Abstract
Zeroenergy Andreev levels in hybrid semiconductorsuperconductor nanowires mimic all expected Majorana phenomenology, including \(2{e}^{2}/h\) conductance quantisation, even where band topology predicts trivial phases. This surprising fact has been used to challenge the interpretation of various transport experiments in terms of Majorana zero modes. Here we show that the Andreev versus Majorana controversy is clarified when framed in the language of nonHermitian topology, the natural description for quantum systems open to the environment. This change of paradigm allows one to understand topological transitions and the emergence of zero modes in more general systems than can be described by band topology. This is achieved by studying exceptional point bifurcations in the complex spectrum of the system’s nonHermitian Hamiltonian. Within this broader topological classification, Majoranas from both conventional band topology and a large subset of Andreev levels at zero energy are in fact topologically equivalent, which explains why they cannot be distinguished.
A hybrid semiconductorsuperconductor nanowire can be tuned into a topological superconductor phase with Majorana zero modes (MZMs)^{1} when an external Zeeman field \(B\) exceeds a critical value \({B}_{{\rm{c}}}\) and the system undergoes a topological transition^{2,3}. Since the early measurements^{4} following this remarkable theoretical prediction, there has been great progress in the field and the latest experiments report extremely robust zerobias anomalies (ZBAs) in the differential conductance (\(\mathrm{d}I/\mathrm{d}V\))^{5,6}. Such behaviour is consistent with tunneling into a MZM that emerges after the system becomes topological^{7,8}. Despite the agreement, the topological interpretation has recently been challenged since an alternative explanation in terms of Andreev bound states (ABSs) with nearzero energy in the topological trivial phase \(B\ll {B}_{{\rm{c}}}\) reproduces all the expected phenomenology in transport^{9,10,11,12,13,14}, including the \(2{e}^{2}/h\) conductance quantization reported in ref. ^{6}. This nagging ABSversusMZM dichotomy thus remains a critical issue in the field of Majorana nanowires.
In a semiinfinite quasi1D superconducting system, with a bulk described by the Bloch Hamiltonian \({H}_{0}({\bf{k}})\), a nontrivial bandtopological invariant rigorously implies that a protected MZM should arise at the system’s boundary, by virtue of the bulkboundary correspondence. Physical systems, however, differ from this idealised picture. Deviations include finite length, nonuniform chemical potentials, or coupling to an external environment through leads and gates. In such systems the conventional bandtopological picture cannot be invoked and the problem of discerning between ABS zero modes and MZMs is actually illdefined, as the wavefunctions of both states are continuously connected, and topological transitions are in fact mere crossovers. As a result, the protection and Majorana character of near zero modes in finite systems is no longer an allornothing proposition, but a matter of degree, ultimately connected to the degree of wavefunction nonlocality of the zero mode in question^{15,16,17,18}. Thus, an alternative language becomes necessary to establish whether ABSs that remain pinned to zero energy regardless of perturbations are fundamentally different or not from MZMs of conventional bulk topology. Here we show that nonHermitian topology provides such a language, and makes it possible to define an alternative, general and precise topological classification criterion to distinguish trivial from nontrivial zero modes. Crucially, this classification matches band topological theory in the case of sufficiently long and uniform systems where the latter is applicable, while generalising it to a wider range of physically relevant scenarios where it is not.
Results
NonHermitian topology in superconductors
The key idea of nonHermitian topology is to consider the system coupled to its environment, the relevant setup in open quantum systems (such as in nanowire transport experiments). Instead of considering the topological structure of the bands of an isolated bulk system described by a Hamiltonian \({H}_{0}\), one should study a different object: the distribution in the complex plane of the poles \({\epsilon }_{{\rm{p}}}\) of the open system’s retarded Green’s function (or, equivalently, of the scattering matrix),
Here \({H}_{{\rm{eff}}}(\omega )={H}_{0}+\Sigma (\omega )\) is an effective nonHermitian Hamiltonian which takes into account both the system and its coupling to the reservoir (through the retarded selfenergy \(\Sigma (\omega )\)). This seemingly simple extension often gives rise to richer topological structure in a vast variety of physical systems^{19,20,21,22} than in their Hermitian counterparts. The poles of the retarded Green’s function can be viewed as the complex eigenvalues of \({H}_{{\rm{eff}}}\), and have a well defined physical interpretation that generalizes the spectrum of the isolated system (namely, real eigenvalues of \({H}_{0}\)). They define quasibound states in the open system, with complex energies \({\epsilon }_{{\rm{p}}}=Ei\Gamma\), that decay into the reservoir with rate \(\Gamma \ge 0\), see Fig. 1. As discussed first by Pikulin and Nazarov in the context of nanowires coupled to superconductors^{23,24}, the distribution of complex eigenvalues of \({H}_{{\rm{eff}}}\) allows for a natural topological classification of open system phases. This generalises that of band topology, defined solely in terms of \({H}_{0}\).
