computing the two-dimensional Fourier
transform in time and space along one unique direction28,37. When the Fourier
transform is computed along the x direction, the corresponding band diagram is
displayed along the kx component of the wavevector as in Fig. 1b for the Γ–X path
of the Brillouin zone, shown on the left panels in Fig. 2 and in Fig. 3. In this
direction, P layers are stacked. The numbers of particles within each of these layers
is Nb ¼ N ´M=2, where N is the number of layers in the y direction and M is the
number of layers along the z direction. In Fig. 1b and Fig. 2a–c and e, P ¼ 512,
N ¼ 8 and M ¼ 8. In Fig. 2d, P ¼ 512, N ¼ 8 and M ¼ 10. In Fig. 3, P ¼ 1024,

N ¼ 8 and M ¼ 8. At the first time step of the numerical simulation, an acoustic
wave is launched by imposing a (small) velocity and angular velocity, i.e.,
corresponding to a pulse excitation in time to beads arrayed parallel to the y axis.
In doing this, a broad spectrum of frequencies and kx components of the
wavevector are emitted. The others components of the wavevector can be chosen
by imposing one specific spatial source profile. On the left panels in Fig. 2, ky ¼ 0,
thus, the spatial phase profile of the source allows one to momentum match the
corresponding kz components. In Fig. 3, the source is positioned at the top layer to
excite waves in the kx�kz plane.

Equivalently, in Fig. 1b for the X–Z path of the Brillouin zone and on the right
panels in Fig. 2, kx ¼ 2π=a and the Fourier transform is computed along the y
direction to obtain the ky component of the band diagram. In the y direction, P
layers are stacked. The numbers of particles within each of these layers is
Nb ¼ N ´M=2, where N is the number of layers in the x direction and M is the
number of layers along the z direction. The values of P, N , and M in Fig. 1b and
Fig. 2 are equal to their counterparts when the Fourier transform is computed in
the x direction.

In Fig. 3, the wall termination is obtained by connecting all the beads of the top
layer to a plane surface. The stiffnesses of these connections are Kwall

N ¼ KN,
Kwall

S ¼ KS, G
wall
B ¼ GB and Gwall

T ¼ 100GT. For the fixed boundary condition, the
stiffnesses between the top layer and the layer of fixed particles are equal to the
ones in Eq. (7).

In Fig. 4, the source layer is excited by a sine function at the specific frequencies,
as indicated in the panels with a Gaussian envelope modulation. The amplitudes
are obtained by Fourier transforming the time signals at each individual bead. The
slab contains 256 layers in the x direction, 8 layers in the y direction and 40 layers
in the z direction.

Data availability
The data that support the findings of this study are available from the corresponding
authors on reasonable request.
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termination. c Conventional or trivial surface wave with a stress-free
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