In superconductors, the change to an open setting with a nonHermitian \({H}_{{\rm{eff}}}\) has deep implications. When coupled to a reservoir, a parity crossing (point in parameter space where a Bogoliubovde Gennes (BdG) excitation crosses zero energy) of the isolated system may or may not become stabilised, transforming into a robust zero mode insensitive to perturbations. Stabilisation of this kind provides the precise criterion for topologically nontrivial zero modes. The correct language to understand the zero energy stabilisation mechanism is that of bifurcations of the complex eigenvalues. These are a direct consequence of the underlying chargeconjugation (electronhole) symmetry of the BdG formalism, which dictates that if \(\epsilon\) is an eigenvalue, so is \({\epsilon }^{* }\). In an open superconducting system, this condition can be satisfied in two nonequivalent ways, see Fig. 1b. One can have pairs of eigenvalues located symmetrically at opposite sides of the imaginary axis (blue dots) or, alternatively, have independent selfconjugate eigenvalues lying exactly on the imaginary axis (red dots). The former correspond to standard finiteenergy ABSs (BdG excitations symmetrically located at \(\pm E\) and with equal decay rate \(\Gamma\) to the reservoir). The latter correspond to nontrivial zero modes in the context of open systems. A bifurcation of two trivial ABSs (\({\epsilon }_{\!\pm }={\epsilon }_{\mp }^{* }=\pm Ei\Gamma\)) into two nontrivial zero modes with different decay rates (\({\epsilon }_{\!\pm }={\epsilon }_{\pm }^{* }=i{\Gamma }_{\!\pm }\)) defines an exceptional point (EP). More generally, EPs are points in parameter space where a nonHermitian \({H}_{{\rm{eff}}}\) becomes nondiagonalizable through the coalescence of both eigenvalues and eigenvectors^{25,26}. They have been extensively discussed in the context of open photonic systems^{27,28,29} and, more recently, in other physical contexts such as Dirac and Weyl materials^{30,31,32,33}.
Minimal model of an EP bifurcation
Let us illustrate the mathematical structure of an EP bifurcation by considering the low energy Hamiltonian of a single parity crossing, \({H}_{0}={E}_{0}{\tau }_{{\rm{z}}}\), with \({\tau }_{{\rm{z}}}\) the Pauli matrix in particlehole space. Since, mathematically, one can always decompose a local ABS quasiparticle excitation in terms of two Majorana operators, denoted left (L) and right (R) (see Supplementary Note 1), it is enlightening to write \({H}_{0}\) in the Majorana basis and take into account the possibility, allowed by chargeconjugation symmetry, that each of these Majoranas is coupled differently to the reservoir, with couplings \({\Gamma }_{0}^{{\rm{L}}}\ \ne \ {\Gamma }_{0}^{{\rm{R}}}\). The Hamiltonian in the Majorana basis reads:
Its eigenvalues are \({\epsilon }_{\!\pm }=i{\Gamma }_{0}\pm \sqrt{{E}_{0}^{2}{\gamma }_{0}^{2}}={E}_{\!\pm }i{\Gamma }_{\!\pm }\), in terms of the average coupling \({\Gamma }_{0}\equiv ({\Gamma }_{0}^{{\rm{L}}}+{\Gamma }_{0}^{{\rm{R}}})/2\) and its asymmetry \({\gamma }_{0}\equiv ({\Gamma }_{0}^{{\rm{L}}}{\Gamma }_{0}^{{\rm{R}}})/2\). The square root term produces two different regimes. For \( {E}_{0} \ > \ {\gamma }_{0}\) we obtain the standard ABS solution with opposite real energies \({E}_{\pm }=\pm \!\sqrt{{E}_{0}^{2}{\gamma }_{0}^{2}}\) and equal decays \({\Gamma }_{\pm }={\Gamma }_{0}\). In contrast, when \( {E}_{0} \ < \ {\gamma }_{0}\) we get two purely imaginary eigenvalues, \({E}_{\pm }=0\), with different decay to the reservoir, \({\Gamma }_{\pm }={\Gamma }_{0}\!\pm \!\sqrt{{\gamma }_{0}^{2}{E}_{0}^{2}}\). The two regimes are separated by the EP bifurcation where the square root vanishes. Thus, the mathematically precise nonHermitian criterion of nontriviality is the development of an EP bifurcation, which happens whenever the coupling asymmetry is larger than the energy of the lowest ABS, \({\gamma }_{0}\ > \  {E}_{0}\). We can thus define the dimensionless parameter \(\nu \equiv ({\gamma }_{0} {E}_{0} )/{\Gamma }_{0}\), whose sign \(1\) and \(+1\) represents trivial and nontrivial topology. The two phases are simultaneously characterised by zero and nonzero normalised decay asymmetry \(\gamma /\Gamma =({\Gamma }_{+}{\Gamma }_{})/({\Gamma }_{+}+{\Gamma }_{})\), respectively. This quantity can also be understood as a degree of Majorana decoupling, since a maximum \(\gamma /\Gamma \to 1\) implies that one of the Majorana poles has become nondecaying (\({\Gamma }_{}\to 0\)) and is completely decoupled from the reservoir.
EPs in microscopic nanowire models
We now turn to the emergence of EPs in generic Majorana nanowires of arbitrary length, pairing and density profiles. The connection between the corresponding microscopic nanowire model \({H}_{0}\) (see “Methods”) and the lowenergy effective model in Eq. (2) can be established in terms of particle/hole Bogoliubov wavefunctions \({u}_{\sigma }(x),{v}_{\sigma }(x)\), of the lowestlying microscopic eigenstates. Such states corresponds to operators \({c}_{0}\) and \({c}_{0}^{\dagger }\), where
The Majorana components of these states are
where the Majorana wavefunctions are given by \({u}_{\sigma }^{{\rm{L}}}(x)=[{u}_{\sigma }(x)+{v}_{\sigma }^{* }(x)]/\sqrt{2}\) and \({u}_{\sigma }^{{\rm{R}}}(x)=i[{u}_{\sigma }(x){v}_{\sigma }^{* }(x)]/\sqrt{2}\). In terms of the spinors \({{\boldsymbol{u}}}_{{\rm{L}},{\rm{R}}}(x)=\left({u}_{\uparrow }^{{\rm{L}},{\rm{R}}},{u}_{\downarrow }^{{\rm{L}},{\rm{R}}}\right)\), the effective model parameters are given by the relation
Equation (5) shows that a finite coupling asymmetry \({\gamma }_{0}/{\Gamma }_{0}\) arises as a result of a spatial separation of Majorana wavefunctions, as it implies \( {{\boldsymbol{u}}}_{{\rm{L}}}(0){ }^{2}\ne  {{\boldsymbol{u}}}_{{\rm{R}}}(0){ }^{2}\) (for further discussion, see Supplementary Note 4).
In the case of a sufficiently long and uniform proximitised Rashba nanowire^{2,3} the nonHermitian topological criterion \({\gamma }_{0}\ > \  {E}_{0}\) in terms of EPs perfectly matches the band topological criterion \(B\ > \ {B}_{{\rm{c}}}\). This is shown in Fig. 2a, b, where we compare the evolution of eigenvalues in isolated and open, long nanowires. We see that robust MZMs emerge at an EP in the latter case (blue circle), exactly at the gap inversion point \(B={B}_{{\rm{c}}}\) predicted by band topology. In the case of shorter nanowires, however, a comparison between the isolated and open cases, Fig. 2c–j, reveals that the band topological \(B\ > \ {B}_{{\rm{c}}}\) criterion fails to predict correctly the appearance of MZMs, since their finite overlap along the nanowire length hybridises them away from zero energy, yielding oscillatory ABSs separated by parity crossings. The \({\gamma }_{0}\ > \  {E}_{0}\) criterion (i.e. \(\nu \ > \ 0\)), in contrast, divides the \(B\ > \ {B}_{{\rm{c}}}\) interval into trivial (split Majoranas, \(\nu \ < \ 0,\gamma /\Gamma =0\)) and nontrivial (pinned zero modes, \(\nu \ > \ 0,\gamma /\Gamma \ > \ 0\)) regions, separated by recurring EPs, see Fig. 2k–o. The extension of nontrivial \(B\) intervals around each isolatedsystem parity crossing is linked to the degree of Majorana wavefunction nonlocality, which makes this a physically sound criterion. This extends to the case of extremely short nanowires, Fig. 2g–j, where the large Majorana overlap reduces the nontrivial phases to \(B\) intervals of measure zero.
An important phenomenon usually takes place after crossing an EP, whereby one of the MZMs becomes decoupled from the reservoir (\({\Gamma }_{}\to 0\), \(\gamma /\Gamma \to 1\)). By direct inspection of the solution to Eq. (2), we see that the maximum value of the decay asymmetry \(\gamma /\Gamma\) occurs at \({E}_{0}=0\) after the bifurcation and is actually given by the coupling asymmetry \({\gamma }_{0}/{\Gamma }_{0}\) itself which is in turn equal to the local maxima of the \(\nu =({\gamma }_{0} {E}_{0} )/{\Gamma }_{0}\) parameter. This decoupling \(\gamma /\Gamma\), shown in Figs. 2p–t, is of crucial importance, as it dictates a constraint on the timescales for key nontrivial properties like nonAbelian braiding or the \(4\pi\)periodic Josephson effect, and therefore controls the development of physically observable topological properties. Unlike the abrupt EP, this decoupling process is a crossover, which exponentially saturates to its maximum value \(\gamma /\Gamma \to 1\) for wire lengths of the order of the coherence length \(\xi\) (dashed line in Fig. 2v). This exponential crossover behaviour obtained with the nonHermitian topology of the open wire is consistent with the expected exponential decay of the energy versus length of the corresponding isolated wire (Fig. 2u). A similar agreement between bulk topology and nonHermitian topology can be found for the Kitaev model (Supplementary Note 2).
Having shown that nonHermitian topology matches and extends previous results obtained with bulk topology methods in uniform nanowires, we now depart from the standard case and discuss situations with inhomogeneous potentials \(\mu (x)\) and \(\Delta (x)\). We consider two archetypical instances of ABS zero modes in open systems: a quantum dot parity crossing^{34} and a smoothly confined \(B\ < \ {B}_{{\rm{c}}}\) zeroenergy ABS^{9,10,11,12,13,14}. While both are trivial according to band topology, we will show that the latter is nontrivial within nonHermitian topology.
The quantum dot case is implemented by a normal region \(\Delta (x)=0\) that is much shorter than the coherence length \(\xi\) and is weakly connected to the nanowire through a \(\mu (x)\) barrier (Fig. 3a, top inset). It hosts a quantum dotlike state with spatially local Majorana components, \( {{\boldsymbol{u}}}_{{\rm{L}}}(0){ }^{2} \sim  {{\boldsymbol{u}}}_{{\rm{R}}}(0){ }^{2}\) (Fig. 3a), and hence a symmetric coupling to the reservoir \({\gamma }_{0}/{\Gamma }_{0}\approx 0\). For the smoothly confined case, the normal region is comparable or larger than \(\xi\), and is connected to the nanowire by smoothly varying \(\mu (x)\) and \(\Delta (x)\) (Fig. 3b, top inset). It hosts ABSs with substantially nonlocal Majorana components, \( {{\boldsymbol{u}}}_{{\rm{L}}}(0){ }^{2}\ \ne \  {{\boldsymbol{u}}}_{{\rm{R}}}(0){ }^{2}\) (Fig. 3b) (further plots are shown in the Supplementary Note 4). The real and imaginary parts of the lowestlying levels for both systems are shown in Fig. 3c (dot) and Fig. 3d (smooth junction) as solid and dashed red lines, respectively. The fully local quantum dot state, with zero coupling asymmetry \({\gamma }_{0}/{\Gamma }_{0}=0\), is not stabilised for \(B\ < \ {B}_{{\rm{c}}}\), and remains as a pointlike parity crossing in the real spectrum, with a single finite lifetime. It is therefore a trivial ABS. Conversely, and just like in the preceding case of uniform wires, the smooth junction in Fig. 3d shows a bifurcation of its two Majorana decay rates \({\Gamma }_{\pm }\), and becomes stabilised at zero real energy for \(B\ < \ {B}_{{\rm{c}}}\). The corresponding nonHermitian topological criterion \(\nu\) is shown in Fig. 3e and f. Clearly, the EP bifurcations occur at points where the nonHermitian topological parameter \(\nu\) changes sign. Therefore, both the \(B\ > \ {B}_{{\rm{c}}}\) uniform wire case and the \(B\ < \ {B}_{{\rm{c}}}\) smooth junction case correspond to the same nontrivial class within this nonHermitian topology classification, associated to the same spectral structure: an EP bifurcation due to wave function asymmetry at the contact (irrespective of the different microscopic mechanisms leading to such asymmetry). Mathematically, this is reflected in sharp jumps at the EP in both the topological parameter \(\nu\) and the decay asymmetry \(\gamma /\Gamma\) (see panels g and h), in strong contrast with the coupling asymmetry \({\gamma }_{0}/{\Gamma }_{0}\) which grows smoothly as a function of magnetic field (Supplementary Note 5).
Wave functions of eigenstates
We next discuss the properties of the wave functions of the two bifurcating Bogoliubov eigenstates \({\psi }_{\pm }(x)=({u}_{\uparrow \pm }(x),{u}_{\downarrow \pm }(x),{v}_{\uparrow \pm }(x),{v}_{\downarrow \pm }(x))\), for both uniform and inhomogeneous wire cases (Fig. 4). As before, each of these lowenergy Bogoliubov modes can be decomposed into Majorana components Eq. (4). Importantly, these Majorana components are not eigenstates of the problem before the EP bifurcation but they do become (decaying) eigenstates at and after the EP, where their real energy remains pinned to zero (for further discussion, see Supplementary Note 1).
The eigenvalue bifurcation at the EP comes hand in hand with a coalescence of the corresponding eigenstates. State coalescence is captured by the modulus of the inner product \( {\psi }_{+}^{* }\cdot {\psi }_{} \equiv  {\int }_{0}^{L}dx\ {\psi }_{+}^{* }(x)\cdot {\psi }_{}(x)\) (Fig. 4a). At low magnetic fields, before the EP, the wave functions \({\psi }_{+}(x)\) and \({\psi }_{}(x)\) are orthogonal as expected, \( {\psi }_{+}^{* }\cdot {\psi }_{} \approx 0\). Right at the EP, \({\psi }_{+}(x)\) and \({\psi }_{}(x)\) become exactly parallel, which results in a maximum \( {\psi }_{+}^{* }\cdot {\psi }_{} =1\). After the EP, the eigenstates are once more orthogonal but their physical character is completely different since they now have pure Majorana character, \({\psi }_{\pm }(x)=({u}_{\uparrow }^{{\rm{L}}/{\rm{R}}}(x),{{u}_{\uparrow }^{{\rm{L}}/{\rm{R}}}}^{* }(x),{u}_{\downarrow }^{{\rm{L}}/{\rm{R}}}(x),{{u}_{\downarrow }^{{\rm{L}}/{\rm{R}}}}^{* }(x))\), with asymmetric decay into the reservoir due to their nonlocality. This is demonstrated in Fig. 4, where we show the eigenstates for increasing magnetic fields before (b), at (c) and after (d) the EP.
The coalescence phenomenon at an EP is universal, a rather nontrivial fact given the very different properties of the microscopic systems considered here. Such coalescence implies that eigenstates no longer span the whole system’s Hilbert space. This defective aspect of the Hamiltonian at EP bifurcations^{25,26} cannot arise in a Hermitian context, and leads to very unusual time evolution of states (e.g. polynomial terms of linear or higher order in time instead of pure exponentials at the EP^{35,36}). An interesting future step toward clarifying the intriguing connections between EPs and Majorana zero modes in superconductors would be to explore the observable consequences of anomalous dynamics at the EP.
Physical consequences of EPs in transport observables
We now show how EPs and the subsequent Majorana decoupling are directly observable in transport by analysing the differential conductance \(dI/dV\), computed using the BlonderTinkhamKlapwijk formalism (“Methods”). The typical tunnel widths in all calculations are always in the limit \(\Gamma \ \gtrsim \ {k}_{{\rm{B}}}T\)^{37}. In Fig. 5 we present the typical behaviour of the \({{d}}I/{d}V\) for the dot coupled to a long nanowire (a), the smooth case (b), and the uniform nanowire case (c). In the top inset panels we see that, as soon as the system crosses an EP and the decay asymmetry jumps to a nontrivial \(\gamma /\Gamma \sim 1\) (thick grey lines), the lowtemperature linear conductance \({d}I/{d}V{ }_{V\to 0}\) becomes nearly quantised to \(2{e}^{2}/h\) (results for \(T=20\) mK and \(T=50\) mK are shown as blue and red dashed lines, respectively). A full analysis of \(dI/dV {}_{V \to 0}\) and \(\gamma /\Gamma\) versus Zeeman field and junction smoothness is presented in Supplementary Note 6. At zero temperature and constant \(B\) (white dashed cuts in the density plots), these \(2{e}^{2}/h\) transport anomalies show, as a function of bias \(V\), a characteristic splitLorentzian profile [right panels in Fig. 5b, c], indistinguishable in the smooth and uniform cases. This structure is a measurable signature of the bifurcated poles, and hence of nontrivial topology, with the widths of the broader peak and central dip corresponding to \({\Gamma }_{+}\) and \({\Gamma }_{}\), respectively. Complete Majorana decoupling \(\gamma /\Gamma =1\) removes the dip, and perfect \(2{e}^{2}/h\) conductance quantization is reached at zero bias and temperature. This result for the conductance is wellknown^{13,14,38} but the remarkable connection with the EP physics discussed here has thus far been overlooked. This connection naturally explains why zero modes at \(B\ < \ {B}_{{\rm{c}}}\) systematically result in \(2{e}^{2}/h\)quantised ZBAs expected at \(B\ > \ {B}_{{\rm{c}}}\), as soon as temperature exceeds \({\Gamma }_{}\). After the pole decoupling \({\Gamma }_{}\to 0\) there is no way to distinguish between a smoothly confined \(B\ < \ {B}_{{\rm{c}}}\) zeroenery ABS, a finitelength \(B\ > \ {B}_{{\rm{c}}}\) MZM, or a MZM in a strictly semiinfinite \(B\ > \ {B}_{{\rm{c}}}\) nanowire. They all exhibit a low temperature differential conductance of \(2{e}^{2}/h\), independently of any fine tuning. In particular, it cannot exceed \(2{e}^{2}/h\), in contrast to the \(4{e}^{2}/h\) of standard ABSs in the limit of perfect Andreev reflection.
Discussion
Our results show that by adopting the language of nonHermitian topology of open systems, the topological nature of zero energy states in arbitrary superconducting nanowires is clarified. Specifically, this framework provides a theoretical explanation of why Majoranas from conventional band topology and socalled trivial zeroenergy Andreev levels^{9,10,11,12,13,14} behave the same (they are topologically equivalent from the viewpoint of EP bifurcations). While a finite Majorana nonlocality is the universal and experimentally relevant mechanism to achieve EPmediated topological protection of zero modes in an open setting, it is important to stress that reservoir engineering could also be used to stabilise zero modes that are originally local in the closed system. This has been explicitly demonstrated for trivial zeroenergy parity crossings^{39} that become stable zero modes through EP bifurcations when coupled to a spinpolarised reservoir^{40}. In this case, the EP stabilises a couple of quasibound states at the contact with different decay rates (one per spin sector). Also, a spindependent coupling to the reservoir across, e.g., a spinpolarised barrier can further contribute to the decoupling of the Majoranas^{14}. Unlike EPs arising from spatial nonlocality, however, such spinselective schemes do not guarantee that the stabilised zero modes enjoy generic protection against decoherence. More generally, we expect our results to be relevant in all situations where the coupling to an external reservoir stabilizes zero modes through EP bifurcations. Experimentally, we expect smoothly confined ABSs to be a very relevant case of common occurrence in clean samples, which explains the ubiquity of robust zero bias anomalies for \(B\ < \ {B}_{{\rm{c}}}\).
Methods
Model
We model the proximitised Rashba nanowire with a Hamiltonian of the form^{2,3}
with Pauli matrices \(\overrightarrow{\tau }\) and \(\overrightarrow{\sigma }\) acting on the particle/hole and spin sectors, respectively. \(B=\frac{1}{2}g{\mu }_{{\rm{B}}} \overrightarrow{{\mathcal{B}}}\) is the Zeeman field with \(g\), \({\mu }_{{\rm{B}}}\) and \(\overrightarrow{{\mathcal{B}}}\), the gyromagnetic factor, the Bohr magneton, and the magnetic field aligned along the wire, respectively. \(\alpha\) is the spinorbit coupling and \({m}^{* }\) the effective mass (we use typical values for InSb nanowires, see Supplemental Table 1). \(\mu\) and \(\Delta\) are the (possibly positiondependent) nanowire chemical potential and induced superconducting pairing, respectively. The bulk topological transition occurs at the critical Zeeman field \({B}_{{\rm{c}}}\equiv \sqrt{{\mu }^{2}+{\Delta }^{2}}\). In the smooth confinement case, we include a spatiallydependent potential \(\mu (x)\) and pairing \(\Delta (x)\) that smoothly interpolate between a superconducting nanowire bulk and a normal region on the left end, see Fig. 1b and Supplemental Note 3. The spectrum of \({H}_{0}\) of this isolated wire model is readily obtained by discretising it into a tightbinding lattice, that we then numerically diagonalise^{41} to solve \({H}_{0}(x){\psi }_{n}(x)={E}_{n}{\psi }_{n}(x)\), with \({\psi }_{n}(x)={[{u}_{n\uparrow }(x),{u}_{n\downarrow }(x),{v}_{n\uparrow }(x),{v}_{n\downarrow }(x)]}^{T}\). The diagonalised problem reads \({H}_{0}=\frac{1}{2}{\sum }_{n}{E}_{n}{c}_{n}^{\dagger }{c}_{n}\), with BdG quasiparticle operators defined as \({c}_{n}=\int {dx}\,{\psi }_{n}(x)\hat{\Psi }(x)\), where \(\hat{\Psi }(x)={[{\Psi }_{\uparrow }(x),{\Psi }_{\downarrow }(x),{\Psi }_{\uparrow }^{\dagger }(x),{\Psi }_{\downarrow }^{\dagger }(x)]}^{T}\) is a Nambu spinor written in terms of the original electron/hole excitations. For the physics discussed in this paper, we focus on the lowest excitation \({c}_{0}=\int {dx}\,{\psi }_{0}(x)\hat{\Psi }(x)=\int {{dx}}\,[{u}_{0\uparrow }(x){\Psi }_{\uparrow }(x)+{u}_{0\downarrow }(x){\Psi }_{\downarrow }(x)+{v}_{0\uparrow }(x){\Psi }_{\uparrow }^{\dagger }(x)+{v}_{0\downarrow }(x){\Psi }_{\downarrow }^{\dagger }(x)]\). This lowest energy BdG mode can be written in terms of two left/right selfconjugate Majorana operators
which read \({\gamma }_{{\rm{L}},{\rm{R}}}=\int {dx}{\sum }_{\sigma }{u}_{\sigma }^{{\rm{L}},{\rm{R}}}(x){\Psi }_{\sigma }(x)+{\left[{u}_{\sigma }^{{\rm{L}},{\rm{R}}}(x)\right]}^{* }{\Psi }_{\sigma }^{\dagger }(x)\). The Majorana components discussed in the main text are equal superpositions of electronhole amplitudes of the form \({u}_{\sigma }^{{\rm{L}}}(x)=[{u}_{\sigma }(x)+{v}_{\sigma }^{* }(x)]/\sqrt{2}\) and \({u}_{\sigma }^{{\rm{R}}}(x)=i[{u}_{\sigma }(x){v}_{\sigma }^{* }(x)]/\sqrt{2}\), and define two spinors \({{\boldsymbol{u}}}_{{\rm{L}},{\rm{R}}}(x)=({u}_{\uparrow }^{{\rm{L}},{\rm{R}}}(x),{u}_{\downarrow }^{{\rm{L}},{\rm{R}}}(x))\) (see Supplementary Note 1). Note that while the above decomposition of a BdG mode into Majorana components is general, only when this mode is located at zero energy the Majoranas are eigenstates of the problem themselves.
The coupling to a metallic reservoir is implemented by a spinindependent selfenergy \(\Sigma (\omega )=i{\Gamma }_{x=0}\) added to the first lattice site^{17}, and proportional to the reservoir density of states and contact transparency. Projecting the resulting \({H}_{{\rm{eff}}}(\omega )={H}_{0}+\Sigma (\omega )\) onto the Majorana basis yields the \({H}_{{\rm{M}}}\) of Eq. (2). In our microscopic calculations, we solve the effective problem \({H}_{{\rm{eff}}}(0){\psi }_{\pm }=\varepsilon {\psi }_{\pm }\), which gives the complex eigenvalues and eigenstates discussed in the main text. Nontrivial zero modes are characterised by a nonHermitian topological invariant given by the sign of normalised difference \(({\gamma }_{0} {E}_{0} )/{\Gamma }_{0}\). This criterion crucially depends on the wave function asymmetry near the contact, which is given by the expression
Transport
Transport and spectral observables are computed by solving the retarded Green function \(G\) of the contact. From \(G\) one may obtain the local density of states, the scattering matrix, and all the other observables presented. The poles of the scattering matrix are also poles of \(G(\omega )\) in the lowerhalf complex plane. These are evaluated in practice by finding the nullspace of \({G}^{1}(\omega )=[\omega {H}_{{\rm{eff}}}(\omega )]\). The differential conductance \({d}I/{d}V\) is obtained^{41} by computing the scattering matrix of the normalsuperconductor contact through the LippmannSchwinger equation, resolving it into particle and hole sectors, and applying the BlonderTinkhamKlapwijk formalism^{42} for the \({d}I/{d}V\), which explicitly reads:
Here, \({\mathcal{N}}\) is the number of propagating channels in the normal side at energy \(\epsilon =V\), and \({r}_{{\rm{ee}}}\) and \({r}_{{\rm{eh}}}\) are the corresponding normal and Andreev reflection matrices (for full details see section 1 in the Supplemental Information of Ref. ^{10}). Although it is not strictly a nonequilibrium technique, this method is equivalent to other techniques such as the KeldyshNambu Green’s function approach^{43} when computing the subgap conductance in the absence of relaxation processes.
Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
 1.
Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys. Usp. 44, 131 (2001).
 2.
Lutchyn, R. M., Sau, J. D. & Sarma, S. D. Majorana fermions and a topological phase transition in semiconductorsuperconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).
 3.
Oreg, Y., Refael, G. & vonOppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).
 4.
Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductorsemiconductor nanowire devices. Science 336, 1003–1007 (2012).
 5.
Deng, M. T. et al. Majorana bound state in a coupled quantumdot hybridnanowire system. Science 354, 1557–1562 (2016).
 6.
Zhang, H. et al. Quantized Majorana conductance. Nature 556, 74 EP  (2018).
 7.
Aguado, R. Majorana quasiparticles in condensed matter. Riv. Nuovo Cimento 40, 523–593 (2017).
 8.
Lutchyn, R. M. et al. Majorana zero modes in superconductorsemiconductor heterostructures. Nat. Rev. Materials 3, 52–68 (2018).
 9.
Kells, G., Meidan, D. & Brouwer, P. W. Nearzeroenergy end states in topologically trivial spinorbit coupled superconducting nanowires with a smooth confinement. Phys. Rev. B 86, 100503 (2012).
 10.
Prada, E., SanJose, P. & Aguado, R. Transport spectroscopy of ns nanowire junctions with Majorana fermions. Phys. Rev. B 86, 180503(R) (2012).
 11.
Liu, C. X., Sau, J. D. & Sarma, S. D. Role of dissipation in realistic Majorana nanowires. Phys. Rev. B 95, 054502 (2017).
 12.
Moore., C., Stanescu, T. D. & Tewari, S. Twoterminal charge tunneling: disentangling Majorana zero modes from partially separated andreev bound states in semiconductorsuperconductor heterostructures. Phys. Rev. B 97, 165302 (2018).
 13.
Moore, C., Zeng, C., Stanescu, T. D. & Tewari, S. Quantized zero bias conductance plateau in semiconductorsuperconductor heterostructures without nonabelian Majorana zero modes. Phys. Rev. B 98, 155314 (2018).
 14.
Vuik, A., Nijholt, B., Akhmerov, A. R. & Wimmer, M. Reproducing topological properties with quasiMajorana states. arXiv:1806.02801 (2018).
 15.
Prada, E., Aguado, R. & SanJose, P. Measuring Majorana nonlocality and spin structure with a quantum dot. Phys. Rev. B 96, 085418 (2017).
 16.
Schuray, A., Weithofer, L. & Recher, P. Fano resonances in Majorana bound statesquantum dot hybrid systems. Phys. Rev. B 96, 085417 (2017).
 17.
Peñaranda, F., Aguado, R., SanJose, P. & Prada, E. Quantifying wavefunction overlaps in inhomogeneous Majorana nanowires. Phys. Rev. B 98, 235406 (2018).
 18.
Deng, M.T. et al. Nonlocality of Majorana modes in hybrid nanowires. Phys. Rev. B 98, 085125 (2018).
 19.
Gong, Zongping et al. Topological phases of nonhermitian systems. Phys. Rev. X 8, 031079 (2018).
 20.
Bandres, M. A. & Segev, M. Viewpoint: nonhermitian topological systems. Physics 11, 96 (2018).
 21.
Kawabata, K., Higashikawa, S., Gong, Z., Ashida, Y. & Ueda, M. Topological unification of timereversal and particlehole symmetries in nonhermitian physics. Nat. Commun. 10, 297 (2019).
 22.
Shen, H., Zhen, B. & Fu, L. Topological band theory for nonhermitian hamiltonians. Phys. Rev. Lett. 120, 146402 (2018).
 23.
Pikulin, D. I. & Nazarov, Y. V. Topological properties of superconducting junctions. JETP Lett. 94, 693–697 (2012).
 24.
Pikulin, D. I. & Nazarov, Y. V. Two types of topological transitions in finite Majorana wires. Phys. Rev. B 87, 235421 (2013).
 25.
Berry, M. V. Physics of nonhermitian degeneracies. Czech. J. Phys. 54, 1039–1047 (2004).
 26.
Heiss, W. D. The physics of exceptional points. J. Phys. A 45, 444016 (2012).
 27.
Zhen, B. et al. Spawning rings of exceptional points out of Dirac cones. Nature 525, 354–358 (2015).
 28.
Poli, C., Bellec, M., Kuhl, U., Mortessagne, F. & Schomerus, H. Selective enhancement of topologically induced interface states in a dielectric resonator chain. Nat. Commun. 6 (2015).
 29.
Zhou, H. et al. Observation of bulk Fermi arc and polarization half charge from paired exceptional points. Science 359, 1009–1012 (2018).
 30.
Kozii, V. & Fu, L. Nonhermitian topological theory of finitelifetime quasiparticles: prediction of bulk Fermi arc due to exceptional point. arXiv:1708.05841 (2017).
 31.
Leykam, D., Bliokh, K. Y., Huang, C., Chong, Y. D. & Nori, F. Edge modes, degeneracies, and topological numbers in nonhermitian systems. Phys. Rev. Lett. 118, 040401 (2017).
 32.
Zyuzin, A. A. & Zyuzin, A. Y. Flat band in disorder driven nonhermitian Weyl semimetals. Phys. Rev. B 97, 041203 (2018).
 33.
Zyuzin, A. A. & Simon, P. Disorderinduced exceptional points and nodal lines in Dirac superconductors. Phys. Rev. B 99, 165145 (2019).
 34.
Lee, E. J. H. et al. Spinresolved Andreev levels and parity crossings in hybrid superconductorsemiconductor nanostructures. Nat. Nano 9, 79–84 (2014).
 35.
Dietz, B. et al. Rabi oscillations at exceptional points in microwave billiards. Phys. Rev. E 75, 027201 (2007).
 36.
Heiss, W. D. Time behaviour near to spectral singularities. Eur. Phys. J. D 60, 257–261 (2010).
 37.
Nichele, F. et al. Scaling of Majorana zerobias conductance peaks. Phys. Rev. Lett. 119, 136803 (2017).
 38.
Ioselevich, P. A. & Feigel’man, M. V. Tunneling conductance due to a discrete spectrum of Andreev states. New J. Phys. 15, 055011 (2013).
 39.
Cayao, J., Prada, E., SanJose, P. & Aguado, R. Sns junctions in nanowires with spinorbit coupling: role of confinement and helicity on the subgap spectrum. Phys. Rev. B 91, 024514 (2015).
 40.
SanJose, P., Cayao, J., Prada, E. & Aguado, R. Majorana bound states from exceptional points in nontopological superconductors. Sci. Rep. 6, 21427 (2016).
 41.
SanJose, P. MathQ, a Mathematica simulator for quantum systems, Http://www.icmm.csic.es/sanjose/MathQ/MathQ.html.
 42.
Blonder, G. E., Tinkham, M. & Klapwijk, T. M. Transition from metallic to tunneling regimes in superconducting microconstrictions: excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B 25, 4515–4532 (1982).
 43.
Cuevas, J. C., MartínRodero, A. & Yeyati, A. L. Hamiltonian approach to the transport properties of superconducting quantum point contacts. Phys. Rev. B 54, 7366–7379 (1996).
Acknowledgements
We thank J. Cayao for useful discussions in the early stages of this work. Research supported by the Spanish Ministry of Science, Innovation and Universities through Grants PGC2018097018BI00, FIS201565706P, FIS201564654P, FIS201680434P (AEI/FEDER, EU), the FPI programme BES2016078122, the Ramón y Cajal programme Grants RYC201109345, RYC201314645, the María de Maeztu Programme for Units of Excellence in R&D (MDM20140377), and the European Union’s Horizon 2020 research and innovation programme under the FETOPEN Grant Agreement No. 828948. We also acknowledge support from CSIC Research Platform on Quantum Technologies PTI001.
Author information
Affiliations
Contributions
R.A. conceived the idea and supervised the research. J.A. and F.P. performed numerics and prepared figures. J.A., F.P., E.P., P.S.J. and R.A. contributed to the scientific discussion and provided scientific insight . E.P., P.S.J. and R.A. wrote the manuscript with input from J.A. and F.P.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Avila, J., Peñaranda, F., Prada, E. et al. Nonhermitian topology as a unifying framework for the Andreev versus Majorana states controversy. Commun Phys 2, 133 (2019). https://doi.org/10.1038/s4200501902318
Received:
Accepted:
Published:
Further reading

Effects of an indirectlycoupled quantum dot on the Andreev reflection induced by Majorana modes
Physics Letters A (2021)

Exceptional topology of nonHermitian systems
Reviews of Modern Physics (2021)

Fate of Majorana zero modes, exact location of critical states, and unconventional realcomplex transition in nonHermitian quasiperiodic lattices
Physical Review B (2021)

Quantum anomaly, nonHermitian skin effects, and entanglement entropy in open systems
Physical Review B (2021)

Quadrupole spin polarization as signature of secondorder topological superconductors
Physical Review B (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.